Способ консервации приповерхностного хранилища, содержащего радиоактивные отходы и устройство для его реализации

Изобретение относится к областям охраны окружающей среды и ядерной энергетике и может быть использовано для консервации на длительное хранение приповерхностных хранилищ как с жидкими, так и с твердыми радиоактивными отходами (ЖРО, ТРО). Разработаны три варианта рецептуры изготовления консерванта в зависимости от гидрогеологических условий расположения хранилища (выше или ниже уровня первого водоносного горизонта) и вида радиоактивных отходов (ЖРО или ТРО). Для консервации хранилищ с ЖРО основной компонентой консерванта является перемешанная до однородного состояния, включая осадок, жидкостная фаза отходов конкретного хранилища, в которую в зависимости от конкретных гидрогеологических условий либо вводят под давлением порошок бентонитовой глины непосредственно, либо с предварительным добавлением специально подобранного для конкретного хранилища гелеобразующего раствора. Для консервации хранилищ с ТРО в консерванте в качестве жидкостной компоненты использована природная вода, смешанная с гелеобразующим раствором и порошком бентонитовой глины. Изобретение позволяет исключить миграцию радионуклидов за пределы хранилища. 2 н. и 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к области ядерной энергетики и касается вопросов консервации на длительное хранение подземных и приповерхностных хранилищ больших объемов с жидкими или твердыми радиоактивными отходами (ЖРО, ТРО).

Известен способ консервации наземных и заглубленных хранилищ отработанного ядерного топлива (ОЯТ) с удаленными ЖРО, включающий непрерывное заполнение открытым и закрытым наливом отсеков хранилища жидкообразными композициями из отверждающих веществ, переводящих оставшиеся высокоактивные фракции в надежную матричную структуру, и создание системы иммобилизационных барьеров. Для заполнения полостей хранилища, имеющих просыпи ОЯТ, используют эпоксиакриловую композицию (ЭАК) с радиационной стойкостью не менее 8000 Мрад, а для заполнения других пространств - бетон-консервант с радиационной стойкостью не менее 6000 Мрад (патент РФ №2294571).

Недостатком известного способа является необходимость предварительного удаления и очистки всего объема ЖРО, высокая стоимость компонентов ЭАК, большая трудоемкость ее приготовления и укладки в больших объемах, а также возникающие при этом токсичная и пожароопасная категории производства в зоне радиационно-опасного объекта делают нецелесообразным использование этого способа для консервации хранилищ больших объемов.

Наиболее близким техническим решением, т.е. прототипом заявленного способа является способ консервации подземного хранилища большого объема с концентрированными солевыми осадками высокоактивных ЖРО, основанный на введении по соединительным трубам консерванта в хранилище через штатные и вспомогательные технологические отверстия созданные путем бурения через насыпной слой грунта и свод хранилища (патент РФ №2388083).

Недостатком известного способа является необходимость предварительного понижения уровня грунтовых вод до уровня ниже кромки свода хранилища, удаления и очистки всего объема ЖРО в несколько тысяч кубических метров от радионуклидов, последующим заполнением всего объема радиационно стойким бетоном-консервантом последовательными слоями с перерывом на каждый последующий слой в 7-10 дней.

Известно устройство консервации подземного хранилища большого объема с концентрированными солевыми осадками высокоактивных ЖРО, содержащее подземные шпунтованные заграждения или траншеи, заполненные по всему периметру ограждения и объему бентонитовой глиной, в каждую технологическую скважину которого введены обсадные трубы с вертикально перемещаемыми бетоноводами, установка для и переработки ЖРО, соединенная системой трубопроводов с жидкостной средой хранилища, нагнетание бетонного раствора производят от серийно выпускаемых бетононасосов послойно с интервалом на выдержку 7-10 дней (патента РФ №2388083).

Недостатком известного устройства является необходимость откачки всего объема жидкой фазы отходов из хранилища и очистки этого объема от радионуклидов, что резко осложняет процесс консервации, существенным недостатком является низкая поглощающая способность бетона-консерванта в отношении радионуклидов, а также высокая стоимость проведения работ.

Наиболее близким техническим решением, т.е. прототипом заявленного устройства является устройство для защиты от загрязнения подземных вод в районах складирования и захоронения отходов, содержащих токсичные или радиоактивные вещества, состоящее из первого смесителя с дозаторами, таймера, вычислителя, блока ввода/вывода информации, блока памяти, блока сравнения, исполнительного механизма, штатных и вспомогательных технологических отверстий, соединительных труб (патент РФ №2337419).

Недостатком известного устройства является невозможность его непосредственного использования для консервации хранилищ, содержащих радиоактивные отходы.

Техническим результатом заявленного изобретения является разработка способов и реализующих их устройств для консервации приповерхностных хранилищ, содержащих жидкие или твердые радиоактивные отходы и расположенных как выше, так и ниже уровня первого водоносного горизонта, основанный на разработке консерванта основным компонентом которого является либо собственно жидкостные радиоактивные отходы конкретного хранилища, либо вода путем добавления специальных реагентов в соотношениях, устанавливаемых на этапе предварительного обследования. В результате осуществляется переход жидкой фазы ЖРО в связное состояние, а консервант - в пластичную массу, прочно удерживающую в результате поглощения все радионуклеиды, присутствующие в ЖРО хранилища, для которой исключается процесс седиментации твердой фазы во времени, с начальным градиентом фильтрации, превышающим максимально возможный градиент на участках размещения хранилищ, что исключает возможность фильтрации подземных вод через хранилище, и соответственно, миграцию радионуклеидов за пределы хранилища.

