Способ изготовления теплоизоляционных изделий


 


Владельцы патента RU 2504526:

Лотов Василий Агафонович (RU)

Изобретение относится к области производства теплоизоляционных строительных материалов в виде плит, скорлуп и других изделий с заданными геометрической формой и размерами. В способе изготовления теплоизоляционных изделий, включающем дозирование и перемешивание вспученного вермикулита и жидкого стекла с плотностью 1360-1450 кг/м3, последующее формообразование и термообработку, используют жидкое стекло с модулем 2,8-3,2, а формование изделий проводят при термическом нагреве при температуре 500-550°С в течение 1 часа приготовленной сырьевой смеси, содержащей, % мас: указанное жидкое стекло 70-73, вспученный вермикулит 27-30 и загруженной в разборные металлические формы, снабженные крышками с жесткими фиксаторами, и уплотненной с коэффициентом сжатия Ксж, равным 1,1-1,5, с заполнением всего внутреннего объема формы, после охлаждения до температуры 120-150°С формы разбирают и извлекают изделия с заданной формой и размерами. Изобретение развито в зависимом пункте формулы. Технический результат - упрощение технологии, сокращение ее длительности, улучшение свойств изделий. 1 з.п. ф-лы, 1 пр., 2 табл.

 

Изобретение относится к области производства строительных материалов и может быть использовано при изготовлении теплоизоляционных материалов с заданной геометрической формой на основе вспученного вермикулита.

Известен состав сырьевой смеси и способ получения огнезащитного конструкционно-отделочного материала (Патент РФ 2169717, C04B 28/26, 27.06.2001). Известный состав содержит 58-77% вспученного вермикулита, 10-25% (на сухое вещество) растворимого силиката натрия, 2-10% триполифосфата щелочного металла и дополнительно каолин, мел и минеральное волокно. Основным недостатком этого состава является введение в состав смеси триполифосфата щелочного металла, каолина и мела, которые в процессе перемешивания компонентов, вступают в реакцию с жидким стеклом и разрушают его структуру, в результате чего его клеющая способность снижается. Кроме того, недостатком способа является необходимость нагрева формовочной смеси до температуры 160-190°C, сложность процессов смешения и горячего прессования плит и большая длительность процесса их сушки.

Известен также состав и способ изготовления плит из вспученного вермикулита (Н.А. Попов. Производство и применение вермикулита. - М.: 1964, с 117-129). Недостатком состава является использование кремнефтористого натрия, используемого в качестве отвердителя. При его взаимодействии с жидким стеклом образуется фторид натрия, который относится к химическим соединениям 1-го класса опасности. Недостатком способа также является использование прямого электрического нагрева при сушке плит (27-33 кВт), что связано с проблемой безопасности труда при осуществлении технологического процесса. Кроме того, вследствие низкой прочности плиты после прессования, возникает проблема ее извлечения из пресс-формы, а сушку прессованных плит необходимо проводить в течение 10 часов.

Наиболее близким аналогом заявляемому изобретению является состав сырьевой смеси и способ изготовления теплоизоляцонных плит (Патент РФ 2126776, C04B 28/26, C04B 38/08, 27.02.1999). По прототипу сырьевая смесь содержит (мас.%): вспученный вермикулит 30-40, жидкое стекло 30-60, тонкомолотый доломит 10-30. Недостатком этого состава является введение в состав смеси доломита, который при его введении свыше 7-10% разрушает структуру исходного жидкого стекла и снижает его клеющую способность.

Основными недостатками этого способа являются необходимость нагрева всех компонентов смеси перед дозированием и смешением до температуры 40-70 C, формования плит на гидравлическом прессе и проведения тепловой сушки плит в течение 60 мин, СВЧ-сушки в течение 15 мин и последующего выдерживания плит в штабелях под пригрузом в течение 16 часов, что увеличивает длительность цикла изготовления изделий до 17,5 часов.

Задачей настоящего изобретения является упрощение технологии и сокращение длительности цикла получения теплоизоляционных изделий на основе вспученного вермикулита со свойствами, превышающими свойства изделий по прототипу.

