Способ оценки охлаждающей способности жидкостей


 


Владельцы патента RU 2504758:

Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" (RU)

Изобретение относится к измерительной технике. Способ основан на экспериментальном определении температуры лавинообразного распада охлаждающей жидкости на горячей поверхности, в статических условиях, без потока жидкости. Технический результат - упрощение процесса отбраковки различных партий охлаждающей жидкости, уменьшение количества вещества в исследуемой пробе, что в свою очередь обеспечивает безопасность персонала, проводящего исследования. 1 ил.

 

Изобретение относится к способам оценки охлаждающей способности жидкостей и представляет собой способ экспресс-контроля достаточности охлаждающей способности жидкостей для любых разработанных устройств с использованием различных жидкостей, охлаждающих теплонапряженные узлы.

Известен способ оценки охлаждающей способности жидкостей на специальных модельных установках проточного типа. Он заключается в имитации течения исследуемой жидкости по наиболее теплонапряженному участку тракта охлаждения охлаждаемого устройства (Большаков Г.Ф. Физико-химические основы применения топлив и масел. Теоретические основы химмотологии. - Новосибирск: Наука, 1987, стр.89-92).

Недостатком данного способа является отсутствие критериальных зависимостей, удовлетворительно определяющих условия моделирования процессов, происходящих в реальных образцах техники. Особенности процессов охлаждения зависят в общем случае от физико-химических и эксплуатационных свойств охладителя, скорости его течения, начальной температуры и скорости ее достижения, а следовательно, от химического состава на входе в рассматриваемый участок тракта, материала проточной части канала, способа его обработки и состояния поверхности, геометрии теплоотводящей поверхности и характера течения охлаждающей жидкости. Недостатком современных проточных теплообменных установок является также то, что многие факторы из перечисленных выше уравниваются для различных партий исследуемой охлаждающей жидкости, что и служит причиной неразличимости охлаждающей способности для различных партий охлаждающей жидкости в области конвективного теплообмена. Дальнейший нагрев измерительного участка на установках проточного типа обнаруживает увеличение разброса экспериментальных точек (для различных партий охлаждающей жидкости) зависимости температуры стенки от удельных тепловых потоков и расслоение соответствующих аппроксимирующих кривых, что приводит к невозможности надежной оценки охлаждающей способности охлаждающей жидкости.

Это явление объясняется изменением физико-химического состояния жидкости вследствие начала пузырькового псевдокипения, а также достижения температуры, соответствующей началу интенсивного термического превращения охладителя, так называемой «термодеструкции», конечными продуктами которого в числе прочих являются твердые вещества, образующиеся как при разложении охладителя, так и в ходе его реакции с примесями, входящими в его состав. В реакцию могут вступать и продукты промежуточных реакций процесса разложения охладителя. Эти продукты, осаждающиеся в виде коксообразных образований на стенках охлаждающего тракта, существенно повышают термическое сопротивление теплоотдающей поверхности, изменяющееся по мере образования слоя отложений, его накопления и возможного уноса турбулентным потоком. В результате происходит перегрев охлаждаемой поверхности и ее разрушение, что в свою очередь может привести к нарушению рабочего процесса в образце техники.

Целью данного изобретения является создание сравнительной методики оценки охлаждающей способности жидкости в стационарных условиях по сравнению с образцом жидкости, требуемая охлаждающая способность которой установлена натурными испытаниями. Количественный контроль качества охлаждающей жидкости по предлагаемому способу соотносится с физически обоснованной величиной - температурой начала интенсивного термического разложения охлаждающей жидкости.

Указанная цель достигается тем, что сравнительное определение качества охлаждающей жидкости проводится по экспериментально устанавливаемым в статических условиях зависимостям температуры теплоотдающей поверхности от времени по достижении последней температуры лавинообразного распада охлаждающей жидкости на горячей поверхности, без потока жидкости, в сравнении с той же зависимостью, но для образца охлаждающей жидкости, достаточная охлаждающая способность которой установлена.