Сущность заявленного способа консервации приповерхностного хранилища, содержащего радиоактивные отходы и расположенного выше уровня первого водоносного горизонта основанный на введении по соединительным трубам консерванта в хранилище через штатные и вспомогательные технологические отверстия созданные путем бурения через насыпной слой грунта и свод хранилища, дополнительно состав консерванта получают путем подготовки (n×m) дозированных проб, состоящих из предварительно перемешанных до однородной консистенции, включая осадок, фиксированного объема ЖРО с возрастающим количеством Cn,m каждого из n образцов порошков бентонитовых глин Cn,m=(С0+mΔС) [кг/м3] (где: n - номер образца порошка бентонитовой глины, m - текущее значение номера пробы, С0=95 [кг/м3] - минимальное значение порошка на заданный объем ЖРО, ΔС - шаг увеличения содержания порошка в пробе), для каждой из которых фиксируют интервал времени ΔТсл проявления эффекта расслоения массы консерванта с учетом допустимых технологических отклонений и выбирают пробу с минимальной добавкой бентонитового порошка, в которой, в пределах наперед заданного интервала времени ΔТсл, отсутствует процесс расслоения, при этом максимальное значение вводимого порошка - 250 [кг/м3], затем по результатам эксперимента для выбранного номера пробы «n,m» вычисляют необходимое количество порошка бентонитовой глины для консервации хранилища по формуле P=Cn.m×V, (где V [м3] - конкретный объем хранилища), а затем под давлением вводят порошок в емкость хранилища при постоянном перемешивании ЖРО, которое прекращают после подачи всего расчетного количества, при этом процесс консервации завершают, когда жидкая фаза ЖРО переходит в пластическую массу.

Сущность заявленного способа заключается также в том, что для хранилищ, когда уровень грунтовых вод выше отметки крыши хранилища, на подготовительном этапе после формирования однородной пробы ЖРО и перед определением требуемого количества порошка бентонитовой глины предварительно определяют соотношение химических компонентов, позволяющее перевести ЖРО в гелеобразное состояние, для чего в состав однородной пробы ЖРО при постоянном перемешивании добавляют жидкое стекло плотностью 1.46 [г/см3] в количестве 170 [см3/л] (раствор А), в состав другой однородной пробы ЖРО при постоянном перемешивании добавляют щавелевую кислоту (H2C2O4×2H2O) до концентрации не более 0,32 М и сернокислый алюминий (Al2(SO4)3×18H2O) до концентрации не более 0,06 М (раствор В), создают набор проб, каждая из которых содержит фиксированный объем раствора А и переменный объем раствора В, который определяют по формуле Vg=(V0+g×ΔV), (где: g - номер пробы, V0 - 0,3 V раствора A, ΔV - шаг изменения объема раствора В), определяют время гелеобразования каждой пробы, сравнивают с заранее установленным значением требуемого по технологическим условиям временем гелеобразования и по выбранному образцу изготавливают раствор для формирования консерванта.

Сущность заявленного способа заключается также в том, что для хранилищ, содержащих твердые радиоактивные отходы (ТРО), при подготовке промежуточных растворов и консерванта заменяют жидкостные радиоактивные отходы природной водой.

Сущность заявленного устройства заключается в том, что в устройстве для реализации способа консервации приповерхностных хранилищ, содержащих радиоактивные отходы по п.1, состоящее из первого смесителя с дозаторами, таймера, вычислителя, блока ввода /вывода информации, блока памяти, блока сравнения, исполнительного механизма, штатных и вспомогательных технологических отверстий, соединительных труб, что в него дополнительно введены первый контейнер с дозатором, второй смеситель с дозатором, измеритель параметров с датчиками, блок установки порогов, дисплей, контроллер, крышка емкости хранилища ЖРО, второй контейнер, крышка второго контейнера с пескоструйным аппаратом и дозатором подачи порошка, компрессоры, перегородка раздвижная, смесители направленного действия, причем выход первого смесителя подключен через дозатор к первому входу второго смесителя, а его второй вход соединен с выходом первого контейнера с дозатором, при этом выход второго смесителя соединен с входом измерителя параметров консерванта с датчиками, а его выход подключен к таймеру, выход которого соединен с первым входом блока сравнения, второй вход которого подключен к блоку установки порогов, а выход блока сравнения соединен с входом вычислителя, первый выход которого подключен к дисплею, а второй выход подключен к последовательно соединенным блоку памяти и контроллеру, при этом второй вход дисплея соединен с первым выходом блока ввода/вывода информации, второй выход которого подключен к второму входу контроллера, первый и второй выход которого подключены к дозаторам, причем в крышке емкости хранилища ЖРО через штатное и К вспомогательных технологических отверстий в емкость хранилища ЖРО введены раздвижная перегородка и смесители направленного действия, при этом каждый из компрессоров подключен через соответствующий второй контейнер с дозатором и соединительные трубы с одним из технологических отверстий.

Сущность заявленного устройства заключается также в том, что дополнительно введены третий, четвертый и пятый контейнеры с дозаторами, третий и четвертый смесители, а в исполнительный механизм шестой и седьмой контейнеры с дозаторами, причем первые входы третьего и четвертого смесителя с дозаторами подключены к выходу первого смесителя с дозатором, а выход третьего контейнера соединен с вторым входом третьего смесителя, при этом второй и третий входы четвертого смесителя соответственно соединены с выходами четвертого и пятого контейнеров с дозаторами, при этом выходы шестого и седьмого контейнеров с дозаторами через соединительные трубы соединены со всеми технологическими отверстиями в крышке хранилища.

Техническая реализация способа и устройства консервации приповерхностных хранилищ, содержащих жидкие радиоактивные отходы осуществляется на базе современного приборостроительного оборудования для геохимического анализа грунта, телевизионной измерительной техники, элементной базе компьютерной техники, химической промышленности и землеустроительной техники.

На фиг.1 представлена функциональная схема устройства при реализации способа для хранилищ, расположенных выше уровня первого водоносного горизонта.

На фиг.2 представлена функциональная схема устройства при реализации способа для хранилищ, расположенных ниже уровня первого водоносного горизонта и для хранилищ твердых радиоактивных отходов.

