Способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.

Предлагается способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн. Согласно данному способу, в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.

Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 5 мм) в диапазоне измерения от 0,5 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний. К числу их недостатков относится достаточно сложная реализация, вызванная необходимостью применения широкополосных генераторов частотно-модулированных колебаний, а также сложность функциональной обработки информативных сигналов при стремлении обеспечить высокую точность измерения.

Известно также техническое решение - радиоволновый фазовый способ измерения уровня жидкости в емкости, которое по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней электромагнитными волнами, приеме отраженных электромагнитных волн и определении фазового сдвига зондирующих и принимаемых электромагнитных волн, по которому судят об уровне жидкости в емкости.

Существенным недостатком этого способа, однако, является неоднозначность в определении расстояний, за счет циклического повторения сигнала с выхода фазового детектора через каждую половину периода излучаемых электромагнитных волн. Известные способы устранения неоднозначности измерений при применении фазового способа измерения расстояний, основанные на использовании измерений на нескольких частотах, используются, в основном, в радиолокаторах доплеровского типа с селекцией движущихся целей (Вишин Г.М. Многочастотная радиолокация. М.: Воениздат, 1973. 92 с.); поэтому они не приспособлены для задач измерения уровня жидкостей.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн, при этом в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости.

Предлагаемый способ поясняется чертежом на фиг.1, где приведена структурная схема устройства для реализации способа.

На фиг.1 показаны первый приемопередающий блок 1, передающая антенна 2, приемная антенна 3, второй приемопередающий блок 4, передающая антенна 5, приемная антенна 6, функциональный блок 7, поверхность жидкости 8.

Способ реализуется следующим образом.

На 1-м этапе измерений электромагнитные колебания от первого приемопередающего блока 1 поступают на передающую антенну 2. Излучаемые ею электромагнитные волны с частотой ƒ1 направляются в сторону отражающей поверхности жидкости 8. Отраженные от нее волны поступают на приемную антенну 3; далее соответствующий принятым волнам сигнал смешивается с сигналом, соответствующим волнам, излучаемым антенной 2, и результирующий сигнал, соответствующий разности фаз излучаемых и принимаемых волн, поступает на первый вход функционального блока 7. С первого выхода функционального блока 7 на вход первого приемопередающего блока 1 подается сигнал, приводящий к изменению частоты ƒ1 до значения ƒl0 частоты, когда сигнал на первом входе функционального блока 7 становится равным нулю. При этом ƒ110, и управляющее напряжение на входе генератора 1 фиксируется. В этом случае расстояние D0 до поверхности можно выразить формулой

где n=1, 2, 3, …, λ10=с/ƒ10, c - скорость света в воздухе.

На втором этапе измерений управляющее напряжение со второго выхода функционального блока 7 начинает перестраивать частоту второго приемопередающего блока 4 от частоты ƒ2, равной ƒ10, в сторону ее увеличения. Далее сигнал поступает на передающую антенну 5. Электромагнитные волны излучаются ею в направлении контролируемой поверхности жидкости 8, отражаются от нее, принимаются приемной антенной 6 и во втором приемопередающем блоке 4 соответствующий им сигнал смешивается с сигналом, соответствующим волнам, излучаемым передающей антенной 5. Результирующий сигнал с выхода второго приемо-передающего блока 4 поступает на второй вход функционального блока 7. В нем фиксируется значение частоты ƒ2, равное ƒ20, в момент достижения нулевого значения указанного результирующего сигнала. В результате получаем следующее соотношение:

где λ20=c/ƒ20. Из уравнений (1) и (2) следует, что , а расстояние до поверхности жидкости

где Fp2010 и λр - соответственно, разностная частота и соответствующая ей длина волны.

На третьем этапе измерений выделенный сигнал разностной частоты Fp с выхода второго приемопередающего блока 4 поступает на второй вход функционального блока 7, где ее значение запоминается. Этот сигнал в дальнейшем используется в качестве опорного сигнала относительно его текущего значения, соответствующего расстоянию D до поверхности жидкости 8 (т.е. уровню жидкости в емкости). При изменении уровня (увеличении или уменьшении расстояния, равном ΔD, относительно D0) разность фаз волн, соответствующих фиксированной разностной частоте ƒ2010, и текущему значению Δφ этой разности фаз, изменяется в пределах Δφ=±π/2. Текущее расстояние D до поверхности жидкости 8 определяется в функциональном блоке 7 в соответствии с соотношением

Так, например, при ƒ10=24 ГГц, D0=4 м, ƒ20=24,0375 ГГц будем иметь Fp=37,5 МГц. Таким образом, в вычислительном блоке 17 получаем сигнал, соответствующий значению уровня жидкости в диапазоне значений Δφ в пределах - π/2<Δφ<π/2 или значений D в пределах D0p/2<D<D0p/2. В том случае, если D выходит за указанные пределы, происходит сбой из-за отключения питания или имеют место иные причины, устройство перезапускается, последовательно повторяя описанные этапы измерений.