Установка, реализующая предлагаемый способ оценки охлаждающей способности жидкостей, состоит из следующих основных частей (см. чертеж):

- емкости для исследуемой жидкости объемом 350 см3, рассчитанной на рабочее давление Рр=16 МПа ("бомба"), поз.2;

- понижающего трансформатора для нагрева экспериментальной трубки электрическим током, поз.3;

- регулирующего трансформатора, поз.17,

- трех емкостей объемом V=0,5 л каждая для заправки и слива исследуемой жидкости, поз.4,9,16;

- баллона со сжатым азотом для наддува, поз.6.

Все элементы установки выполнены из материала 12Х18Н10, в качестве уплотняющего материала используется фторопласт-4 и алюминий. Установка снабжена запорной, предохранительной и сливной арматурой.

Тепловыделяющим элементом (экспериментальным участком), находящимся внутри рабочей емкости и погруженным в исследуемую жидкость, является нагреваемая переменным электрическим током трубка диаметром 3,0×1,5 мм и длиной нагреваемой части 400 мм, изготовленная из стали Х18Н10Т (для изучения каталитического влияния конструкционного материала на процесс возможно использование других материалов и сплавов). В качестве тепловыделяющего элемента может также использоваться мембрана в измерительной ячейке специальной конструкции, имеющей две полости.

Экспериментальный участок снабжен двумя термопарами ХК: на внутренней поверхности в центре трубки (температура Т2) и в 4-5 мм над внешней поверхностью трубки, непосредственно в жидкости (температура Т1).

Предлагаемый способ оценки (теста) качества охлаждающей жидкости основан на фиксации роста температуры внутренней поверхности трубки с помощью термопары во времени при фиксированном значении электрической мощности, обеспечивающей практически мгновенное достижение температуры начала ее термодеструкции. Рост термосопротивления, независимо от конкретной причины его возникновения, вызывает и рост температуры внутренней поверхности элемента при неизменной тепловой нагрузке за счет ухудшения теплообмена с исследуемой жидкостью.

Принцип создания тестовой установки, основанной на статическом методе, в отличие от динамических, способствует решению важной задачи: сведение к минимуму факторов, влияющих на взаимосвязь нагретая поверхность-химические превращения топлива при высоких температурах и давлениях в контакте с ней. В традиционных ("проточных") методах таких факторов крайне много, что не позволяет однозначно установить специфику поведения собственно компонента.

Следует отметить, что предлагаемый способ сравнительного определения характеристик различных партий охлаждающих жидкостей, оказывающих в той или иной мере влияние на охлаждающие свойства, призван облегчить процесс отбраковки различных партий охлаждающей жидкости в местах ее производства, хранения и применения. Таким образом, контролю подвергается сама специфика компонентного состава (в том числе и микропримесного), в той или иной мере оказывающая влияние на такую характеристику, как охлаждающая способность.

Поскольку предлагаемый способ предназначен для выдачи заключения "хуже"-"лучше", точное значение температуры начала термодеструкции не принципиально, так как на этом этапе не преследуется цель изучения процесса теплообмена с учетом всей предыстории (например, разложения). Необходимо только выйти на температурный режим, гарантирующий протекание этого процесса.

Постоянно установленная на рабочем участке тепловая нагрузка, исключающая дополнительные регулировки, позволяет повысить точность определения темпа нагрева за счет устранения возможных методических ошибок в ходе достижения рабочим участком фиксированной температуры начала термодеструкции.

Таким образом, в качестве критерия (комплексного показателя), характеризующего ОС охлаждающей жидкости, предлагается темп нагрева внутренней поверхности нагревательного элемента.

Обработка результатов измерений может осуществляться следующим образом. На снятую с самописца ленту производится нанесение шкалы температуры и шкалы времени, затем устанавливается начальный "нулевой" момент времени, соответствующий температуре Т2. С ленты самописца с шагом 0,5 с снимаются соответствующие значения времени и значения температуры Т2.

Полученные данные по температуре (Т2) и времени обрабатываются по специальным формулам.

Полученные данные зависимости температуры Т2 выше температуры термодеструкции, обрабатывают по методу наименьших квадратов и получают параметры аппроксимирующей прямой:

У=а+Вх.

Коэффициент В, при таком методе обработки результатов, является искомым комплексным показателем, характеризующим охлаждающую способность охлаждающей жидкости, и может быть использован для характеристики качества продукта.