Устройство для реализации предложенного способа работает следующим образом.

Вариант I. Консервация приповерхностных хранилищ, содержащих жидкие радиоактивные отходы и расположенных выше уровня первого водоносного горизонта.

На фиг.1 представлена функциональная схема устройства при реализации способа для хранилищ, расположенных выше уровня первого водоносного горизонта, где показан первый смеситель с дозаторами - 1, первый контейнер с дозатором - 2, второй смеситель с дозатором - 3, измеритель параметров с датчиками - 4, таймер - 5, блок сравнения - 6, блок установки порогов - 7, вычислитель - 8, блок памяти - 9, дисплей - 10, блок ввода/вывода информации - 11, контроллер - 12, исполнительный механизм - 13, крышка емкости хранилища ЖРО - 13.1, вспомогательные технологические отверстия - 13.2.1-13.2.K, штатное технологическое отверстие - 13.3, соединительные трубы - 13.4., второй контейнер 13.5.1-13.5.D, крышка второго контейнера с пескоструйным аппаратом и дозатором подачи порошка - 13.6.1- 13.6.D, компрессоры - 13.7.1-13.7.F, перегородка раздвижная 13.8, смесители направленного действия -. 13.9.1-13.9.R.

На предварительном этапе из емкости хранилища жидких радиоактивных отходов (ЖРО) формируют пробу жидкой фазы отходов. В связи с тем, что каждое конкретное хранилище уже находилось в эксплуатации и вероятность расслоения фракций, вплоть до выпадения твердого осадка, достаточно велика, необходимо обеспечить однородность состава пробы, для чего либо берут пробы в каждом слое ЖРО, а затем перемешивают в мерной емкости в количествах, пропорционально мощности каждого слоя, либо перед взятием пробы предварительно перемешивают все слои ЖРО в емкости хранилища, включая и имеющийся осадок. Вне зависимости от использованного способа в первом смесителе с дозатором -1 формируют исходный объем однородной жидкой фазы отходов хранилища, которую подают через дозатор на первый вход второго смесителя - 3.

Одновременно в первом контейнере -2 формируют пробы порошков, составленных из имеющихся в ближайших регионах месторождений бентонитовых глин, подготавливают соответствующие наборы, которые могут быть использованы для изготовления консерванта и подают их на второй вход первого смесителя - 3.

Для каждого образца порошка бентонитовой глины экспериментально определяют эффективность его использования и необходимое количество, для создания консерванта ЖРО конкретного хранилища. Для этого отобранную пробу ЖРО, предварительно перемешанную до однородной консистенции, включая осадок, разливают в (n×m) мерных емкостей добавляют в каждую емкость порошок выбранного образца бентонитовой глины с возрастающим количеством Cn,m каждого из n образцов порошков бентонитовых глин Cn,m=(С0+mΔС) [кг/м3] (где: n - номер образца порошка бентонитовой глины, m - текущее значение номера пробы, С0=95 [кг/м3] - минимальное значение дозы порошка на заданный объем ЖРО, ΔС - шаг увеличения содержания порошка в пробе). Исследования, проведенные авторами изобретения на стенде-имитаторе, показали, что в зависимости от минерального состава бентонита минимально необходимое количество порошка бентонитовой глины, при введении которого в ЖРО исключается процесс седиментации твердой фазы консерванта во времени, составляет 95 [кг/м3] ЖРО. Увеличение количества вводимого порошка бентонитовой глины свыше 250 [кг/м3] ЖРО не приводит к положительному эффекту (В.Т. Трофимов, В.А. Королев, Е.А. Вознесенский, Г.А. Голодковская, Ю.А. Васильчук, Р.С. Зиангиров Грунтоведение, под ред. В.Т, Трофимова. Издательство Московского университета имени М.В. Ломоносова. Москва 2005. Издательство «Наука»).

Из каждой мерной емкости отбирают экспериментальные пробные дозы, которые подают в измеритель параметров с датчиками - 4 для определения интервала времени ΔТсл до наступления эффекта расслоения массы консерванта. Из технологических особенностей процесса консервации, назначают нормативную величину требуемого интервала (с учетом допустимого отклонения) времени расслоения ΔТсл, преобразовывают в электрический сигнал и вводят в блок установки порогов - 7, включают таймер - 5 и определяют номера образцов, в которых поставленные условия были выполнены первыми. Результаты измерений преобразовывают в электрический сигнал, который с выхода таймера - 5 подают на первый вход блока сравнения - 5, на второй вход которого с выхода блока установки порогов - 7 подают электрические сигналы, соответствующие выбранным критериям оценки. Как показали предварительные исследования, проведенные авторами, с практической точки зрения наиболее приемлемое значение этого интервала ΔТсл составляет 1 час. Определяют номера образцов проб, у которых этот процесс составлял приблизительно один час, а уже из них, исходя из экономических соображений (цена порошка, цена доставки и т.д.), выбирают конкретный образец порошка бентонитовой глины и в вычислителе - 8, определяют его требуемое количество, которое будет использовано для консервации ЖРО обследуемого хранилища и запоминают в блоке памяти - 9. Текущий контроль за результатами исследования осуществляют с помощью дисплея 10, а оперативное управление - с помощью блока ввода/вывода информации 11.

Например, если таким образцом является пробник, в котором на 1,0 л ЖРО добавлено 175 г порошка бентонитовой глины, то отсюда следует, что на 1 м3 ЖРО требуется 175 кг порошка, и, соответственно, для консервации хранилища ЖРО, например, емкостью 3000 м3 необходимо 525 т. В зависимости от производительности исполнительного механизма и технологических условий проведения работ определяют объем подачи порошка в требуемую единицу времени и соответствующие сигналы в режиме эксплуатации через контроллер - 9 подают на исполнительный механизм - 13.

