Ветровая электростанция



Ветровая электростанция
Ветровая электростанция

 


Владельцы патента RU 2504685:

Перфилов Александр Александрович (RU)

Изобретение относится к области возобновляемой энергетики и может быть использовано для преобразования кинетической энергии воздушного потока в механическую и электрическую энергию. Ветровая электростанция на постоянном воздушном потоке включает множество ветроэнергетических установок, содержащих ветровые колеса с электрогенератором, нагревательный элемент и аэродинамическую трубу. Ветровые колеса с электрогенератором расположены в подземных туннелях, соединенных с башней, в которой расположены газовые горелки, создающие постоянный воздушный поток. Башня выполнена из полимерных материалов, снабжена ребрами жесткости в виде обручей и подвешена на тросах к аэростату. На башне в устье аэродинамической трубы смонтирован барабан с лопастями, установленный с возможностью вращения и создания разрежения под действием горизонтальных потоков воздуха. Ветроэнергетическая установка пригодна для установки в труднодоступных местах и обеспечивает возможность бесперебойного получения электроэнергии, а также уменьшение шумовых и вибрационных воздействий на окружающую среду. 2 ил.

 

Изобретение относится к области возобновляемой энергетики и может быть использовано для преобразования кинетической энергии воздушного потока в механическую и электрическую энергию.

Актуальность изобретения.

Проблема обеспечения жителей Земли энергией столь актуальна, что заставляет мощные в военном отношении страны принудительно перераспределять не возобновляемые источники энергии в своих целях. Разумное же человечество уменьшение полезных ископаемых компенсирует поиском альтернативных источников получения энергии.

Среди множества альтернативных возобновляемых источников энергии ветроэнергетика является весьма привлекательной.

Результаты исследований американских энергетиков впечатляют, согласно полученным данным даже с учетом всех погрешностей и невысокого КПД (преобразование кинетической энергии ветра в механическую на уровне 39-42% и преобразование механической энергии в электрическую на уровне 90-94%), ветряные электростанции могут обеспечить энергией весь земной шар [1, 2].

Ветроэнергетика развивается особо быстрыми темпами 25-30% в год. К 2012 году установочная мощность ветроэлектрических установок в мире должна приблизиться к 160 ГВт [3].

Достоинства и недостатки ветроэнергетики.

Достоинства: Экологически-чистый вид энергии. Производство электроэнергии с помощью «ветряков» не сопровождается выбросами CO2 и других газов. Ветровые электростанции занимают мало места и легко вписываются в любой ландшафт, а также отлично сочетаются с другими видами хозяйственного использования территорий.

Энергия ветра, в отличие от ископаемого топлива, неистощима. Ветровая энергетика - лучшее решение для труднодоступных мест. Недостатки: нестабильность. Нестабильность заключается в негарантированности получения необходимого количества электроэнергии. Ветряк как парусник работает, пока есть ветер. Относительно невысокий выход электроэнергии. Ветровые генераторы значительно уступают в выработке электроэнергии дизельным генератором, что приводит к необходимости установки сразу нескольких турбин. Кроме того, ветровые турбины неэффективны при пиковых нагрузках. Высокая стоимость: стоимость установки, производящей 1 мега-ватт электроэнергии, составляет 1 миллион долларов.

Шумовое загрязнение, шум, производимый «ветряками», может причинять беспокойство, как диким животным, так и людям, проживающим поблизости [16].

Ветряки являются причиной низкочастотных колебаний, которые влияют на здоровье людей.

Главным недостатком данных ветряков являются простои из-за отсутствия постоянно действующего ветрового потока.

Нет ветра - нет электроэнергии. Извольте тратить накопленное.

Существует множество ветряков различных конструкций ветровых колес и ветровых турбин [4, 5, 6].

Некоторые недостатки ветряков конструкторы успешно устраняют. В основе Ветровой турбины Фуллера [17] - безлопастного ветряка лежит несколько дополненная турбина Теслы, изобретенная в 1913 году.

Турбина Теслы - это набор из множества тонких металлических дисков, разделенных небольшими зазорами. Поток рабочей жидкости или газа поступает с внешнего края дисков и проходит по зазорам к центру, закручиваясь и увлекая за счет эффекта пограничного слоя сами диски. В центре же поток выходит через осевое отверстие.

На высоте, как известно, ветер дует сильнее, чем у поверхности земли. Британские архитекторы David Amold и Alexa Ratzlaff предлагают создавать специальные небоскребы, главной целью которых как раз и будет генерация ветряной энергии, - ветровой поток должен разгоняться по винтообразным ребрам здания и подаваться на ветряки, расположенные на крыше небоскреба [21].

Проект интересен, но пока не воссоздан даже на моделях. При своем движении воздушный поток гудит, множество ветряков на крыше небоскреба тоже при работе лопастей генерируют инфразвуковые волны опасные для здоровья людей. Как жить в таком доме?

