Фотоэлектрический способ определения размеров и концентрации взвешенных частиц

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей. Способ определения размеров и концентрации взвешенных частиц включает зондирование потока исследуемой среды световым пучком, а также регистрацию сигналов взаимодействия зондирующего светового пучка с частицами. Также способ включает измерение амплитуды и числа фотоэлектрических импульсов этих сигналов, по которым определяют соответственно размеры и концентрацию частиц. При этом поток фотоэлектрических импульсов подвергают первичной амплитудной дискриминации с верхним и нижним пороговыми уровнями, а затем селектор импульсов обеспечивает прохождение импульсов с длительностью, превышающей определенную пороговую величину, устройство коррекции многократных совпадений подвергает фотоэлектрические импульсы принудительному прерыванию через время, равное длительности пролета частиц через счетный объем. Фотоэлектрические импульсы подвергают принудительному прерыванию через время, равное длительности пролета частиц через счетный объем, и в зависимости от импульсов, поступающих в персональный компьютер, управляют воздуходувкой и длительностью импульсов принудительного прерывания, а также амплитудой излучения лазера и верхним пороговым уровнем амплитудной дискриминации. Техническим результатом изобретения является повышение точности измерения концентрации и размеров частиц. 1 ил.

 

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей.

Известен способ анализа взвешенных частиц (Пат. RU 2102719, G01N 15/02, от 20.01.1998), состоящий в том, что импульсные электрические сигналы от фотоэлектрического преобразователя усиливают, производят выделение локальных максимумов в анализируемых импульсах и формируют отдельные импульсы амплитудой, равной величине этих максимумов, которые затем подвергают амплитудному анализу с целью определения размеров частиц.

Недостатком данного способа является искажение выходного сигнала из-за отсутствия учета шумовых фотоэлектрических импульсов темнового тока, что приводит к увеличению погрешностей измерений.

Известен способ дисперсного анализа взвешенных частиц (Беляев С.Г., "Оптико-электронные методы измерения параметров аэрозолей". М.: Энергоиздат, 1987), состоящий в том, что импульсные электрические сигналы первичного фотоэлектрического преобразователя усиливают, анализируют по амплитуде и определяют число и размеры частиц.

Недостатком данного способа является искажение получаемой информации из-за совпадений частиц в чувствительном объеме и, вследствие этого, низка величина предельно измеряемой концентрации.

Наиболее близким по технической сути к предлагаемому способу является способ анализа взвешенных частиц (А.с. SU 1516889, G01N 15/02 от 23.10.1989). Согласно этому способу применяется принудительное прерывание импульса, если его длительность превышает длительность одиночного импульса, и отбор для анализа только тех импульсов, которые отстоят от последующих и предыдущих на время, большее, чем время прерывания. Таким образом, из каждого импульса, длительностью больше некоторой величины, определяемой, как длительность одиночного импульса, формируется серия импульсов количеством, на единицу большем целой части отношения длительности входного импульса к указанной величине.

Недостатком указанного способа является искажение получаемой информации о концентрации частиц и их размере из-за того, что в чувствительном объем датчика частицы движутся с различными скоростями и, следовательно, электрические импульсы на выходе фотоприемника имеют различную длительность, и принудительное прерывание через определенный промежуток времени может привести к тому, что импульс, длительность которого превышает величину, определяемую как длительность одиночного импульса, вызовет формирование двух или более импульсов на входе амплитудного анализатора, в случае же более коротких импульсов возможен пропуск частиц. Таким образом, описанный способ не учитывает возможных различий в длительности импульсов на выходе фотоприемника, имеющих место в некоторых конструкциях фотоэлектрических датчиков, что приводит к искажениям получаемой информации.

Задачей изобретения является повышение точности измерения концентрации и размеров частиц.

Поставленная задача решается тем, что фотоэлектрический способ определения размеров и концентрации взвешенных частиц, включающий зондирование потока исследуемой среды световым пучком, регистрацию сигналов взаимодействия зондирующего светового пучка с частицами, измерение амплитуды и числа фотоэлектрических импульсов этих сигналов, по которым определяют соответственно размеры и концентрацию частиц, отличается тем, что для повышения точности поток фотоэлектрических импульсов подвергают первичной амплитудной дискриминации с верхним и нижним пороговыми уровнями, обеспечивают прохождение импульсов с длительностью, превышающей определенную пороговую величину, далее фотоэлектрические импульсы подвергают принудительному прерыванию через время, равное длительности пролета частиц через счетный объем и в зависимости от импульсов, поступающих в персональный компьютер управляют воздуходувкой и длительностью импульсов принудительного прерывания, а так же амплитудой излучения лазера и верхним пороговым уровнем амплитудной дискриминации.

Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности измерения концентрации и размеров частиц.

Этот результат достигается тем, что способ определения размеров и концентрации взвешенных частиц состоит в освещении потока частиц световым пучком и регистрации параметров световых сигналов (амплитудно-временной анализ и анализ длительности или глубины модуляции), формируемых частицами при их пролете через выделенную область потока частиц. Поток фотоэлектрических импульсов подвергают первичной амплитудной дискриминации с верхним и нижним пороговыми уровнями, а затем селектор импульсов обеспечивает прохождение импульсов с длительностью, превышающей определенную пороговую величину, благодаря чему удается дополнительно подавить 20% импульсов темнового тока, устройство коррекции многократных совпадений подвергает фотоэлектрические импульсы принудительному прерыванию через время, равное длительности пролета частиц через счетный объем. Введены два цифро-аналоговый преобразователя: один для управления воздуходувкой и длительностью импульсов принудительного прерывания, другой для изменения амплитуды излучения лазера и регулировки верхнего порогового уровня амплитудной дискриминации, аналого-цифровой преобразователь позволяет проводить дополнительную обработку полученных импульсов с помощью персонального компьютера, который управляет цифро-аналоговыми преобразователями.

На фиг.1 изображена функциональная схема устройства по данному способу для определения размеров и концентрации взвешенных частиц. Устройство содержит лазер 1, формирующий зондирующий световой пучок 2, счетный объем 3, объектив 4, фотоприемник 5, усилитель 6, амплитудный дискриминатор 7, селектор импульсов 8, устройство коррекции многократных совпадений 9, аналого-цифровой преобразователь 10, цифро-аналоговые преобразователи 11 и 12, блок управления воздуходувкой 13 и воздуходувка 15, блок управления лазером 14, персональный компьютер 16.

Работа устройства осуществляется следующим образом. Поток исследуемой среды с взвешенными частицами пересекает световой пучок 2 от лазера 1 в области счетного объема 3. Рассеянный частицами свет собирается объективом 4 на фотоприемник 5. Последний формирует фотоэлектрические импульсы, соответствующие импульсам рассеянного света. После усилителя 6 импульсы подвергаются амплитудной дискриминации 7 с верхним и нижним пороговыми уровнями. Поток пронормированных по амплитуде импульсов после амплитудной дискриминации подвергают обработке в селекторе импульсов 8, обеспечивающим прохождение импульсов с длительностью, превышающей определенную пороговую величину. Далее импульсы подаются на устройство коррекции многократных совпадений 9, которое подвергает фотоэлектрические импульсы принудительному прерыванию через время, равное длительности пролета частиц через счетный объем. С помощью аналого-цифрового преобразователя 11 данные поступают на персональный компьютер 16 для дальнейшей обработки. Программа управления отслеживает параметры получаемых импульсов с выхода аналого-цифрового преобразователя 11 и подает соответствующею команду управления через цифро-аналоговые преобразователи 11 и 12. С помощью цифро-аналогового преобразователя 12 происходит управление верхним пороговым уровнем амплитудной дискриминации в амплитудном дискриминаторе 7 и амплитудой излучения лазера 1 в блоке управления лазером 14. Цифро-аналоговый преобразователь 11 управляет блоком управления воздуходувкой 13 для изменения скорости пролета частиц и устройством коррекции многократных совпадений 9 для изменения длительности импульсов принудительного прерывания.

Таким образом, рассмотренный способ, в отличие от известных, позволяет получить более высокую точность измерения концентрации и размеров частиц за счет: первичной амплитудной дискриминации; временной селекции; устранения погрешностей, вызванных попаданием в счетный объем одновременно несколько частиц и упростить дальнейший процесс амплитудного анализа с помощью персонального компьютера.