Для повышения эффективности процесса перемешивания ЖРО через вспомогательные технологические отверстия 13.2.1-13.2.К и штатное технологическое отверстие - 13.3 в емкости хранилища устанавливают раздвижные пластинчатые перегородки 13.8.1-13.8.G, с разных сторон которых устанавливают смесители направленного действия 13.9.1-13.9.R, где G, R - целые числа, конкретное значение которых определяются конфигурацией хранилища и мощностью используемых смесителей. При установке предусматривают возможность регулировки уровня погружения смесителей 13.9.1-13.9.R по вертикали.

Наличие осадка на дне емкости не оказывает влияния на физико-механические свойства консерванта. Осадок может быть равномерно распределен по всей массе консерванта путем его взмучивания с помощью смесителей направленного действия 13.9.1-13.9.R (гидромониторов), которое проводят, как на стадии выбора порошка бентонитовой глины для изготовления консерванта, так и на стадии ввода консерванта в хранилище, когда возможность его осаждения резко снижается за счет возрастающей вязкости консерванта.

В режиме проведения работ в непосредственной близости от хранилища устанавливают контейнеры для хранения порошка бентонитовой глины 13.5.1-13.5.D, в каждую крышку которых вмонтированы пескоструйные аппараты с дозатором подачи порошка - 13.6.1-13.6.D, которые воздуховодами - 13.4.1-13.4.L соединены через штатное технологическое отверстие -13.3 и вспомогательные технологические отверстия 13.2.1-13.2.K с емкостью хранилища и компрессорами - 13.7.1-13.7.F.

При работе в режиме перемешивания для подготовки проб ЖРО все вентили в блоках 1, 13.5.1-13.5.D закрыты, а при работе в режиме консервации - вентили 13.5.1-13.5.D открыты. Рабочее положение каждого дозатора 13.6.1-13.6.D устанавливают в положение, рекомендованное на этапе подготовки консерванта.

Количество глинистого порошка, необходимое для консервации, может изменяться от 95 [кг] до 250 [кг] на 1 [м3] ЖРО, что при введении консерванта определяет прирост объема ЖРО в емкости хранилища, соответственно, от 3,5% до 9,1%. При предельном заполнении хранилища к моменту консервации, потребуется перед введением бентонитового порошка провести откачку и очистку части отходов. При емкости хранилища в 1300 м3 объем этих отходов будет изменяться в зависимости от используемого консерванта соответственно от 35 [м3] до 91 [м3], что практически в 10-30 раз меньше, чем при выполнении консервации хранилища ЖРО с помощью бетона (патент RU №2388083). При размещении хранилища ЖРО выше первого водоносного горизонта и неполном его заполнении вопрос об откачке и очистке ЖРО исключается.

Вариант II. Консервация приповерхностных хранилищ, содержащих радиоактивные отходы и расположенных ниже уровня первого водоносного горизонта.

Функциональная схема устройства для консервации приповерхностных хранилищ, содержащих радиоактивные отходы и расположенных ниже уровня первого водоносного горизонта приведена на фиг.2, где: первый смеситель с дозаторами - 1, первый контейнер с дозатором - 2, второй смеситель с дозаторами - 3, измеритель параметров с наборами датчиков - 4, таймер - 5, блок сравнения - 6, блок установки порогов - 7, вычислитель - 8, блок памяти - 9, дисплей - 10, блок ввода/вывода информации - 11, контроллер - 12, исполнительный механизм - 13, крышка емкости хранилища ЖРО - 13.1, вспомогательные технологические отверстия - 13.2.1-13.2.К, штатное технологическое отверстие - 13.3, соединительные трубы -13.4, второй контейнер 13.5.1-13.5.D, крышка второго контейнера с пескоструйным аппаратом и дозатором подачи порошка - 13.6.1-13.6.D, компрессоры -13.7.1-13.7.F, перегородка раздвижная - 13.8, смесители направленного действия -. 13.9.1-13.9.R., первый резервуар с дозатором - 13.10.1, второй резервуар с дозатором - 13.10.2, третий контейнер с дозатором - 14, третий смеситель с дозатором - 15, четвертый смеситель с дозатором - 16, четвертый контейнер с дозатором - 17, пятый контейнер с дозатором - 18.

Решение поставленной задачи осуществлено путем предварительного промежуточного преобразования ЖРО конкретного хранилища в гелеобразное состояние, которое производят перед этапом добавления порошка бентонитовой глины.

Для определения соотношения химических компонентов, позволяющих осуществить перевод ЖРО конкретного хранилища в гелеобразное состояние предварительно подготавливают два промежуточных раствора. Вводят дополнительно третий, четвертый и пятый контейнеры 14, 17 и 18, в которые загружают соответственно жидкое стекло плотностью 1,46 [г/см3], щавелевую кислоту (H2C2O4×2H2O) и сернокислый алюминий (Al2(SO4)3×18H2O). Одновременно, по методике, изложенной в описании «Варианта А», при постоянном перемешивании формируют в смесителе - 1 пробу однородного ЖРО исследуемого хранилища, которую затем дозировано направляют через вентили и первые входы в третий и четвертый смесители 15 и 16, которые затем закрывают.

На второй вход третьего смесителя 15 подают через дозатор с выхода третьего контейнера 14 жидкое стекло плотностью 1,46 [г/см2], количество которого должно соответствовать 170 [см3/л]. (Раствор «А»).

На второй и третий входы четвертого смесителя 16 через дозаторы подают при постоянном перемешивании до полного растворения соответственно с выходов четвертого и пятого контейнеров 17 и 18 щавелевую кислоту (H2C2O4×2H2O) до концентрации не более 0,32 М и сернокислый алюминий (Al2(SO4)3×18H2O) до концентрации не более 0,06 М (раствор «В»).