Данный проект можно принять за идейную основу нашего прототипа, как попытку использовать постоянно действующие потоки воздуха на больший высотах, конечно, устанавливать ветряки на крышах жилых помещений весьма нежелательно.

Известна тепловихревая электростанция [26], которая содержит трубу с генератором вихря, ветроколеса, установленные на вертикальном валу, и электрогенератор. Электростанция снабжена дополнительным генератором вихря, дефлектором, системой подогрева воздуха. Ветроколеса установлены в трубе, а крылья ветроколес размещены в зоне вихревого воздушного потока. Большим достоинством этого изобретения является генерация постоянного воздушного потока, что предотвратит простои ветряка.

Недостатки следующие.

Принцип обычной печки, в трубе которой установлено ветровое колесо. Новизна в том, что для увеличения тяги, восходящий воздушный поток, возникающий за счет разницы температур между низом и верхом трубы, приводится в вихревое движение, которое, по мнению авторов, должно значительно увеличить мощность и скорость воздушного потока.

Вызывает сомнение, что вихревое динамическое движение воздушного потока благотворно повлияет на крылья ветрового колеса или на лопатки ветровой турбины.

Большую тягу на коротком участке трубы таким способом не получишь, и не пойдет ли вся электроэнергия ветряка на подогрев воздуха? А главное, - если нет нагрева, то нет и тяги, - значит, ветряк будет простаивать (если топливо не подвезут или ремонтные работы на нагревателе). Топливо можно более эффективно использовать в обычных электрогенераторах.

Данное изобретение принято нами за прототип.

Целью предполагаемого изобретения является повышение эффективности ветровой электростанции на постоянном воздушном потоке.

Для создания постоянно действующего воздушного потока в трубе необходимо выполнить два условия:

- наличие градиента температуры, атмосферного давления или плотности воздуха на концах трубы;

- наличие тех же градиентов воздуха внутри трубы относительно окружающей среды.

Увеличить градиент по атмосферному давлению на концах трубы можно за счет увеличения ее длины от несколько сот метров до нескольких километров, вплоть до верхний границы тропосферы 10-18 км.

Для увеличения градиента давления внутри трубы, предлагается за счет установки в устье трубы ветрового барабана с лопастями, в котором, при его вращении под действием горизонтальных потоков воздуха, по закону Бернулли возникает разряжение воздуха, что создает дополнительную тягу.

Для нагревания воздуха внутри трубы предлагается использовать газовые горелки, установленные на башне в устье аэродинамической трубе.

Для уменьшения шума и вибрации предлагается ветровые колеса с электрогенераторами размещать в подземных туннелях.

Эти предложения должны повысить эффективность ветровой электростанции.

Предлагаемая ветровая электростанция на постоянном воздушном потоке включает множество ветроэнергетических установок, содержащих ветровые колеса с электрогенератором, нагревательный элемент и аэродинамическую трубу,

отличающаяся тем, что ветровые колеса с электрогенератором расположены в подземных туннелях, соединенных с башней, в которой расположены газовые горелки. На башне в устье аэродинамической трубы, выполненной из полимерных материалов с ребрами жесткости в виде обручей и подвешенной на тросах к аэростату, смонтирован барабан с лопастями, установленный с возможностью вращения и создания разрежения под действием горизонтальных потоков воздуха.

При удачной конструкции барабана и наличии ветра создаваемая им тяга в аэродинамической трубе будет достаточна для работы электростанции и включение горелок не потребуется, а совместная их работа повысит эффективность ветровых установок.

В качестве ветроэнергетических установок могут быть приемлемы ветряки с ветроколесами или турбинами, соответствующие технико-экономическим расчетам и экологии окружающей среды. Аэродинамическая труба с ребрами жесткости в виде полимерных обручей подвешивается на тросах к аэростату, который удерживается от смещения теми же тросами посредством наземных автоматических натяжных устройств.

Под воздействием ветровых боковых нагрузок полимерный рукав может изгибаться, что не повлияет на производительность ветряка. аэродинамическая труба должна иметь протяженность несколько сот метров или несколько километров, исходя из технических возможностей.

Внутри аэродинамической трубы возникает сильный воздушный поток за счет подогрева воздуха газовыми горелками, перепада давления на ее концах и ускорения потока при вращении барабана. Ожидаются значительные нагрузки на стенки аэродинамической трубы.