Фотоэлектрический способ определения размеров и концентрации взвешенных частиц, включающий зондирование потока исследуемой среды световым пучком, регистрацию сигналов взаимодействия зондирующего светового пучка с частицами, измерение амплитуды и числа фотоэлектрических импульсов этих сигналов, по которым определяют соответственно размеры и концентрацию частиц, отличающийся тем, что для повышения точности поток фотоэлектрических импульсов подвергают первичной амплитудной дискриминации с верхним и нижним пороговыми уровнями, обеспечивают прохождение импульсов с длительностью, превышающей определенную пороговую величину, далее фотоэлектрические импульсы подвергают принудительному прерыванию через время, равное длительности пролета частиц через счетный объем, и в зависимости от импульсов, поступающих в персональный компьютер, управляют воздуходувкой и длительностью импульсов принудительного прерывания, а также амплитудой излучения лазера и верхним пороговым уровнем амплитудной дискриминации.



 

Похожие патенты:

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях науки и техники, связанных с анализом взвешенных частиц.

Заявляемый способ может найти применение при создании и производстве наноструктурированных пленок из пленкообразующих золей для газочувствительных сенсоров. Способ заключается в том, что изготавливают эталонные образцы с заданной начальной концентрацией наночастиц.

Использование: для калибровки оптической измерительной аппаратуры при оценке среднего диаметра дисперсных частиц. Сущность: заключается в том, что проводят измерения характеристик дисперсной системы калибруемой аппаратурой и фоторегистрирующим прибором с последующим определением зависимости сигнала калибруемой аппаратуры от среднего диаметра частиц, определенного визуально, при этом воздействуют ультразвуком на жидкость, создавая дисперсную систему, освещают ее периодическими импульсами света длительностью Ти≤0,1Туз (где Туз - период ультразвуковых колебаний), синхронизованными с ультразвуковыми колебаниями, во время импульсов света измеряют калибруемой аппаратурой и определяют по результатам фоторегистрации средний диаметр дисперсных частиц (dср.а и dср.ф соответственно), изменяют сдвиг фаз между световыми импульсами и ультразвуковыми колебаниями, а также мощность ультразвука, после чего измерения и фоторегистрацию повторяют до получения требуемого количества калибровочных уровней, определяют калибровочную характеристику как зависимость величины dср.а от dср.ф.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла.

Изобретение относится к устройству для разделения сыпучих материалов по размерам частиц в пределах гранулометрического состава и может быть использовано в сельском хозяйстве, а также в химической, строительной, металлургической и других областях промышленности.

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях пауки и техники, связанных с анализом взвешенных частиц.

Изобретение относится к ультразвуковому неразрушающему способу определения гранулометрических характеристик дисперсных материалов и может быть использовано во многих отраслях промышленности: пищевой, фармацевтической, косметической, химической, строительстве (при определении качества строительных материалов), для контроля взрывчатых веществ, т.е.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженного притоком воздуха, включает датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, при этом устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации.

Изобретение относится к измерительной технике, а более конкретно - к фотоэлектрическим устройствам, предназначенным для исследования дисперсных систем. Устройство предназначено для калибровки оптической аппаратуры, измеряющей средний диаметр дисперсных частиц, и содержит кювету с прозрачной жидкостью, измерительный канал, состоящий из микроскопа и фоторегистратора, и осветительный канал, содержащий два источника света с различными длинами волн. Дополнительно введены ультразвуковой генератор, ультразвуковой излучатель, импульсный блок питания источников света, синхронизатор и калибруемая аппаратура, при этом направления оптических осей измерительного канала и калибруемой аппаратуры пересекаются в освещенной зоне кюветы, один источник света установлен на оптической оси измерительного канала, а второй источник имеет оптическую ось, согласованную с оптической осью калибруемой аппаратуры, выход ультразвукового генератора подключен ко входу ультразвукового излучателя, а последний помещен в кювету с жидкостью и закреплен в непосредственной близости от освещенной зоны, к выходу импульсного блока питания подключены источники света, вход синхронизатора соединен с выходом ультразвукового генератора, а выходы синхронизатора соединены с управляющими входами регистратора калибруемой аппаратуры, фоторегистратора и импульсного блока питания источников света. При этом кавитационные пузыри в кювете, получаемые в результате действия ультразвукового генератора, выполняют функцию дисперсных частиц для калибровки. Устройство может иметь следующие варианты конструкции: оптическая ось второго источника света совпадает с оптической осью калибруемой аппаратуры; калибруемая аппаратура и второй источник света закреплены с возможностью раздельного перемещения в плоскости, перпендикулярной оптической оси измерительного канала. Результатом применения изобретения является упрощение калибровки измерительных систем за счет замены образцовых суспензий дисперсной системой с регулируемым средним диаметром частиц и синхронизации процессов управления и измерения. 2 з.п. ф-лы, 2 ил.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим устройствам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей. Сущность изобретения: поток частиц освещают световым пучком и регистрируют параметры световых сигналов (амплитудно-временной анализ и анализ длительности или глубины модуляции), формируемых частицами при их пролете через выделенную область потока частиц. Поток фотоэлектрических импульсов подвергают первичной амплитудной дискриминации с верхним и нижним пороговыми уровнями, а затем селектор импульсов обеспечивает прохождение импульсов с длительностью, превышающей определенную пороговую величину, благодаря чему удается дополнительно подавить 20% импульсов темнового тока, устройство коррекции многократных совпадений подвергает фотоэлектрические импульсы принудительному прерыванию через время, равное длительности пролета частиц через счетный объем. Введены два цифро-аналоговых преобразователя: один для управления воздуходувкой и длительностью импульсов принудительного прерывания, другой для изменения амплитуды излучения осветителя и регулировки верхнего порогового уровня амплитудной дискриминации, аналого-цифровой преобразователь, персональный компьютер, выполняющий функции амплитудного анализа, счета поступающих импульсов и управления цифроаналоговыми преобразователями. Техническим результатом изобретения является повышение точности измерения концентрации и размеров частиц за счет первичной амплитудной дискриминации; временной селекции; устранения погрешностей, вызванных попаданием в счетный объем одновременно несколько частиц, и упростить дальнейший процесс амплитудного анализа с помощью персонального компьютера. 9 ил.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения. Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и усилитель, введены циркулятор, приемо-рупорная антенна, фильтр нижних частот и микроконтроллер, причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено с входом детектора, выход детектора через фильтр нижних частот соединен с входом усилителя, выход которого соединен с входом микроконтроллера. 1 ил.

Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью. Далее в обоих каналах происходит разделение светового потока на широкий и узкий, преобразование световых потоков в электрические сигналы, вычитание сигнала, пропорционального узкому световому пучку опорного канала, из сигнала, пропорционального узкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, а также вычитание сигнала, пропорционального широкому световому пучку опорного канала, из сигнала, пропорционального широкому пучку измерительного канала, синхронное детектирование полученного сигнала и дальнейшая обработка в микроконтроллере, который определяет по полученным сигналам о широком и узком пучках общую концентрацию пыли и размер частиц пыли. Технический результат - повышение точности измерений среднего размера и концентрации частиц пыли. 2 ил.

Группа изобретений относится к системе и к способу охарактеризовывания частиц в потоке продуктов помола зерна в установке для его помола, где охарактеризовывание включает в себя охарактеризовывание частиц зерна по размеру. В системе и способе охарактеризовывания размолотого материала в размольной установке используются участок облучения для пропуска части потока размолотого материала, содержащий средство облучения частиц в части потока электромагнитным излучением, и участок регистрации для пропуска, содержащий средство регистрации электромагнитного излучения, излучаемого частицами части потока размолотого материала, пропущенной через участок облучения. Средство регистрации содержит отображающую систему и датчик цветного изображения для отображения на нем частиц посредством излученного ими электромагнитного излучения. Датчик цветного изображения содержит элементы изображения для спектрально-избирательной регистрации отображенного на них электромагнитного излучения. Участок регистрации содержит светящееся средство или выполненное и расположенное с возможностью регистрации частиц размолотого материала с помощью комбинации проходящего и падающего света. Изобретения обеспечивают повышение скорости и точности регистрации свойств потока продукта помола. 2 н. и 24 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций. Диаметр пятна выбирают меньше нижней границы диапазона диаметров изображения частиц. Выделяют из изображения области, в которых площадь пересечения сканирующего пятна с изображениями частиц равна площади сканирующего пятна. Площадь проекции каждой частицы определяют как площадь круга, диаметр которого равен сумме диаметра сканирующего пятна и диаметра выделенной в этой частице области. Технический результат - исключение оператора и автоматизация обработки изображений. 3 ил.