Пробы гелеобразующего раствора получают путем смешивания при постоянном перемешивании растворов «А» и «В», которые подают через дозаторы на первый и второй входы второго смесителя 3. Каждая проба содержит фиксированный объем раствора «А» и изменяющийся объем раствора «В», который определяют по формуле Vg=(V0+g×ΔV), (где: g - номер пробы, V0 - 0,3 V раствора «А», ΔV - шаг изменения объема раствора «В» равный 0,05 V раствора «А»).

Созданный набор проб помещают в измеритель параметров с набором датчиков - 4, прекращают перемешивание раствора в пробах, включают таймер 5 и визуально или с помощью датчиков для каждой пробы определяют конкретное значение интервала времени гелеобразования ΔТгел, преобразовывают его в электрический сигнал и подают на первый вход в блока сравнения - 6, выполненный, например, в виде набора схем совпадения, на вторые входы которых поданы предварительно введенные в него сигналы с выхода блока установки порогов - 7, соответствующие наиболее благоприятным с технологической точки зрения временным значениям гелеобразования и по выбранному образцу изготавливают пробный раствор для формирования консерванта при выборе добавки из набора порошков бентонитовой глины.

Как показали предварительные исследования, проведенные авторами, с технологической точки зрения наиболее приемлемое время гелеобразования ΔТгел составляет примерно 1 сутки.

Следующим этапом формирования консерванта является экспериментальное определение для выбранного варианта раствора необходимого количества порошка бентонитовой глины для создания консерванта ЖРО.

В соответствии с полученными на предыдущем этапе рекомендациями при выборе номера пробы создают гелеобразующий раствор во втором смесителе 3, из которого при постоянном перемешивании готовят новый набор проб, причем каждая проба содержит фиксированную дозу гелеобразующего раствора, в которую, в соответствии с описанием «Варианта I», добавляют из первого контейнера -2 дозированное количество порошка бентонитовой глины, определяют наиболее приемлемое количество порошка бентонитовой глины в соответствии с критерием определения заданного интервала (с учетом допустимого отклонения) времени расслоения АТСЛ, и вычисляют количество порошка, необходимое для консервации хранилища заданного объема.

В режиме проведения работ по консервации вводят в исполнительный механизм первый резервуар с дозатором - 13.10.1 для хранения щавелевой кислоты, второй резервуар с дозатором - 13.10.2 для хранения сернокислого алюминия и третий резервуар с дозатором - 13.10.3 для хранения жидкого стекла, которые соединительными трубами 13.4 подключены к отверстиям 13.2-13.3 хранилища.

Включают смесители направленного действия - 13.9.1-13.9.R и все последующие процедуры проводят при постоянном перемешивании. После получения однородного ЖРО в емкости хранилища в соответствии с полученными рекомендациями подключают первый и второй резервуары с дозатором - 13.10.1 и 13.10.2, вводят полные объемы щавелевой кислоты и сернокислого алюминия и после их полного подключают третий резервуар с дозатором - 13.10.3 и вводят полный объем жидкого стекла с дозатором - 13.10. После тщательного перемешивания реагентов включают компрессоры 13.7.1-13.7.F и вводят в хранилище порошок из контейнеров для хранения порошка бентонитовой глины 13.5.1-13.5.D через дозатор и пескоструйный аппарат 13.6.1-13.6 D. После полного введения требуемого количества порошка прекращают перемешивание, и через 1-3 суток, в зависимости от минерального состава бентонитового порошка вся жидкая фаза ЖРО переходит в связное состояние и формируется тугопластичная, однородная, практически водонепроницаемая масса, заполняющая емкость хранилища. Исследования, проведенные авторами, с добавками компонентов химического гелеобразующего раствора, показали, что прочность такого материала на одноосное сжатие составляет около 1 [кг/см2] (В.И. Сергеев, Н.Ю. Степанова, Т.Г. Шимко, Н.Н. Данченко, З.П. Малашенко «Способ зашиты подземных вод от загрязнения в районах захоронения отходов атомной промышленности», - Наукоемкие технологии, №1, 2005 г.)

Как и в Варианте I процесс сопровождается увеличением объема ЖРО в хранилище от 3,5 до 9,1%, что потребует, в случае предельного заполнения хранилища, предварительно провести откачку и очистку этого объема отходов.

Вариант III. Консервация приповерхностных хранилищ твердых радиоактивных отходов (ТРО).

Функциональная схема устройства для консервации хранилищ ТРО траншейного типа соответствует фиг.3.

В связи с тем, что в этих случаях в хранилищах отсутствует жидкостная компонента для приготовления консерванта вместо однородной пробы ЖРО используют природную воду. Для этого по той же методике и в тех же пропорциях, как было показано в описании Варианта II, воду подают в первый смеситель с дозатором - 1, причем перемешивание в нем отключают, а с его выхода воду в дозированном объеме подают через первые входы в третий и четвертый смесители 15 и 16, а дальнейшую процедуру приготовления гелеобразующих растворов «А» и «В» и консерванта ЖРО проводят в соответствии с описанием в «Варианта II».

Готовый консервант в количестве необходимом для заполнения всего объема вводят в хранилище через имеющиеся технологические и/или специально пробуренные вспомогательные отверстия.

Использование заявленного изобретения позволит осуществить как экологически безопасную, так и пожаробезопасную консервацию подземных хранилищ радиоактивных отходов любых объемов путем использования недефицитных природных материалов при резком снижении (до 30 раз) объемов ЖРО, подлежащих откачке и очистке при введении консерванта в хранилище.

