Способ контроля целостности токопроводящего покрытия на диэлектрическом материале

Изобретение относится к измерительной технике и предназначено для обнаружения замкнутых микротрещин на токопроводящем покрытии, нанесенном на диэлектрик. Способ контроля целостности токопроводящего покрытия на диэлектрическом материале, включающий операции размещения с зазором плоского электрода, измерения электрической емкости между плоским электродом и поверхностью токопроводящего покрытия, перемещения электрода, операцию сравнения электрических емкостей, при этом плоский электрод устанавливают на подвижном электроприводе, соединенном с регистратором. Плоский электрод возвратно-поступательно перемещают эквидистантно поверхности токопроводящего покрытия, а токопроводящее покрытие перемещают перпендикулярно относительно движения плоского электрода. Полученное значение электрической емкости, поступающее в регистратор, сравнивают с эталонной емкостью, при нарушении равенства электрических емкостей отмечают наличие дефекта на токопроводящем покрытии. Технический результат - расширение эксплуатационных возможностей, обеспечение возможности контролировать токопроводящее покрытие большой площади, сокращение трудоемкости. 2 ил.

 

Изобретение относится к измерительной технике и предназначено для обнаружения замкнутых микротрещин на токопроводящем покрытии нанесенном на диэлектрик и может быть использовано в ракетно-космической технике и в других областях техники при изготовлении, хранении и транспортировании, при криогенных температурах, пожаровзрывоопасных сжиженных газов и углеводородов.

В настоящее время существует проблема по контролю целостности токопроводящего покрытия на диэлектрическом материале большой площади, например, поверхности топливного бака ракеты-носителя. Необходимость контроля целостности токопроводящего покрытия на диэлектрическом материале возникла для предотвращения образования разности потенциалов между локальными зарядами статического электричества. Локальные заряды статического электричества образуются на поверхности диэлектрического материала нанесенного на металлическое основание, из-за воздействия суточного перепада температур, ветра с дисперсными включениями пыли, песка и т.п.. Для исключения образования разности потенциалов между локальными зарядами статического электричества на диэлектрический материал наносится токопроводящее покрытие. В процессе эксплуатации изделия, в процессе транспортировки или хранения изделия, за счет разных удельных коэффициентов расширения металлического бака, диэлектрического материала и токопроводящего покрытия могут образовываться локальные участки (замкнутые микротрещины) токопроводящего покрытия, электрически не связанные с остальным токопроводящим покрытием. Площадь локальных участков, образованных замкнутыми микротрещинами, не должна превышать площади, на которой накапливается электростатический заряд, энергия разряда которого способна вызывать воспламенение или взрыв пожароопасных сред, например кислорода, водорода.

Известен емкостной способ измерения толщины покрытий на проводящем основании (А.С. СССР №1634988), заключающийся в том, что измеряют емкость между проводящем основанием и электродом измерительного устройства.

Недостатками вышеописанного способа являются: высокая трудоемкость, которая необходима для расчета емкости, а также использование жидкого металла в большом количестве, для больших площадей, например: ртути, что вредно для здоровья испытателей и окружающей среды.

Известен емкостной способ определения толщины асфальтобетонного покрытия (Патент RU №2295701), заключающийся в измерении емкости между электродом, расположенным над поверхностью покрытия и проводящим основанием, причем электрод перемещают над поверхностью покрытия и измеряют текущие значения емкости при заданных расстояниях между электродом и поверхностью покрытия, полученную зависимость значений емкости от расстояния между электродом и поверхностью покрытия сравнивают с расчетными, взятыми из базы предварительно рассчитанных зависимостей емкости от расстояния между электродом и поверхностью покрытия для любых допустимых значений толщины.

Наиболее близким техническим решением выбранным в качестве прототипа является способ измерения толщины (А.С. СССР №1201673), в котором образец устанавливают на базовую плоскость, параллельно его контролируемой поверхности размещают с зазором плоский электрод емкостного датчика зазора, измеряют электрическую емкость между ним и контролируемой поверхностью образца до травления, перемещают электрод параллельно самому себе в направлении к поверхности и измеряют электрическую емкость между ним и контролируемой поверхностью образца после травления, при этом перемещение электрода относительно поверхности образца после его травления осуществляют до тех пор, пока емкость между ним и контролируемой поверхностью образца станет равной емкости между электродом и контролируемой поверхностью образца до травления, а затем измеряют величину перемещения электрода, по которой определяют контролируемую величину.