Изобретение относится к измерительной технике, а точнее к оптическим методам регистрации агрегации частиц при проведении иммунохимических реакций, например, с применением частиц микронного размера с иммобилизованными на них реагентами. При протекании реакции такие частицы агрегируют, образование агрегатов регистрируется турбидиметрическим или нефелометрическим методом. Из-за больших размеров исходных частиц их взаимное сближение за счет броуновского движения происходит медленно, а образование агрегатов происходит неоднородно по реакционному объему, поэтому для увеличения скорости агрегации и точности ее наблюдения суспензию реагентов необходимо перемешивать. Перемешивание осуществляют или за счет циклического движения магнитных частиц, помещаемых в смесь, или потоком смеси в режиме затопленной струи, или путем возвратно-поступательного перемещения смеси вдоль кюветы, что значительно ускоряет реакцию и увеличивает точность измеряемой кинетики. 3 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Устройство анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами включает лазер в качестве источника зондирующего излучения, светоделитель (полупрозрачное зеркало), объектив, фотоприемник, аналого-цифровой преобразователь, электронно-вычислительную машину, ультразвуковой генератор и излучатель ультразвуковых колебаний. Также устройство содержит канал контроля металлических частиц, располагающийся внизу масляного поддона картера двигателя, и канал контроля угарных частиц, располагающийся па высоте минимального уровня масла в картере. При этом каждый из каналов содержит фотоприемник, усилитель, аналого-цифровой преобразователь и излучатель ультразвуковых колебаний. Также устройство содержит цифроаналоговый преобразователь и коммутатор для возможности последовательного переключения излучателей ультразвуковых колебаний в каналах контроля. При этом все ультразвуковые излучатели управляются через цифроаналоговый преобразователь электронно-вычислительной машиной, в соответствии с математической моделью колебаний поверхности частицы от воздействия облучений и с параметрами температуры, получаемой при помощи датчика температуры, усилителя и аналого-цифрового преобразователя. Техническим результатом является повышение точности измерения угарных и металлических частиц, повышение информативности данных для оценки концентрации взвешенных металлических и угарных дисперсных частиц, находящихся в масле, в частности дает возможность контролировать качество работы двигателя, оставшийся ресурс работы масла до его замены. 1 ил.

Изобретение относится к контрольно-измерительной технике, а именно к оптико-электронным способам контроля и регулирования параметров дисперсных сред. По зарегистрированному импульсному световому изображению рассеченной плоской с малой толщиной части факела распыла определяют параметры распыла капель в данной части факела с помощью системы единиц дисперсности на основе формулы объема шара (сферы) капли, для чего в указанном изображении производят сортировку и подсчет количества капель стандартных классов диапазонов микроскопических размеров в их смежной последовательности. Для реализации способа разработана двухлазерная установка с цифровыми устройствами обработки сигналов изображений и ЭВМ. Изобретение позволяет расширить функциональные возможности способа и установки за счет измерения скоростей диспергированных капель и получения результатов оценки параметров факела распыла посредством анализа величин приведенных интегральных объемов капель на единицу площади с сортировкой по последовательности смежных диапазонов размеров капель. 2 н. и 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Для чего отбирают пробу пульпы, фильтруют, направляют в кондиционирующую емкость. Затем измеряют плотность пробы в кондиционирующей емкости. При этом разбавляют пробу пульпы водой до состояния, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом. Затем производят прокачку разбавленной пробы в режиме циркуляции по контуру, включающему кондиционирующую емкость и камеру измерения. После чего осуществляют измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, и производят вычисление содержания контролируемого класса по результатам измерения содержаний промежуточных классов крупности. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы. 4 ил.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей. Способ определения размеров и концентрации взвешенных частиц включает зондирование потока исследуемой среды световым пучком, а также регистрацию сигналов взаимодействия зондирующего светового пучка с частицами. Также способ включает измерение амплитуды и числа фотоэлектрических импульсов этих сигналов, по которым определяют соответственно размеры и концентрацию частиц. При этом поток фотоэлектрических импульсов подвергают первичной амплитудной дискриминации с верхним и нижним пороговыми уровнями, а затем селектор импульсов обеспечивает прохождение импульсов с длительностью, превышающей определенную пороговую величину, устройство коррекции многократных совпадений подвергает фотоэлектрические импульсы принудительному прерыванию через время, равное длительности пролета частиц через счетный объем. Фотоэлектрические импульсы подвергают принудительному прерыванию через время, равное длительности пролета частиц через счетный объем, и в зависимости от импульсов, поступающих в персональный компьютер, управляют воздуходувкой и длительностью импульсов принудительного прерывания, а также амплитудой излучения лазера и верхним пороговым уровнем амплитудной дискриминации. Техническим результатом изобретения является повышение точности измерения концентрации и размеров частиц. 1 ил.

Наверх