Поставленная задача решается тем, что способ изготовления теплоизоляционных изделий, включающий дозирование и перемешивание вспученного вермикулита и жидкого стекла с плотностью 1360-1450 кг/м3, последующее формообразование и термообработку, отличающийся тем, что используют жидкое стекло с модулем 2,83,2 а формование изделий проводят при термическом нагреве при температуре 500-550°C в течение 1 часа приготовленной сырьевой смеси, содержащей (% мас.): указанное жидкое стекло - 70-73, вспученный вермикулит - 27-30 и загруженной в разборные металлические формы, снабженные крышками с жесткими фиксаторами, и уплотненной с коэффициентом сжатия Ксж равным 1,1-1,5 с заполнением всего внутреннего объема формы, после охлаждения до температуры 120-150°C, формы разбираются и из них извлекаются изделия с заданной формой и размерами.

Основным преимуществом предлагаемого состава смеси является пониженное содержание вспученного вермикулита, что позволяет регулировать, при заданном коэффициенте сжатия, свободное поровое (межчастичное) пространство при засыпке готовой смеси в формы. Повышенное содержание жидкого стекла в смеси обусловлено предлагаемым способом изготовления изделий, в котором при термическом нагреве смеси, заключенной в форме, происходит вспенивание жидкого стекла и заполнение этой пеной свободного перового пространства, в результате чего формируются конечные размеры и структура изделий.

Основным преимуществом предлагаемого способа изготовления изделий из вспученного вермикулита является исключение из технологического цикла операций прессования изделий и их последующей сушки, что позволяет сократить длительность процесса изготовления изделий в 10 и более раз. Это достигается за счет совмещения операций сушки и формообразования изделий в процессе их термообработки при 500-550°C в течение 1 часа. В этот период происходит сначала удаление свободной воды из жидкого стекла, а затем, в процессе удаления химически связанной воды происходит вспенивание жидкого стекла с существенным увеличением объема, в результате чего происходит заполнение свободного пространства между частицами вермикулита и возникает внутреннее избыточное давление, под действием которого происходит уплотнение пористой смеси в замкнутом объеме формы с образованием структуры изделий, получение которой не возможно при использовании традиционных способов получения изделий с использованием метода предварительного прессования исходных смесей и последующей сушки изделий. Отсутствие в предлагаемом способе операции прессования позволяет получать изделия с плотностью от 300 кг/м3, чего нельзя достичь при использовании известных способов.

Пример исполнения.

Дозированное количество товарного жидкого стекла по ГОСТ 13078-81 с модулем m=2,83,2 и плотностью при 20°C 1360-1450 кг/м3 перемешивалось с необходимым количеством вспученного вермикулита с размером зерен 2-5 мм в течение 5 минут. Полученная смесь засыпалась в разборную металлическую форму с внутренним объемом 2,15 л (24,5×11,7×7,5 см). Масса загружаемой смеси - 550-750 г/л. Внутренние стенки формы перед засыпкой смеси предварительно смазывались глино-меловой или мелоизвестковой суспензией для предотвращения прилипания изделий к стенкам формы при термообработке.

После засыпки смесь в форме уплотнялась до заполнения всего внутреннего объема формы, далее форма закрывалась верхней крышкой, которая жестко фиксировалась с помощью специальных устройств. Затем форма помещалась в печь, предварительно нагретую до температуры 500-550°C с выдержкой при этой температуре в течение 1 часа, после чего форма извлекалась из печи, и после охлаждения до 120-150°C форма разбиралась и из нее извлекалось изделие с заданной формой и геометрическими размерами. Изделия из составов 1-5 (табл.1) изготовлены с использованием товарного жидкого стекла с модулем равным 2,8-3,0 и плотностью 1360-1450 кг/м3. Изделия из состава 8 изготовлены в соответствии с прототипом.