Последовательность проведения испытания на установке (чертеж):

1. Подготовка установки к проведению измерений.

Исходное положение установки. Исходным является следующее

положение установки:

- ранее исследуемый образец рабочей жидкости слит;

- продуктовая линия подготовлена под заправку;

- давление в системе отсутствует;

- редуктор поз.Р1 выведен;

- все вентили В1-В11 закрыты;

- контрольно-измерительные приборы отключены.

Проверку герметичности установки производят в следующем порядке: открывают В6, редуктором Р1 (поз.15) по манометру (поз.14), устанавливают давление в системе Р=100 кг/см (1,25 Рраб). При закрытых вентилях В1 и В6 по манометру контролируют герметичность выдержкой в течение 15 мин. При наличии не герметичности допускается проверка посредством обмыливания соединений установки.

2. Заправка охлаждающей жидкости.

Проверенная на герметичность установка заправляется охлаждающей жидкостью через вентили В1 и В2 из емкости поз.4. Заправка производится следующим образом:

- открывают вентили В1, В4, В7;

- включают вакуум-насос (поз.8). В системе создается вакуум (контроль по мановакууметру поз.14, показания - минус 1,0 кг/см2);

- закрывают вентиль В7, открывают вентили В3 и В2;

- после выдержки установки в таком состоянии в течение 1 мин закрывают вентили B1, B2, В3.

3. Проведение измерений.

Измерение проводят в следующей последовательности:

- открывается вентиль В6 и с помощью редуктора Р1 устанавливается давление (80 кг/см2) в емкости поз.5. Контроль давления осуществляется по манометру (поз.14). По окончании наддува вентиль В6 закрывается:

- открывается вентиль В7;

- включаются приборы КСП-4 для регистрации текущих значений температуры Т1 и Т2 (поз.10 и 11) и времени;

- пакетным выключателем на измерительную трубку подается требуемое напряжение (8 В) и сила тока (140 А), создается заданная тепловая нагрузка, равная 1,12 кВт;

- по достижении температуры Т2 значения температуры термодеструкции исследуемой охлаждающей жидкости, контролируемого визуально по показанию соответствующего прибора КСП-4, производится выдержка в течение 3 с. Регистрируется ток и напряжение в системе нагрева трубки по приборам поз.12 и 13,

- закрывается вентиль В7;

- выключаются приборы КСП-4;

- система нагрева трубки обесточивается.

Результатом измерений являются значения температуры внутренней поверхности нагревательной экспериментальной трубки от времени (Т2), снимаемые с ленты самописца.

4. Возврат установки в исходное положение.

Возврат установки в исходное положение производится в следующей последовательности:

- открывается вентиль В5 и производится сброс давления в системе через емкость для сдувок (поз.7) и сливную емкость (поз.9);

- после достижения в измерительном узле температуры (20+5)°С вентиль В5 закрывается и открываются вентили В1 и В9;

- открывается вентиль В6 и редуктором Р1 (поз.15) создается давление в буферной емкости (поз.5) Р=0,08МПа;

- открывается вентиль В7 и охлаждающая жидкость из измерительного узла перелавливается в сливную емкость (поз.9);

- по окончании слива компонента все вентили закрываются;

- редуктор Р1 выводится, приборы КИП обесточиваются.

5. Нейтрализация продуктовой линии.

Нейтрализация продуктовой линии производится после завершения работ на образце рабочей жидкости и в случае перерыва в работах на исследуемом образце более суток.

Нейтрализация производится в следующей последовательности:

Открывается вентиль В6 и редуктором Р1 (поз.15) создается давление в буферной емкости (поз.5) Р=0,08МПа.

Открываются вентили В7, В1 и В9 и производится в течение одной минуты продувка линии сжатым азотом.

Производятся две последовательные операции заправки и слива ацетона из продуктовой линиям (по вышеуказанному подразделу "Заправка охлаждающей жидкости", где роль вентилей В2 и В3 выполняют вентили В10 и В11, соответственно).

От вентиля В10 отсоединяется емкость с ацетоном и подстыковывается аналогичная емкость со спиртом.

Производятся две последовательные операции заправки и слива спирта из продуктовой линии.

Производится повторная операция продувки линии сжатым азотом.