1. Способ консервации приповерхностного хранилища, расположенного выше уровня первого водоносного горизонта, содержащего радиоактивные отходы, основанный на введении по соединительным трубам консерванта в хранилище через штатные и вспомогательные технологические отверстия, созданные путем бурения, через насыпной слой грунта и свод хранилища, отличающийся тем, что состав консерванта получают путем подготовки (n×m) дозированных проб, состоящих из предварительно перемешанных до однородной консистенции, включая осадок, фиксированного объема ЖРО с возрастающим количеством Cn,m каждого из n образцов порошков бентонитовых глин Cn,m=(C0+mΔC) [кг/м3] (где n - номер образца порошка бентонитовой глины, m - текущее значение номера пробы, С0=95 [кг/м3] - минимальное значение порошка на заданный объем ЖРО, ΔС - шаг увеличения содержания порошка в пробе), для каждой из которых фиксируют интервал времени ΔТсл проявления эффекта расслоения массы консерванта с учетом допустимых технологических отклонений и выбирают пробу с минимальной добавкой бентонитового порошка, в которой в пределах наперед заданного интервала времени ΔТсл отсутствует процесс расслоения, при этом максимальное значение вводимого порошка - 250 [кг/м3], затем по результатам эксперимента для выбранного номера пробы «n,m» вычисляют необходимое количество порошка бентонитовой глины для консервации хранилища по формуле P=Cn,mּV, (где V [м3] - конкретный объем хранилища), а затем под давлением вводят порошок в емкость хранилища при постоянном перемешивании ЖРО, которое прекращают после подачи всего расчетного количества, при этом процесс консервации завершают, когда жидкая фаза ЖРО переходит в пластическую массу.

2. Способ консервации приповерхностного хранилища, содержащего радиоактивные отходы по п.1, отличающийся тем, что при консервации жидких радиоактивных отходов (ЖРО) в хранилище, когда уровень фунтовых вод выше отметки крыши хранилища, на подготовительном этапе после формирования однородной пробы ЖРО и перед определением требуемого количества порошка бентонитовой глины предварительно определяют соотношение химических компонентов, позволяющее перевести ЖРО в гелеобразное состояние, для чего в состав однородной пробы ЖРО при постоянном перемешивании добавляют жидкое стекло плотностью 1,46 [г/см3] в количестве 170 [см3/л] (раствор А), в состав другой однородной пробы ЖРО при постоянном перемешивании добавляют щавелевую кислоту (Н2С2О4·2Н2О) до концентрации не более 0,32 М и сернокислый алюминий (Al2(SO4)3·18Н2О) до концентрации не более 0,06 М (раствор В), создают набор проб, каждая из которых содержит фиксированный объем раствора А и переменный объем раствора В, который определяют по формуле Vg=(V0+g·ΔV), (где g - номер пробы, V0 - 0,3 V раствора A, ΔV - шаг изменения объема раствора В), определяют время гелеобразования каждой пробы, сравнивают с заранее установленным значением требуемого по технологическим условиям времени гелеобразования и по выбранному образцу изготавливают раствор для формирования консерванта.

3. Способ консервации приповерхностного хранилища, содержащего радиоактивные отходы по п.2, отличающийся тем, что при консервации приповерхностного хранилища, содержащего твердые радиоактивные отходы (ТРО), заполняют бентонитовым консервантом, для приготовления которого используют природную воду.

4. Устройство для реализации способа консервации приповерхностного хранилища, содержащего радиоактивные отходы по п.1, состоящее из первого смесителя с дозаторами, таймера, вычислителя, блока ввода/вывода информации, блока памяти, блока сравнения, исполнительного механизма, штатных и вспомогательных технологических отверстий, соединительных труб, отличающееся тем, что в него дополнительно введены первый контейнер с дозатором, второй смеситель с дозатором, измеритель параметров с датчиками, блок установки порогов, дисплей, контроллер, крышка емкости хранилища ЖРО, второй контейнер, крышка второго контейнера с пескоструйным аппаратом и дозатором подачи порошка, компрессоры, перегородка раздвижная, смесители направленного действия, причем выход первого смесителя подключен через дозатор к первому входу второго смесителя, а его второй вход соединен с выходом первого контейнера с дозатором, при этом выход второго смесителя соединен с входом измерителя параметров консерванта с датчиками, а его выход подключен к таймеру, выход которого соединен с первым входом блока сравнения, второй вход которого подключен к блоку установки порогов, а выход блока сравнения соединен с входом вычислителя, первый выход которого подключен к дисплею, а второй выход подключен к последовательно соединенным блоку памяти и контроллеру, при этом второй вход дисплея соединен с первым выходом блока ввода/вывода информации, второй выход которого подключен к второму входу контроллера, первый и второй выходы которого подключены к дозаторам, причем в крышке емкости хранилища ЖРО через штатное и К вспомогательных технологических отверстий в емкость хранилища ЖРО введены раздвижная перегородка и смесители направленного действия, при этом каждый из компрессоров подключен через соответствующий второй контейнер с дозатором и соединительные трубы с одним из технологических отверстий.

5. Устройство для реализации способа консервации приповерхностного хранилища, содержащего радиоактивные отходы, по п.2, отличающееся тем, что в него дополнительно введены третий, четвертый и пятый контейнеры с дозаторами, третий и четвертый смесители, а в исполнительный механизм шестой и седьмой контейнеры с дозаторами, причем первые входы третьего и четвертого смесителя с дозаторами подключены к выходу первого смесителя с дозатором, а выход третьего контейнера соединен с вторым входом третьего смесителя, при этом второй и третий входы четвертого смесителя соответственно соединены с выходами четвертого и пятого контейнеров с дозаторами, при этом выходы шестого и седьмого контейнеров с дозаторами через соединительные трубы соединены со всеми технологическими отверстиями в крышке хранилища.



 

Похожие патенты:
Изобретение относится к способам подземного захоронения жидких радиоактивных кремнийсодержащих отходов и для их утилизации может быть использовано на радиохимических предприятиях.

Изобретение относится к области обращения с радиоактивными отходами (РАО) низкого и среднего уровня активности и предназначено для их безопасного длительного хранения и/или захоронения в подземных сооружениях, созданных в однородных слабопроницаемых породах.

Изобретение относится к области охраны окружающей среды от радиоактивного, а также прочих видов загрязнения и может быть использовано в процессе захоронения радиоактивных и промышленных отходов.