Таким образом, данный способ позволяет решить проблему неоднозначности в фазовом методе измерений уровня жидкости. При этом возможно значительно уменьшить стоимость измерительного устройства, поскольку при реализации данного фазового метода нет необходимости использовать широкополосные СВЧ компоненты и устройства, такие как генераторы с большой девиацией частоты. Кроме этого применяемые в данных устройствах антенны, являясь узкополосными, позволяют при тех же габаритах устройств получить значительно лучшие характеристики по направленности излучения, что снижает влияние паразитных переотражений, и, таким образом, погрешность измерений уменьшается.

Способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн, отличающийся тем, что в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.

Изобретение относится к оценке уровня жидкости в нефтяных скважинах и может быть использовано для определения и контроля статического и динамического уровней скважинной жидкости, например, в нефтяной скважине.

Изобретение относится к области автоматизации производственных процессов в машиностроении и предназначено для автоматизации технологических процессов, связанных с контролем и регулированием жидких сред.

Изобретение относится к области автоматизации производственных процессов в машиностроении и предназначено для автоматизации технологических процессов, связанных с контролем и регулированием жидких сред.

Изобретение относится к гидрометрии и может быть использовано в сельском и водном хозяйствах при измерениях уровней и расходов воды в безнапорных потоках с бурным режимом течения.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости.

Изобретение относится к автоматическим устройствам градуировки топливных баков транспортных средств, в частности тепловозов. .

Изобретение относится к технике, применяемой при проведении инженерно-изыскательских работ, в частности к средствам для измерения уровня воды в скважинах. .

Изобретение относится к приборостроению, а именно к дискретным измерителям уровня, и может быть использовано для контроля уровня и массового расхода компонентов топлива при заправке, расходовании и хранении в химической, космической и других областях промышленности. Датчик контроля дискретных уровней жидкости содержит печатную плату с отверстием, на одной стороне которой над отверстием установлен чувствительный элемент, выполненный в виде теплоизоляционной подложки с размещенным на ней пленочным резистором (терморезистором) в «точечном» исполнении для контроля уровня жидкости, и содержит пленочный резистор (терморезистор) в «точечном» исполнении для измерения температуры поверхностного слоя жидкости. Датчик также содержит дополнительный пленочный резистор (терморезистор) в «точечном» исполнении для измерения температуры поверхностного слоя жидкости, при этом чувствительный элемент для измерения температуры жидкости выполнен в виде дополнительной теплоизоляционной подложки шириной не более 2 мм, на которой размещены оба терморезистора для измерения температуры жидкости, и установлен на противоположной стороне печатной платы под отверстием симметрично чувствительному элементу для контроля уровня на расстоянии от 0,5 мм до 1,0 мм от подложки с терморезистором, используемым для контроля уровня. Техническим результатом является повышение точности измерения температуры жидкой среды, в которой контролируется изменение уровня как при погружении датчика (заправке), так и при извлечении датчика из жидкости (расходовании, сливе), и расширение функциональных возможностей устройства, позволяющих производить точное определение массового расхода жидкой среды. 6 ил.

Изобретения относятся к области ракетно-космической техники и могут найти применение при осуществлении контроля уровня расположения поверхности жидких компонентов топлива в баках ракет-носителей. Технический результат - повышение точности контроля уровня заправки и энергетических характеристик средств выведения. Для этого на поверхность компонентов топлива воздействуют частотно-модулированными излучениями от излучателя электромагнитных волн, фиксируют отраженную волну регистратором сигналов, отраженных от поверхности жидкости, и передают вычисленное фактическое значение уровня жидких компонентов по одному каналу в наземную систему контроля заправки во время предстартовой подготовки и по другому каналу - в бортовую систему управления расходом топлива при полете ракеты-носителя, обеспечивая непрерывный контроль уровня топлива в баках. При этом в качестве средства измерения уровня жидких компонентов топлива в баках установлены излучатели электромагнитных волн, приемник регистратора сигналов, отраженных от поверхности жидких компонентов топлива, с вычислителем уровня жидких компонентов топлива и волновод. Причем излучатель, приемник регистратора и вычислитель уровня объединены конструктивно в одном герметичном корпусе. Волновод расположен параллельно продольной оси бака. 2 н.п. ф-лы, 1 ил.