Результатом измерений является зависимость температуры внутренней поверхности нагревательной экспериментальной трубки от времени, снимаемая с ленты самописца.

Реализация предлагаемого способа осуществляется следующим образом. Первоначально производится снятие зависимости температуры внутренней поверхности нагревательной экспериментальной трубки от времени для образца охлаждающей жидкости с установленной охлаждающей способностью (т.е. охлаждающая способность которой соответствует требованиям). Затем производится снятие зависимости температуры внутренней поверхности нагревательной экспериментальной трубки от времени для образца охлаждающей жидкости, охлаждающую способность которой необходимо оценить. После этого производится сравнение полученных экспериментальных данных, на основании которого делается вывод о пригодности образца исследуемой охлаждающей жидкости к применению.

Преимуществами использования данного способа являются упрощение процесса отбраковки различных партий охлаждающей жидкости, уменьшение количества вещества в исследуемой пробе, что в свою очередь обеспечивает безопасность персонала, проводящего исследования, при использовании агрессивных и ядовитых жидкостей и сохраняет модельные соотношения в процессах теплообмена (достаточность выделяемого тепла для нагреваемого количества жидкости).

Способ оценки охлаждающей способности жидкости, при котором оценка охлаждающей способности жидкости производится на основании экспериментального определения температуры лавинообразного распада охлаждающей жидкости на горячей поверхности в статических условиях, без потока жидкости, путем сравнительного определения качества охлаждающей жидкости по зависимостям температуры теплоотдающей поверхности от времени в сравнении с той же зависимостью для образца охлаждающей жидкости с установленной охлаждающей способностью.



 

Похожие патенты:

Изобретение относится к области тепловых исследований свойств жидкостей и может быть использовано для исследования динамических процессов термостимулированной структурной перестройки жидкостей.

Использование: для определения фазового состояния газожидкостного потока в контрольной точке вертикального сечения трубопровода. Сущность: заключается в содержании устройством для определения фазового состояния газожидкостного потока измерительного устройства и терморезистивного датчика фазового состояния, включающего расположенную вдоль оси движения потока и жестко закрепленную одной короткой стороной печатную плату с установленным на ней чувствительным элементом, выполненным в виде подложки, на которой размещен пленочный резистор (терморезистор) в «точечном» исполнении.

Изобретение относится к области исследования процессов полиморфных превращений в металлах и твердофазных металлических сплавах и может быть использовано, например, в отделах технического контроля металлургических заводов, выпускающих титан и сплавы на его основе.

Изобретение относится к области определения физических параметров пластовых флюидов и может быть использовано в промышленных и научно-исследовательских лабораториях для определения температуры кристаллизации парафинов в нефти.

Изобретение относится к области физико-химического анализа и может быть использовано при тепловых испытаниях. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный круглый нагреватель.

Изобретение относится к области исследования или анализа небиологических материалов путем определения их химических или физических свойств, конкретно, исследования фазовых изменений путем удаления какого-либо компонента, например, испарением, и взвешивания остатка.

Изобретение относится к физико-химическому анализу вещества, а именно к способу построения солидуса. .

Изобретение относится к испытаниям смазочных материалов термоокислительной стабильности и может быть использовано в лабораториях при исследовании влияния металлов на окислительные процессы, происходящие в смазочных материалах, для определения каталитической активности.

Изобретение относится к области исследования процессов полиморфных превращений в металлах при высоких температурах и может быть использовано в процессе пластическо-деформационного формообразования материалов.

Изобретение относится к аналитическому приборостроению и, в частности, к комплексам, предназначенным для определения термической стойкости различных веществ. .

Изобретение относится к области инновационных технологий и может быть использовано для повышения эффективности определения функциональных параметров полимерных композиционных материалов, определяющих эффективность перспективных технических систем. Заявлен способ определения температуры стеклования полимерных композиционных материалов на основе тетразола, согласно которому температуру стеклования определяют по изменению наклона на графике температурной зависимости обратной величины действительной части комплексной диэлектрической проницаемости 1/ε′=f(T). Технический результат - повышение точности и достоверности определения температуры стеклования полимерных композиционных материалов на основе тетразола. 4 ил., 1 табл.