При изготовлении теплоизоляционных изделий также можно использовать жидкое стекло, получаемое методом прямого синтеза из микрокремнезема, гидроксида натрия и воды путем совместного перемешивания этих компонентов в течение 15-30 мин. В зависимости от величины модуля жидкого стекла расход исходных компонентов на получение 100 кг жидкого стекла с плотностью 1400-1450 кг/м3 составляет:(% мас.):

- при модуле m=2,8 микрокремнезем - 37,5; гидроксид натрия - 15,6; вода-46,9;

- при модуле m=3,0 - микрокремнезем - 38,7; гидроксид натрия - 15,1; вода - 46,2;

- при модуле m=3,2 - микрокремнезем - 39,5; гидроксид натрия - 14,3; вода - 46,2.

При необходимости получения жидкого стекла с меньшей плотностью синтезированное жидкое стекло разбавляют расчетным количеством воды.

Составы смесей, режимы обработки и показатели свойств изделий представлены в таблицах 1 и 2, из которых следует, что использование предлагаемых способа изготовления изделий и состава сырьевых смесей позволяет сократить время изготовления до 1-1,1 часа, то есть уменьшить время цикла изготовления изделий не менее чем в 10 раз по сравнению с известными способами. Способ изготовления изделий методом их формования при термическом вспучивании жидкого стекла в составе смеси обеспечивает получение изделий с низкой плотностью, теплопроводностью и повышенной прочностью. Повышение прочности изделий обусловлено образованием на поверхности изделий более плотного слоя толщиной 2-5 мм в процессе термического нагрева и вспучивания смеси. Эффект поверхностного уплотнения и упрочнения изделий не достижим при использовании всех известных способов изготовления изделий на основе вермикулита и жидкого стекла.

Таблица 1
Компоненты смеси и свойства изделий Состав смеси (мас.%), режимы обработки и показатели свойств изделий
1 2 3 4 5 6 7 8 (прот.)
Вспученный вермикулит 27 28 30 27 30,0 27,0 30,0 35,0
Товарное жидкое стекло 73 72 70 73 70 73 70 40
Модуль/плотность жидкого стекла кг/м3 2,8/1360 2,8/1400 2,8/1450 3,0/1360 3,0/1400 3,2/1400 3,2/1450 3,0/1400
Доломит - - - - - - - 25
Коэффициент сжатия 1,1 1,2 1,5 1,2 1,5 1,1 1,2 2,5
Температура сушки, °С - - - - - - - 180
Время сушки, ч - - - - - - - 12
Температура обжига, °С 500 550 500 550 500 550 500 -
Время обжига, ч 1 1 1 1 1 1 1 -
Плотность изделий, кг/м3 340 345 390 405 450 310 320 530
Прочность при сжатии, МПа 1,5 1,3 2,7 2,4 2,8 1,5 1,8 2,1
Коэффициент теплопроводности, Вт/м·град 0,076 0,079 0,083 0,074 0,080 0,068 0,073 0,11
Таблица 2
Компоненты смеси и свойства изделий Состав смеси (мас.%), режимы обработки и показатели свойств изделий
1 2 3 4 5 6 7 8
Вспученный вермикулит 27 28 30 27 30 27 30 30
Жидкое стекло на основе микрокремнезема и NaOH 73 72 70 73 70 73 70 70
Модуль/плотность жидкого стекла кг/м3 2,8/1360 2,8/1400 2,8/1450 3,0/1360 3,0/1400 3,2/1400 3,2/1450 3,0/1450
Коэффициент сжатия 1,1 1,2 1,5 1,2 1,5 1,1 1,2 1,5
Температура обжига, °С 500 550 500 550 500 550 500 500
Время обжига, ч 1 1 1 1 1 1 1 1
Плотность изделий, кг/м3 320 350 390 315 430 310 320 350
Прочность при сжатии, МПа 1,3 1,4 2,8 2,3 2,9 1,7 1,9 2,5
Коэффициент теплопроводности, Вт/м·град 0,074 0,077 0,079 0,068 0,080 0,066 0,072 0,080