Устройство определения уровня поверхности воды осуществляет это определение без затраты времени для обхода постов благодаря введению изогнутой стойки, телевизионного датчика, кабеля, фотоэлектрического осветителя, телевизионного приемника, при этом фотоэлектрический осветитель жестко связан с изогнутой стойкой, имеющей жесткую связь с держателем рейки и с телевизионным датчиком, имеющим выход, соединенный через кабель с входом телевизионного приемника, и имеющим оптический вход, связанный с оптическим выходом меток вертикальной рейки, оптический вход которых связан с оптическим выходом фотоэлектрического осветителя. Технический результат - обеспечение автоматизации определения уровня воды. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в противопожарной технике для высокоточного определения массы огнетушащего вещества, в частности диоксида углерода, в резервуаре (баллоне) и ее уменьшения вследствие возможной утечки из баллона. Предлагаемое устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре, имеющем расположенную вдоль его продольной оси металлическую сифонную трубу, содержит емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок. Длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05 ÷ 0,25 длины сифонной трубы. Технический результат- повышение точности определения массы двухфазного вещества в резервуаре за счет существенного уменьшения зависимости результатов измерения массы от температуры. 1 ил.

Изобретение относится к радиационной физике, а именно к способам определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристаллического нитрида алюминия с использованием метода оптически стимулированной люминесценции (ОСЛ) в непрерывном режиме стимуляции. Способ определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе нитрида алюминия основан на стимуляции детектора оптическим излучением с длиной волны 470 и более нм, измерении интенсивности оптически стимулированной люминесценции детектора в диапазоне 260÷390 нм в течение времени стимуляции детектора оптическим излучением и определении площади под полученной кривой интенсивности оптически стимулированной люминесценции, при этом в качестве детектора на основе нитрида алюминия используют монокристаллический нитрид алюминия, перед стимуляцией детектора осуществляют измерение значения интенсивности затухающей фосфоресценции детектора в диапазоне 260÷390 нм, с использованием измеренного значения интенсивности затухающей фосфоресценции определяют площадь под кривой интенсивности затухающей фосфоресценции, действующей в течение времени стимуляции детектора оптическим излучением, затем определяют разницу величин площадей под кривой интенсивности оптически стимулированной люминесценции и под кривой интенсивности затухающей фосфоресценции, а по указанной разнице величин площадей определяют значение искомой поглощенной дозы. Технический результат - повышение точности измерений поглощенной дозы, расширение области применения в твердотельной дозиметрии ионизирующих излучений детекторов на основе монокристаллов нитрида кремния. 3 ил.

Радиолокационный уровнемер относится к радиотехнике и может быть использован для построения высокоточных измерителей уровня жидкостей или сыпучих веществ в резервуарах и высотомеров малых высот. Радиолокационный уровнемер содержит высокостабильный генератор 1, делители 2 и 3 частоты, контроллер 4, генератор 5 пилообразного напряжения, модулятор 6, приемно-передающий модуль 7, направленный ответвитель 8, антенну 9, узкополосные фильтры 10, 11 и 12, усилители-формирователи 13 и 14, смесители 15 и 16 и фильтр 17 разностной частоты. Технический результат - повышение точности измерений. 2 ил.

Изобретение относится к устройствам для контроля уровня жидкости и может быть использовано для контроля уровня различных жидкостей в аппаратах, емкостях и сосудах стационарных и подвижных установок. Сущность изобретения заключается в том, что полость поплавка заполняется гранулами с низкой плотностью вещества, например вспененным полиэтиленом, соединение датчика с емкостью выполнено в виде байонетного соединения, обеспечивающего точное расположение оси поворота поплавка в горизонтальном положении, а разная длина пазов байонетного соединения исключает возможность неправильной установки датчика. Технический результат - обеспечение работоспособности датчика при потере герметичности поплавка, строгое позиционирование поплавка в вертикальном положении при установке датчика. 1 ил.