Недостатками известного способа (прототипа), а также вышеописанного являются их ограниченные возможности, т.к. этими способами определяют только толщину покрытия; высокая трудоемкость контроля целостности токопроводящего покрытия на больших площадях.

Задачей предлагаемого изобретения является расширение его эксплуатационных возможностей, осуществление контроля токопроводящего покрытия большой площади и сокращение трудоемкости контроля токопроводящего покрытия.

Поставленная задача достигается тем, что в способе контроля целостности токопроводящего покрытия на диэлектрическом материале, включающий операцию размещения с зазором плоского электрода, измерение электрической емкости между плоским электродом и поверхностью токопроводящего покрытия, перемещения электрода, операцию сравнения электрических емкостей, при этом плоский электрод устанавливают на подвижном электроприводе соединенным с регистратором, при этом плоский электрод возвратно-поступательно перемещают эквидистантно поверхности токопроводящего покрытия, а токопроводящее покрытие перемещают перпендикулярно относительно движения плоского электрода, затем полученное значение электрической емкости поступающее в регистратор, сравнивают с эталонной емкостью, при нарушении равенства электрических емкостей отмечают наличие дефекта на токопроводящем покрытии.

Предлагаемое изобретение поясняется чертежами.

На фигуре 1 - главный вид контролируемого изделия с электроприводом и плоским электродом.

На фигуре 2 - сечение контролируемого изделия и плоского электрода с электроприводом.

На диэлектрический материал 1, например пенополиуретан, напыленный на металлическое основание 2, например, из алюминиевого сплава, нанесено токопроводящее покрытие 3, например эмаль ХП-5237.

Над токопроводящем покрытием 3 размещают с постоянным зазором плоский электрод 4. Плоский электрод 4 устанавливают на подвижном электроприводе 5. Поверхность токопроводящего покрытия 3 и поверхность плоского электрода 4 образуют конденсатор. Перемещая плоский электрод 4 возвратно-поступательно эквидистантно поверхности токопроводящего покрытия 3, измеряют электрическую емкость конденсатора, при этом токопроводящее покрытие 3 перемещают перпендикулярно относительно движения плоского электрода 4 с шагом, соизмеримым с 0,5 ширины плоского электрода 4. Конфигурация плоского электрода 4 может быть любой формы, например прямоугольной, а замкнутые микротрещины 6 неизвестны, непредсказуемы и визуально могут быть невидимы, особенно если на токопроводящее покрытие нанесена отделочная краска 7, например эмаль ХВ-16. Полученное значение емкости поступает на регистратор 8 (на чертеже не показан), который соединен с подвижным электроприводом 5. В регистраторе 8 происходит сравнение полученной емкости с эталонной емкостью. Эталонную емкость получают расчетным путем или экспериментально. Расчет производят по формуле (согласно Квартин М.И. «Электромеханические и магнитные устройства автоматики и их расчет» М., Высшая школа, 1973 г., стр.104)

C=(0,89×έ×S)/d, где

C - емкость плоского конденсатора;

έ - диэлектрическая проницаемость среды между обкладками конденсатора;

S - площадь перекрытия обкладок конденсатора;

d - зазор между обкладками конденсатора.

Получение эталонной емкости экспериментально заключается в изготовлении образца. На металлическое основание наносят диэлектрический материал, а на него наносят токопроводящее покрытие. Все материалы берут такие же, как и на изделии. К токопроводящему покрытию и к плоскому электроду, расположенному со стороны токопроводящего покрытия, подсоединяют щупы измерительного прибора и по его показаниям фиксируют полученное значение емкости, которое и принимают за эталонное.

При нарушении равенства электрических емкостей в регистраторе 8, содержащем устройство отметки дефекта, отмечают наличие дефекта и распыляющей форсункой или другим аналогичным устройством, совмещенным с подвижным электродом, наносится на токопроводящее покрытие 3, красящее вещество (в виде точки, штриха, крестика и т.п.).