Изобретение относится к конструкции хранилища для длительного хранения в нем контейнеров с отработавшим ядерным топливом (ОЯТ). .

Изобретение относится к способу переработки и захоронения радиационно загрязненной растительности на территориях криолитозоны. .
Изобретение относится к способам захоронения жидких радиоактивных фторидсодержащих отходов и может быть использовано на радиохимических предприятиях. .

Изобретение относится к области обращения с твердыми радиоактивными отходами и может быть использовано при возведении защитных саркофагов полууглубленных могильников твердых радиоактивных отходов в криолитозоне.

Изобретение относится к области захоронения опасных отходов и может быть использовано для консервации опасных отходов, размещенных на дне водоемов различного типа.
Изобретение относится к способам захоронения жидких радиоактивных отходов, а именно отработанного экстрагента - трибутилфосфат в гексахлорбутадиене, в глубоко залегающие подземные пласты-коллекторы.

Изобретение относится к охране окружающей среды и может быть использовано для защиты от загрязнения токсичными или радиоактивными веществами подземных питьевых вод, грунтов и почв в районах размещения технических отходов.

Заявленное изобретение относится к способу сооружения хранилища для радиоактивных отходов. Заявленный способ включает бурение скважины в вечномерзлотных породах, спуск и цементирование обсадной колонны, размещение в скважине контейнеров с радиоактивными отходами, герметизацию верхней части скважины. В заявленном способе обсадную колонну цементируют в интервале от расчетной границы зоны растепления до поверхности, а контейнеры с радиоактивными отходами устанавливают на полую колонну-хвостовик, перфорированную в нижней части, на расстоянии от забоя скважины, где hom - высота интервала, в пределах которого произойдет оттаивание вечномерзлых пород; m - пористость вечномерзлых пород; Rom - расчетный радиус оттаивания; Rc - внутренний радиус скважины. Техническим результатом является обеспечение более высокой степени надежности захоронения радиоактивных отходов и исключение возможности миграции радионуклидов за пределы хранилища. 3 з. п.ф-лы, 2 ил.

Изобретение относится к горной промышленности и может быть использовано при захоронении высокотоксичных и радиоактивных отходов в рудниках при камерных системах разработки с закладкой выработанного пространства твердеющими смесями. Способ включает образование камер, разделенных междукамерными целиками, сооружение саркофагов из отработавших колесных шин большегрузной самоходной техники, размещение в саркофагах контейнеров с отходами и заполнение камер гидравлической закладкой из твердеющих смесей. Техническим результатом является использование подлежащих утилизации шин большегрузной техники для повышения надежности захоронения опасных отходов промышленности. 1 ил.

Изобретение относится к средствам захоронения радиоактивных отходов (РАО), а также средствам исследования (6, 7) геологических пород (8) в глубинных слоях литосферы вплоть до мантии (9). Заявленное устройство содержит герметичный контейнер, корпус (1) которого выполнен из тугоплавкого материала и заполнен тепловыделяющими элементами (2) с прочной оболочкой и теплопроводящим наполнителем (3). Оболочки элементов заполнены РАО и тепловыделяющими активными радионуклидами. Корпус имеет две торцевые поверхности и боковую поверхность, имеющие осесимметричную форму. Высота Н контейнера вдоль его оси симметрии и максимальный поперечный размер контейнера в плоскости, расположенной перпендикулярно его оси симметрии, выбраны из условия: D>4H. Контейнер снабжен теплоизоляцией (4), расположенной со стороны верхней торцевой поверхности, над которой расположены зоны расплавленных (11) и затвердевшего расплава (12) геологических пород. На нижней торцевой поверхности корпуса, под которой расположен слой (10) расплава геологической породы, выполнены выступы. Предусмотрена возможность использования дополнительного контейнера (5) для помещения капсул с РАО. Техническим результатом является увеличение скорости погружения, увеличение объема и массы погружаемых веществ или оборудования (6, 7) и уменьшение температуры корпуса контейнера и внутренних элементов конструкции устройства. 23 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к способу подготовки и захоронения радиоактивных отходов (РАО). Заявленный способ включает доставку РАО к месту захоронения, подготовку РАО, размещение РАО в объеме захоронения и окончательную изоляцию от окружающей среды. При этом для захоронения используют открытые горные выработки с завершенным циклом добычи полезных ископаемых - горные или горнорудные карьеры (3) со скальной основой, при которых производят оборудование площадки (8) выгрузки и подготовки РАО к захоронению, пункта (2) переработки МРАО, транспортной сети (6) для РАО. Захоронение осуществляют преимущественно в предварительно подготовленных унифицированных металлических единичных упаковках кубической формы. При этом предусмотрен возврат части металла в хозяйственный оборот после прохождения дезактивации в пунктах (10). Дно-основание карьера засыпают привозной глиной (4) с выравниванием до горизонтальной площадки, где РАО выстраивают с обеспечением зазоров между блоками (5) и стенами карьера, после чего зазоры заполняют глиной, дают ей выдержку на осадку, продолжают блочно-ярусное заполнение карьера, затем незаполненную часть карьера перекрывают глиной и засыпают грунтом с восстановлением ландшафта. Техническим результатом является повышение надежности длительной изоляции-захоронения РАО и эффективности захоронения РАО без ограничений по происхождению, активности, конструкции, материалам, формам, габаритам, времени и условиям предшествующего хранения контейнеров и упаковок РАО. 8 ил.