Изобретение относится к пограничной области между физикой, химией и биологией и может быть использовано в научных и промышленных лабораториях для определения параметров фазового перехода в воде и влияния на них условий (давление, температура), добавок веществ и полей. Предлагается способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов измерением теплового эффекта разбавления раствора амфифила растворами ПЭО в зависимости от концентрации амфифила. Технический результат - повышение достоверности идентификации и разделения двух осциллирующих состояний системы. 3 з.п. ф-лы, 1 ил.

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу. Нагревают исследуемый образец с постоянной скоростью с помощью индуктора. Автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора. Для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(Tобр.), где W - относительная мощность индуктора, %, Tобр. - температура исследуемого образца, °C. По построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке. Затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр.) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр.=f(Tобр.). Определяют начало и окончание фазовых превращений 1 рода в виде критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от пулевого уровня на фоне изменения функции Δl=f(Tобр.). Определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) по положению максимума первой производной относительной мощности индуктора. Технический результат - повышение точности определения начала и конца фазовых превращений 1 и 2 рода в исследуемом металлическом материале. 5 ил.

Изобретение относится к термическому анализу веществ и может быть использовано для определения содержания металлических веществ в полупроводниковых материалах. Способ определения содержания металлических включений в полупроводниковых материалах заключается в охлаждении предварительно нагретых исследуемого и эталонного веществ, помещенных на сенсорах из анизотропных элементов с термоэлектрическими свойствами. Измеряют дифференциальный тепловой поток от температуры и по величине скачков на этой зависимости определяют искомую величину. При этом эталон и исследуемый образец, приготовленный в виде порошка массой ≤1 мг с дисперсностью ≈0,1 мг, располагают непосредственно на тепловых сенсорах. Нагревают воздействием инфракрасного лазера с длиной волны 10,6 мкм в течение 1-5 секунд на 100-200 градусов выше температуры плавления микровключений галлия. Затем с такой же скоростью осуществляют закалку расплава галлия с образованием жидкой фазы β-Ga. Далее снимают искомую зависимость при термоэлектрическом охлаждении в области температур кристаллизации фазы β-Ga при температуре -25°C и при превращении β-Ga в α-Ga при температуре -90°C. Технический результат - повышение чувствительности определения галлиевых микровключений для контроля качества полупроводниковых материалов. 3 ил.

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах. Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, в котором для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей. Проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (Scp), с помощью которой определяют температурный коэффициент (αr) приращения среднего диаметра зерна по формуле: α r = Δ с р Т , где Δ с р = S с р , Т - температура отпуска, °С. Затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз. Затем строят график зависимости натурального логарифма температурного коэффициента (αr) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей. Энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей. Обеспечивается повышение точности определения энергии активации при распаде мартенсита закаленной стали и возможность оценки доли энергии активации, отдельно приходящейся на энергию активации зародышеобразования и энергию активации роста новой фазы. 7 ил., 1 табл.

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их разработки. Способ включает регистрацию процессов термодинамического структуропреобразования путем определения термоэнергетической функции каждой пробы, при этом приготавливают несколько проб масла с различным, точно известным количеством депрессорной присадки в них, для определения степени интенсивности структуропреобразования каждой пробы исследуемого масла пробу непрерывно с заданной скоростью охлаждают от комнатной температуры до температуры застывания, определяют температурные области структуропреобразования исследуемого масла по безразмерному динамическому критерию подобия температуровязкостных свойств ηδ, а степень интенсивности структуропреобразования исследуемого масла в указанных температурных областях количественно выражают через изменение термоэнергетической функции исследуемого масла Е(Т), определяемой по формуле: Е(Т)=(1/2-ηδ(T))·RT, где R - универсальная газовая постоянная; Т - текущая абсолютная температура масла; Θ - скорость изменения температуры; η - динамическая вязкость; ηδ=δη(Т, Θ)/δТ; затем определяют среднюю интенсивность микроструктурных процессов в каждой пробе через среднеквадратическое отклонение термоэнергетической функции. Оптимальное содержание депрессорной присадки определяют как соответствующее пробе с максимальной средней интенсивностью микроструктурных процессов. Достигается повышение точности и достоверности определения. 2 з.п. ф-лы, 1 табл.
Наверх