Предлагаемый способ контроля целостности токопроводящего покрытия на диэлектрическом материале позволяет расширить эксплуатационные возможности, контролировать токопроводящее покрытие большой площади с выявлением на нем дефектов и сократить трудоемкость контроля токопроводящего покрытия.

Способ контроля целостности токопроводящего покрытия на диэлектрическом материале, включающий операции размещения с зазором плоского электрода, измерения электрической емкости между плоским электродом и поверхностью токопроводящего покрытия, перемещения электрода, операцию сравнения электрических емкостей, отличающийся тем, что плоский электрод устанавливают на подвижном электроприводе, соединенном с регистратором, при этом плоский электрод возвратно-поступательно перемещают эквидистантно поверхности токопроводящего покрытия, а токопроводящее покрытие перемещают перпендикулярно относительно движения плоского электрода, затем полученное значение электрической емкости, поступающее в регистратор, сравнивают с эталонной емкостью, при нарушении равенства электрических емкостей отмечают наличие дефекта на токопроводящем покрытии.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и может быть использовано, в частности, в гидравлических системах летательных аппаратов, где требуется информация о перемещениях исполнительных гидроцилиндров.

Изобретение относится к области измерения линейных размеров устройствами, в которых использованы электрические и магнитные средства, и может быть использовано при неразрушающем контроле толщины покрытия из непроводящего материала на токопроводящей подложке.

Изобретение относится к транспортным средствам в области автоматизации, например к технике подачи или к подъемникам. .

Изобретение относится к измерительной технике и предназначено для контроля высоты деталей. .

Изобретение относится к измерению длины материалов сетчатой, например полотняной, структуры и может быть использовано в текстильном и швейном производствах. .

Изобретение относится к геофизике и может быть использовано при дефектоскопии металлических труб, например, расположенных в скважине, в частности стальных бурильных, обсадных и насосно-компрессорных труб, а также одновременного вычисления толщины стенок каждой из труб в многоколонных скважинах.

Изобретение относится к измерительной технике и может быть использовано для координатных измерений на многооперационных станках. .

Изобретение относится к измерительной технике на основе виброконтактного преобразователя размеров. .

Изобретение относится к области линейных измерений и может быть использовано для измерения высоты жидких тел, имеющих ионную проводимость, в частности, в птицеводстве при оценке инкубационных качеств куриных яиц.

Стержень предназначен для определения положения поршня гидроцилиндра. Стержень содержит несколько установленных вдоль оси измерительного стержня и электрически соединенных между собой детекторных элемента, которые реагируют на магнитное поле магнита. Детекторные элементы образованы датчиками Холла. Предусмотрено калибрующее устройство, в котором записаны линеаризации соответствующих детекторных элементов, причем детекторные элементы линеаризованы по отдельности. Технический результат - повышение надежности определения положения поршня гидроцилиндра. 9 з.п. ф-лы, 3 ил.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение стабильности измерения контролируемого параметра. Технический результат достигается тем, что в устройство для определения высоты полого древесного цилиндрического изделия, содержащее генератор электромагнитных колебаний, первый детектор и индикатор, введены элемент ввода электромагнитных колебаний, первый и второй элементы вывода электромагнитных колебаний, второй детектор и коррелятор, причем выход генератора электромагнитных колебаний соединен с элементом ввода электромагнитных колебаний, выход первого элемента вывода электромагнитных колебаний подключен к входу первого детектора, выход второго элемента вывода электромагнитных колебаний соединен с входом второго детектора, выход первого детектора подключен к первому входу коррелятора, выход второго детектора соединен с вторым входом коррелятора, выход которого подключен к индикатору. 1 ил.

Изобретение относится к измерительной технике, в частности к емкостному датчику для измерения расстояния до мишени в литографическом устройстве. Сущность: емкостная измерительная система содержит датчик (30), имеющий тонкопленочную структуру, имеющую первый изолирующий слой (34) и первую проводящую пленку, содержащую измерительный электрод (31), сформированный на первой поверхности первого изолирующего слоя (34), и вторую проводящую пленку, содержащую задний охранный электрод (35). Задний охранный электрод сформирован в одной плоскости, содержит периферийную часть в той же самой плоскости и расположен на второй поверхности первого изолирующего слоя (34) и первой поверхности второго изолирующего слоя (43) или защитного слоя (38). Периферийная часть заднего охранного электрода выступает за пределы измерительного электрода (31), образуя боковой охранный электрод, который по существу или полностью окружает измерительный электрод. Технический результат: упрощение изготовления и обеспечение точности. 2 н. и 12 з.п. ф-лы, 32 ил.