Изобретение относится к области приповерхностного захоронения твердых или отвержденных радиоактивных отходов (РАО). Способ приповерхностного захоронения РАО включает в себя создание котлована, бетонирование его дна и стенок, образование в основании котлована экрана с абсорбирующим веществом. Выбирают несколько пригодных для изоляции РАО участков грунтового массива. Путем многократных измерений определяют значения коэффициента фильтрации местных вод и минимальные расстояния по толще грунтов от границы зоны размещения РАО до первого от поверхности водоносного горизонта. Собирают статистическую информацию о климатическом режиме. Для каждого участка определяют величину коэффициента риска ru попадания опасной концентрации радионуклидов в зону активного водообмена. Отсеивают из рассмотрения участки с ru>1,0. Среди оставшихся для строительства рекомендуют участок с наименьшим значением ru. На этом участке грунтового массива строят приповерхностный могильник. Изобретение позволяет исключить возможность выноса из приповерхностного могильника РАО в окружающую среду в ситуации некачественного исполнения или разрушения его инженерных барьеров.

Изобретение относится к технологиям обращения с токсичными и радиоактивными технологиями и может быть использовано при разработке месторождений с закладкой выработанного пространства. По мере возведения саркофагов из шин внутренний зазор между ними и контейнерами для скрепления заполняют монтажной пеной на основе жидкого предполимера с пропеллентом с последующим образованием жесткого пенополиуретана. Высоту подачи пены принимают равной половине высоты саркофага из шин при подаче пены на весь саркофаг сразу. Технический результат - снижение трудоемкости создания саркофагов, снижение вероятности коррозии контейнеров. 1 ил.

Изобретение относится к средствам захоронения радиоактивных отходов (РАО) атомной энергетики и исследования глубинных слоев литосферы. Устройство содержит осесимметричную тепловыделяющую пространственную структуру (1), образованную тепловыделяющими и соединительными элементами (2, 3). Структура (1) выполнена в форме диска. Тепловыделяющие элементы (2) жестко связаны между собой соединительными элементами (3), выполненными из тугоплавкого материала. Элементы (2) расположены друг относительно друга с пространственными зазорами. Между поверхностями тепловыделяющих и соединительных элементов (2, 3) образованы проточные каналы (4), связывающие верхнюю и нижнюю торцевые поверхности структуры (1). Тепловыделяющие элементы (2) содержат герметичную оболочку, выполненную из тугоплавкого материала и заполненную активными радионуклидами и теплопроводящим наполнителем. Контейнеры (5), соединенные с верхней частью структуры (1), заполняются подлежащими захоронению РАО или используются для размещения измерительного оборудования. Технический результат - увеличение скорости погружения устройства, увеличение массы полезной нагрузки, включающей подлежащие захоронению РАО, и повышение надежности устройства. 22 з.п. ф-лы, 9 ил, 1 табл.

Изобретение относится к техническим средствам погружения в геологические формации земной коры. Радиоизотопное устройство для погружения в геологической формации земной коры содержит тепловыделяющие и соединительные элементы, образующие однослойную осесимметричную тепловыделяющую структуру. Высота Н тепловыделяющей структуры и ее максимальный размер D в плоскости, перпендикулярной оси симметрии тепловыделяющей структуры, выбраны из условия: D>4H. Тепловыделяющие элементы имеют шарообразную форму. Связаны между собой соединительными элементами, выполненными из тугоплавкого материала, и расположены с зазорами. Зазоры образуют проточные каналы между верхней и нижней поверхностями тепловыделяющей структуры. Каждый тепловыделяющий элемент содержит герметичную оболочку, выполненную из тугоплавкого материала и заполненную составом, содержащим изотоп 60Со. Толщина δ герметичной оболочки и диаметр dП полости герметичной оболочки, заполненной составом, содержащим изотоп 60Со, выбраны из условий: δ<0,5·(µO)-1, dП/2<0,5·(µT)-1. Изобретение позволяет повысить эффективность использования выделяемой энергии для расплавления окружающих пород. 15 з.п. ф-лы, 2 ил., 4 табл., 1 пр.

Изобретение относится к области локализации низкоактивных и очень низкоактивных радиоактивных отходов. Хранилище радиоактивных отходов включает нижний защитный инженерный барьер, образованный основанием, ложем и дренажной системой, радиоактивные отходы и верхний защитный инженерный барьер, образованный верхней подушкой, укрывной пленкой из высокоплотного полиэтилена и верхним покрытием. Хранилище имеет многофункциональную технологическую систему мониторинга и обслуживания, образованную верхним и нижним рядами перфорированных труб. Выступающие за пределы хранилища концы труб верхнего ряда снабжены запорно-соединительными устройствами, а выступающие за пределы хранилища концы труб нижнего ряда снабжены запорно-соединительными устройствами и датчиками мониторинга. Дренажная система образована нижней подушкой из бентонито-гравийной смеси, дренажным фильтром, песчаным слоем и размещена в углублении ложа. Изобретение позволяет повысить экологическую и эксплуатационную безопасность при обращении с радиоактивными отходами путем применения надежной и контролируемой защиты окружающей среды, исключающей возможность миграции радионуклидов в окружающую среду. 2 ил.

Изобретение относится к способам обращения с радиоактивными отходами и может быть использовано для утилизации облученного графита. Cпособ глубинного захоронения облученного графита уран-графитовых ядерных реакторов включает предварительную подготовку отходов к глубинному захоронению, выбор тектонически устойчивых участков земной коры. В выбранных участках земной коры бурят скважину на глубину до 3500 м и одновременно проводят обсадку и цементаж затрубного пространства. В нижней части ствола скважины выполняют перфорацию. Область перфорации отсекают пакером. Облученный графит измельчают механическим способом до образования графитовых частиц размером менее 0,05 мм. Подготавливают смесь размельченного графита (до 250 г/л), бентонита (до 100 г/л) и пропанта (до 20 г/л) в воде. Выполняют гидроразрыв подготовленного пласта, не снижая давления в скважину, изоляцию отходов, затворение и установку цементного стакана. Последующие операции выполняют подъемом участков гидроразрыва вверх по скважине до глубины 1000 м. Изобретение позволяет проводить утилизацию облученного ядерного графита путем надежной изоляции в тектонически устойчивых пластах земной коры. 2 з.п. ф-лы, 2 ил.
Наверх