1. Способ изготовления теплоизоляционных изделий, включающий дозирование и перемешивание вспученного вермикулита и жидкого стекла с плотностью 1360-1450 кг/м3, последующее формообразование и термообработку, отличающийся тем, что используют жидкое стекло с модулем 2,8-3,2, а формование изделий проводят при термическом нагреве при температуре 500-550°С в течение 1 ч приготовленной сырьевой смеси, содержащей, мас.%: указанное жидкое стекло 70-73, вспученный вермикулит 27-30, и загруженной в разборные металлические формы, снабженные крышками с жесткими фиксаторами, и уплотненной с коэффициентом сжатия Ксж, равным 1,1-1,5, с заполнением всего внутреннего объема формы, после охлаждения до температуры 120-150°С формы разбираются и из них извлекаются изделия с заданной формой и размерами.

2. Способ изготовления теплоизоляционных изделий по п.1, отличающийся тем, что используют жидкое стекло с указанными характеристиками, получаемое методом прямого синтеза из микрокремнезема, гидрооксида натрия и воды.



 

Похожие патенты:

Изобретение относится к области исследования физико-химических свойств бетона в условиях воздействия на образец углекислого газа заданной концентрации. Установка содержит не менее 2-х герметичных камер с заполненной водой U-образной трубкой для сброса избыточного давления в камере, впускным и выпускным газовыми распределительными коллекторами, фильтрами для очистки забираемой из камер газовоздушной среды и с установленными внутри каждой камеры вентилятором и ванной с насыщенным раствором соли для создания и постоянного поддержания заданной относительной влажности воздуха внутри камеры, подсоединенный к герметичным камерам через впускной газораспределительный коллектор и установленные на трубопроводах электромагнитные клапаны источник углекислого газа, автоматический газоанализатор с побудителем расхода газа, газовый распределительный коммутатор для попеременного забора пробы из камер и передачи ее в газоанализатор через побудитель расхода газа, кроме того, газоанализатор соединен с ЭВМ для автоматизации контроля за концентрацией газа в герметичных камерах и подачей в них газа через электромагнитные клапаны.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из кислотостойких бетонов.

Изобретение относится к промышленности строительных материалов, в частности к технологии гранитоцементных изделий из мелкозернистых бетонов, и может быть использовано для изготовления элементов отделки цоколей стен зданий, плитки для полов, брусчатки для дорог и тротуаров и других атмосферостойких изделий.

Изобретение относится к области строительства, а именно к технологии приготовления бетонных смесей и изделий из них. В способе приготовления бетонной смеси, включающем перемешивание части расчетной дозы жидкости затворения с цементом в смесителе-активаторе, введение оставшейся части расчетной дозы жидкости затворения в бетоносмеситель с заполнителем, последующее введение полученной в смесителе-активаторе суспензии в бетоносмеситель и окончательное перемешивание полученной смеси, в качестве жидкости затворения используют воду, которую предварительно заливают в смеситель-активатор в объеме (40÷70)% от расчетной (рецептурной) дозы жидкости затворения, которую в процессе заливки в смеситель-активатор активируют, для чего пропускают со скоростью (1÷2) м/с через поперечное магнитное поле, напряженность которого лежит в диапазоне (500÷2000) Э, затем, после заливки в смеситель-активатор, упомянутую жидкость подвергают дополнительной вторичной активации путем ее кавитационной дезинтеграции, для чего на нее воздействуют ультразвуком, частота которого лежит выше частоты порога кавитации в диапазоне низких частот от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежит в области стабильной кавитации от 1,5 Вт/см2 до 2,5 Вт/см2, причем в процессе кавитационный дезинтеграции жидкости затворения в нее засыпают и перемешивают цемент, при этом одновременно с заливкой жидкости затворения в смеситель-активатор также заливают оставшуюся от расчетной (рецептурной) дозы часть жидкости затворения в бетоносмеситель с заполнителем, в качестве которой используют воду, которую в процессе ее заливки в бетоносмеситель с заполнителем омагничивают, для чего ее также пропускают со скоростью (1÷2) м/с через поперечное магнитное поле, напряженность которого лежит в диапазоне (500÷2000) Э, затем после перемешивания суспензии - цементного теста в смесителе-активаторе в течение 1-1,5 минут, ее переливают в бетоносмеситель и полученную смесь окончательно перемешивают в течение 1,5-2 минут.