Изобретение относится к технике измерения и учета нефтепродуктов при их приеме, хранении и реализации в специальных резервуарах. Передающая часть измерительной системы содержит датчики, контролирующие резервуар, и снабжена аккумулятором, выход которого подключен к первому входу контроллера питания. Вход аккумулятора подключен к первому выходу контроллера питания, второй вход которого подключен к первому выходу контроллера обмена, а второй выход - к первому входу контроллера обмена. Первый вход радиопередатчика соединен со вторым выходом контроллера питания, второй вход соединен с первым выходом контроллера обмена, а высокочастотный выход - с передающей антенной, выполненной с возможностью передачи сообщений в центр приема, на приемную антенну. Приемная антенна соединена с радиоприемником, выход которого подключен к входу декодера. В передающую часть введены барьер искрозащиты, солнечная батарея, выход которой соединен с третьим входом контроллера питания, и блок гальванической развязки, через который второй выход контроллера питания соединен с первым входом радиопередатчика, первый выход контроллера обмена подключен ко второму входу радиопередатчика, а управляющий выход радиопередатчика подключен к третьему входу контроллера обмена. Входы датчиков через барьер искрозащиты соединены со вторым выходом контроллера обмена, второй вход которого соединен с выходами датчиков. Первый, второй и третий входы формирователя протокола соединены соответственно с первым, вторым и третьим выходами декодера, четвертый вход подключен к выходу таймера, а выход - к входу монитора. Технический результат - повышение надежности и упрощение осуществления оперативного контроля за резервуарами резервуарного парка. 5 з.п. ф-лы, 2 ил.

Настоящая группа изобретений предлагает устройство (100) и способ для управления объемом жидкости в емкости. Устройство (100) содержит детектор (101) для регистрирования изменений объема жидкости в упомянутой емкости в течение первого заданного периода, первый детерминатор (102) для определения, являются ли упомянутые изменения ниже упомянутого первого заданного порогового значения, и презентатор (103) для представления первой оперативной информации в случае, если упомянутые изменения ниже заданного порогового значения. Также устройство содержит источник (10131) ближнего ИК-света, выполненный с возможностью излучения ближнего ИК-света; множество датчиков (10132) ближнего ИК-света, выполненных с возможностью измерения интенсивности ближнего ИК-света, излучаемого источником ближнего ИК-света, при этом множество упомянутых датчиков соответствующим образом размещены на боковой стороне емкости на разной высоте. Технический результат - обеспечение возможности своевременного напоминания людям о необходимости питьевого режима. 3 н. и 10 з.п. ф-лы, 12 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения уровня жидкостей, преимущественно в резервуарах. Уровнемер содержит чувствительный элемент из не менее чем трех катушек индуктивности. Катушки намотаны на несущую основу и имеют секции плотной намотки шириной h. Число поплавков соответствует числу определяемых уровней. В каждом из поплавков выполнена герметичная полость, в которой установлена втулка из диэлектрического материала, охватывающая чувствительный элемент. На втулку намотана излучающая катушка, взаимодействующая с катушками индуктивности чувствительного элемента, и установлена плата с автономным источником питания и генератором высокочастотного электромагнитного поля. На чувствительном элементе размещено хотя бы одно реперное устройство, состоящее из входной катушки связи, смещенной от входной катушки связи на h, схемы обработки и выходной катушки связи. Преобразователь содержит аналого-цифровые преобразователи по числу катушек индуктивности и микропроцессор. Секции каждой катушки индуктивности, начиная со второй, смещены относительно секций предшествующей катушки на величину h в равномерно чередующемся порядке. Ширина намотки излучающей катушки соответствует ширине h. Технический результат состоит в повышении точности измерения уровня или границ раздела фракций за счет исключения грубых ошибок измерения, возникающих вследствие неоднозначности, и перехода от дискретного к непрерывному измерению глубины. 3 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.Предлагается способ измерения уровня жидкости, при котором в сторону поверхности жидкости по нормали к ней излучают электромагнитные волны, принимают отраженные электромагнитные волны и измеряют первую разность фаз излучаемых и принимаемых электромагнитных волн. Согласно данному способу, в момент приема отраженных волн изменяют частоту зондирующих волн до достижения равенства фаз излучаемых и принимаемых волн, фиксируют значение данной частоты, волны этой фиксированной частоты вновь излучают в сторону поверхности жидкости по нормали к ней, принимают отраженные волны и измеряют вторую разность фаз излучаемых и принимаемых волн, вновь изменяют частоту излучаемых волн в сторону увеличения до момента достижения вновь равенства фаз излучаемых и принимаемых волн, вновь фиксируют значение данной частоты, измеряют разность первой и второй частот излучаемых волн, измеряют разность фаз волн, соответствующих этой фиксированной разности частот и ее текущему значению, и по сумме расстояний, соответствующих указанным фиксированной разности первой и второй частот и разности фаз, судят об уровне жидкости в емкости. 1 ил.

Наверх