Из всего многообразия полимеров в экстремальных условиях наиболее приемлемы углепластики. Наполнителем в этих полимерных композитах служат углеродные волокна, которые получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила нефтяных и каменноугольных пеков и т.д.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы, способные долго выдерживать в инертных или восстановительных средах температуры до 3000 град. Углепластики очень легки и, в то же время, прочные материалы [22]. Например, полимер этого класса, названный «Хайпол» обладает следующими параметрами: рабочая температура до 2000 град., химическая инертность к окислительным средам, не горит, в 1.5 раза легче алюминия и весьма прочен [23]. Вызывает интерес последняя разработка российских ученых - полимер ГРАФИН, обладающий особенными и экзотическими свойствами [24]. За эту разработку российские ученые получили Нобелевскую премию в 2010 году.

Углеграфитовые трубки могут достигать прочность в 50 раз превышающую прочность стали.

Углеродные тонкие пленки, полученные из этих полимеров, могут

быть использованы в качестве стенок внутренней аэродинамической трубы.

Из тех же материалов могут быть изготовлены решетки и сетки фильтрационных устройств воздухозаборника.

Материалом для воздушных шаров обычно служат эластомеры, т.е. природные или синтетические каучуки. Каучук обладает способностью обратимо растягиваться до 900%. Из этих же материалов могут быть изготовлены и тросы, проложенные по стенкам аэродинамической трубы, с помощью которых конструкция крепится к воздушным шарам.

Нижняя часть башни выполнена в виде диффузора, уплотняющего воздушный поток.

На разных уровнях аэродинамической трубы закрепляются научная аппаратура (на период испытаний), датчики, видеокамеры, передатчики видео и телеметрической информации.

На фиг.1 представлен вид ветровой электростанции сбоку в разрезе; на фиг.2 - вид на электростанцию сверху,

где:

1 - шар аэростата, 2 - гондола с контрольно-измерительной аппаратурой, 3 - трос, 4 - натяжное устройство, 5 - аэродинамическая труба, 6 - барабан с лопастями, 7 - насыпь, 8 - воздухозаборник с фильтром, 9 - ветроэнергетическая установка (ветровое колеса с электрогенератором), 10 - туннель, 11 - диффузор, 12 - ребра жесткости, 13 - газовые горелки, 14 - башня, 15 газопровод.

Ход монтажных работ.

Выбирают место малопригодное для промышленного и сельхоз использования. Строят туннели с воздухозаборниками и башню с диффузором. Устанавливают в туннелях ветровые колеса с электрогенераторами и это сооружение присыпают землей. На башню устанавливают вращающийся на шарикоподшипниках барабан с лопастями.

Несложно подвезти аэростат в собранном виде, катушки с полимерной пленкой и дуги обручей, а также натяжные устройства с намотанным тросом к месту монтажа.

Аэростат 1 приводят в рабочее состояние, прикрепляют к натяжным устройствам 4 гондолу 2,которую оборудуют контрольно-измерительной аппаратурой и медленно поднимают в воздух. К натянутым тросам 3 крепят секции аэродинамической трубы 5 с ребрами жесткости 12 в виде полимерных обручей. По мере наращивания трубы за счет состыковки ее секций аэростат поднимается вверх.

Параллельно этим работам, внутри здания электроподстанции, монтируются контроллер, инвертор, АВР, трансформатор и интерфейс ЛЭП. Устанавливается наземная станция наблюдения и ретранслятор для автоматического контроля и управления электроподстанцией на расстоянии.

Электроэнергия от генераторов поступает по кабелю на контроллер, который управляет всей энергосистемой станции. Далее энергия трансформируется и поступает через интерфейс на ЛЭП общегосударственной сети.

Для обеспечения энергией устройств самой электростанции и близлежащих устройств наблюдения, служат инвертор и АВР. АВР позволяет переключить питание объекта при остановке ветроэнергетической установки (ремонт, профилактика) на другие установки или гор. электросеть.

Так как электростанция автоматическая, то все ее параметры и видионаблюдения передаются через ретранслятор на пункт сбора данных в районную гор электросеть.

Предлагаемая ветровая электростанция проста, а значит и низкозатратна и экономически выгодна. Она неприхотлива в выборе места,- пригодна и в труднодоступных условиях. Ей не страшны и отсутствие ветра и его сильные порывы.

Ветроэнергетические установки, запрятанные в подземные туннели не создают излишних шумовых и вибрационных воздействий на окружающую среду и могут работать вблизи населенных пунктов. Устройство удобно для технического обслуживания и самой аэродинамической трубы, достаточно подтянуть аэростат натяжными устройствами к земле.

Конструкция ветровой электростанции не предполагает ограничений на длину и диаметр аэродинамической трубы, на количество установленных ветроэнергетических установок, а значит, и на ее производительность.

Ветровая электростанция на постоянном воздушном потоке, включающая множество ветроэнергетических установок, содержащих ветровые колеса с электрогенератором, нагревательный элемент и аэродинамическую трубу, отличающаяся тем, что ветровые колеса с электрогенератором расположены в подземных туннелях, соединенных с башней, в которой расположены газовые горелки, на башне в устье аэродинамической трубы, выполненной из полимерных материалов с ребрами жесткости в виде обручей и подвешенной на тросах к аэростату, смонтирован барабан с лопастями, установленный с возможностью вращения и создания разрежения под действием горизонтальных потоков воздуха.