Изобретение относится к области строительства, в частности к способу получения теплоизоляционного материала на основе отходов деревообработки. Технический результат заключается в снижении плотности материала и повышении его теплоизоляционных свойств.

Изобретение относится к промышленности строительных материалов, а именно к способам приготовления бетонной смеси. .
Изобретение относится к способу переработки пуццоланов и может найти применение при приготовлении бетонных смесей, строительных растворов и других смесей, включающих цемент.

Изобретение относится к производству наполнителей бетонов и промышленности строительных материалов и может быть использовано при приготовлении бетонов или строительных растворов, используемых в производстве бетонных и железобетонных изделий и конструкций для сборного и монолитного строительства.
Изобретение относится к способу получения гипсового вяжущего. .

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из кислотостойких бетонов.

Предлагаемое изобретение относится к области строительной индустрии. Техническим результатом изобретения является повышение физико-механических свойств изделий.
Изобретение относится к производству строительных материалов и изделий, в частности к легким бетонам, предназначенным для утепления перекрытий и фасадов зданий и сооружений, а также изготовления декоративных изделий, применяемых для украшения фасадов и интерьеров зданий.
Изобретение относится к производству пористых заполнителей для бетонов. Технический результат заключается в повышении прочности пористого заполнителя, полученного из шихты.
Изобретение относится к промышленности строительных материалов и касается составов сырьевых смесей для изготовления теплоизоляционных изделий. Сырьевая смесь для изготовления теплоизоляционных изделий содержит, мас.%: глина кислая неспекающаяся 55,0 - 70,0, вспученный перлит 20,0 - 25,0, каолин 5,0 - 10,0, кремнегель 5,0 - 10,0.
Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глина монтмориллонитовая 76,0-79,0, уголь и/или доломит 5,0-6,0, фосфорит 16,0-18,0.
Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: размолотая до прохождения через сетку №014 глина монтмориллонитовая 70,0-77,0, размолотый до прохождения через сетку №014 уголь и/или размолотый до прохождения через сетку №014 доломит 5,0-6,0, жидкое стекло 18,0-24,0.

Изобретение относится к области авиационно-космической техники, главным образом к производству теплозащитных покрытий, которые могут быть использованы для нанесения на внешнюю или внутреннюю поверхность оболочек из нитрида кремния головных антенных обтекателей ракет.
Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глина монтмориллонитовая 50,0-70,0; отходы алмазообогащения 20,0-30,0; тальк 10,0-20,0.

Изобретение относится к строительным материалам, в частности к составам легкобетонных смесей с модифицированными добавками. Легкобетонная смесь содержит, мас.%: цемент 70,36-71,85, пенополистирол 2,85-3,24, трилон Б - динатриевая соль этилендиаминтетрауксусной кислоты 0,01-0,12, бензосульфат метилдиэтиламиноэтилметакрилфенола полигликолиевого эфира 0,005-0,02, мета-аминобензойная кислота 0,01-0,03, вода - остальное.
Изобретение относится к промышленности строительных материалов и касается составов сырьевых смесей для изготовления теплоизоляционных изделий. Сырьевая смесь для изготовления теплоизоляционных изделий содержит, мас.%: глина кислая неспекающаяся 65,8-68,8, молотый до удельной поверхности 4500-5000 см2/г вспученный перлит 20,0-24,0, бентонит 2,0-3,0, триполифосфат натрия 0,1-0,2, молотый до удельной поверхности 4500-5000 см2/г волластонит 3,0-5,0, кварцевый песок 3,0-5,0.
Изобретение относится к области строительных материалов, в частности к теплоизоляционным пористым материалам. Технический результат - повышение прочности при раскалывании.
Наверх