Изобретение относится к измерительной технике, представляет собой электромагнитный преобразователь и может быть использовано при неразрушающем контроле толщины покрытия из непроводящего материала на токопроводящей подложке. Преобразователь содержит ферромагнитный сердечник, на который помещены катушка возбуждения и две измерительные катушки, соединенные с измерительной схемой. Поверх катушки возбуждения расположен короткозамкнутый виток. На рабочую поверхность сердечника нанесен слой карбонитрида титана TiCN толщиной 2,5÷5,0 мкм. Техническим результатом является повышение стабильности показаний толщиномера путем уменьшения абсолютного отклонения выходного напряжения электромагнитного преобразователя при измерении малых толщин непроводящего покрытия на токопроводящей основе. Также повышается износостойкость рабочей поверхности сердечника. 3 ил.

Использование: для контроля технологических процессов изготовления печатных плат. Сущность изобретения заключается в том, что способ контроля отклонений ширины проводников от номинальных значений при изготовлении печатной платы содержит расчет волнового сопротивления проводника в виде микрополосковой линии на двусторонней печатной плате при заданных значениях диэлектрической проницаемости и толщины основания платы, толщины слоя металлизации и ширины тестируемого проводника; на тестовой плате с заданными значениями диэлектрической проницаемости и толщины основания платы, толщины слоя металлизации с помощью применяемой производителем технологии изготавливают тестовый образец с тестируемым проводником заданной ширины; с помощью динамического рефлектометра измеряют волновое сопротивление тестируемого проводника; находят разность между значениями расчетного волнового сопротивления тестируемого проводника и измеренного волнового сопротивления проводника на тестовом образце печатной платы; рассчитывают коэффициент влияния относительной погрешности ширины тестируемого проводника на погрешность волнового сопротивления; относительную погрешность волнового сопротивления проводника тестового образца делят на рассчитанный коэффициент влияния, найденное результирующее значение показывает относительную производственную погрешность ширины проводника в тестируемом фотолитографическом процессе формирования проводников печатной платы; умножая относительную производственную погрешность на номинальное значение ширины тестируемого проводника, находят абсолютную производственную погрешность ширины проводников печатной платы. Технический результат: обеспечение возможности повышения оперативности и снижения трудоемкости контроля за соблюдением допусков на ширину проводников. 2 ил.

Область применения: изобретение относится к геофизическим исследованиям технического состояния нефтегазовых скважин и может быть использовано для обнаружения различных дефектов в нескольких колоннах скважин. Электромагнитный скважинный дефектоскоп содержит генераторную катушку индуктивности, измерительные катушки индуктивности и дополнительные измерительные катушки индуктивности, отнесенные на расстояние от генераторной катушки, блок электроники, при этом дополнительные измерительные катушки индуктивности удалены от генераторной катушки индуктивности на расстояние, обеспечивающее оптимальную рабочую зону влияния на них генераторной катушки индуктивности, которое выбирается из условия от 0,01 до 2L, и разнесены между собой по оси прибора на расстояние, выбираемое из условия от 0,01 до 2L, где L - длина основного зонда. Кроме того, каждая дополнительная измерительная катушка индуктивности в количестве одной или более штук установлена на отдельном магнитном сердечнике. Технический результат заявленного решения заключается в улучшении разрешающей способности дефектоскопа, повышении чувствительности к дефектам малого размера и точности определения их расположения за счет подбора оптимального расстояния расположения измерительной катушки от генераторной катушки для обеспечения рабочей зоны влияния генераторной катушки на измерительную. 2 н.п. ф-лы, 3 ил.

Группа изобретений относится к области машиностроения. Устройство для индикации износа содержит внешний корпус, имеющий отверстие, проходящее частично через него, и датчик внутри отверстия. Датчик содержит зонд и электронное устройство, функционально связанное с по меньшей мере одним зондом. Достигается повышение эффективности обнаружения и представления данных об износе, обнаруживаемом у износостойких конструкций, во время работы устройства. 3 н. и 21 з.п. ф-лы, 5 ил.
Наверх