 

Похожие патенты:

Изобретение относится к ветродвигателям с осью вращения ротора, перпендикулярной направлению ветра. Ветродвигатель содержит установленное на вертикальном полом валу рабочее колесо, выполненное виде размещенных между верхним и нижним ободами поворотных лопастей, установленных на поворотных валах, которые закреплены на кронштейнах, связанных с вертикальным валом.

Изобретение относится к устройствам, предназначенным для выработки электроэнергии. Аэроэлектростанция для использования энергии ветра содержит горизонтальный воздуховод, вертикальный воздуховод и электрогенераторы, которые кинематически соединены с рамами, последовательно установленными в плоскостях поперечного сечения воздуховодов с возможностью возвратно-поступательного движения, ограниченного упругими упорами.

Изобретение относится к области ветроэнергетики, а именно к ветроэнергетическим установкам автономного электроснабжения с диффузорным ускорителем воздушного потока, повышающим эффективность и безопасность установки.

Группа изобретений относится к способам возведения башни, в частности башни ветроэнергетической установки, и башне ветроэнергетической установки. Изготавливается фундамент (100), на фундаменте размещаются несколько блоков (500) регулирования по высоте, на нескольких блоках (500) регулирования по высоте размещается распределяющее нагрузку кольцо (200), причем распределяющее нагрузку кольцо (200) нивелируется путем настройки блоков (500) регулирования по высоте, и шов между фундаментом (100) и распределяющим нагрузку кольцом (200) заполняется заливочной массой (300).

Изобретение относится к области ветроэнергетики. Ветровое колесо содержит ступицу с прикрепленными к ней спицами, радиально установленные лопасти на обращенной к ступице поверхности обода и на внешней его поверхности.

Изобретение относится к области ветро-гелиоэнергетики. Ветровое колесо содержит ступицу с радиально прикрепленными к ней лопастями.

Изобретение относится к области электротехники и может быть использовано для получения энергии нетрадиционным способом. .

Изобретение относится к ветроэнергетике и может быть использовано для преобразования энергии ветра в электрическую энергию. .

Изобретение относится к ветроэнергетике. .

Изобретение относится к области альтернативной энергетики с использованием возобновляемых источников энергии. Ветроэнергетическая установка содержит ротор, промежуточный редуктор, гидравлическую систему, гидравлический насос, гидравлический мотор, регулятор оборотов гидравлического мотора и генератор электрического тока.

Изобретение относится к области ветроэнергетики, в частности к регулируемым ветроколесам. Ветроколесо содержит основание с подшипниками, горизонтальный вал, лопасти, роторы, имеющие магнитный контакт со статорами, установленными на основании, редукторы.

Изобретение относится к ветроэнергетике. .

Изобретение относится к ветроэнергетике. .

Изобретение относится к области ветроэнергетики и может быть применено для выработки электроэнергии. .

Изобретение относится к ветроэнергетике. .

Изобретение относится к энергетике, а именно к устройствам для получения электрической энергии. .

Изобретение относится к ветроэнергетике и может быть использовано для выработки электроэнергии. .

Изобретение относится к ветроэнергетике и может быть использовано для преобразования энергии ветра в электроэнергию. Ветроэлектростанция содержит концентратор воздушных потоков, ветроколеса, электрогенераторы, систему регулирования подачи воздуха на лопасти ветроколес и систему защиты от ураганных ветров. Концентратор образован стенами плотины, установленной в створе горного ущелья на его выходе в долину, и поверхностями ущелья. Плотина направлена широкой частью в сторону ущелья. В узкой центральной ее части в круглых отверстиях установлены ветроколеса на валах электрогенераторов горизонтального исполнения. С внутренней стороны на входе круглых отверстий установлены заслонки системы регулирования подачи воздуха, а с внутренней стороны всей центральной части плотины расположены защитные створки в виде откатных ворот. Ветроколеса могут быть выполнены из лопастей авиационного типа, заслонки системы регулирования подачи воздуха могут быть выполнены диафрагменного вида. Защитные створки в рабочем режиме расположены в нишах стен плотины. Центральная часть плотины может быть выполнена углом в сторону от ущелья. С внешней стороны плотины выполнены ребра жесткости, а межреберное пространство заполнено скальным грунтом, который закреплен от осыпания горизонтальными сетчатыми полосами, закрепленными на плотине и ребрах жесткости. Изобретение обеспечит повышение эффективности преобразования энергии воздушных потоков при различных скоростях ветра путем использования поверхностей ущелья и системы защиты от ураганных ветров. 5 з.п. ф-лы, 4 ил.
Наверх