Способ получения функционализированных полиолефинов


 


Владельцы патента RU 2505554:

Закрытое акционерное общество "МЕТАКЛЭЙ" (ЗАО "МЕТАКЛЭЙ") (RU)

Изобретение относится к химии полимеров, в частности к способам экструдирования и получению графт-сополимеров как компонентов адгезионной композиции для изоляции металлических труб. Способ получения функционализированных полиолефинов осуществляют в расплаве посредством прививки ненасыщенной карбоновой кислоты или ее ангидрида на полиолефин в присутствии свободно-радикального инициатора, со-агентов мономеров ароматического и алифатического ряда, а также агентов передачи цепи на основе аминных и/или фосфатных соединений при экструдировании смеси реагентов при температуре выше температуры плавления полиолефина в экструдере и кондиционировании полученной полимерной смеси вакуумной дегазацией. Дополнительно способ может быть непрерывным. В качестве свободно-радикального инициатора можно использовать перекиси с температурой полураспада не менее 190°C за одну минуту. Олефиновый полимер выбирают из группы, состоящей из гомополимеров, статистических сополимеров и тер-полимеров линейного или разветвленного С2-8-альфа-олефина или сополимеров линейного или разветвленного С2-8-альфа-олефина. Полимеризующимся с помощью свободных радикалов мономером является винильный мономер, выбранный из группы, состоящей из винилзамещенных ароматических, гетероциклических и алициклических соединений, ненасыщенных алифатических карбоновых кислот и их производных, ненасыщенных алифатических нитрилов, сложных виниловых эфиров ароматических и насыщенных алифатических карбоновых кислот, дивинилового соединения и их смесей. В качестве со-агентов полимеризации используют полимеры и/или мономеры ароматического ряда на основе стирола или бутилакрилата или алифатического ряда на основе октена-1, или гексена-1, или десена-1. Технический результат - улучшение технологии способа. 6 з.п. ф-лы, 4 табл.

 

Изобретение относится к химии полимеров, в частности, к способам экструдирования и получению графт-сополимеров как компонентов адгезионной композиции для изоляции металлических труб. Например, такой материал может быть использован как совместитель (компатибилизатор) в полиэтиленовых наполненных композициях, с наполнителями минеральными (мел, тальк, слюда, волластонит и т.п), антипиреновыми (Al2(OH)3, Mg(OH)2), древесными (ДПКМ).

Из уровня техники известен близкий аналог и ЕР 0086159. Согласно способу, раскрытому в Европейском патенте ЕР 0086159, предлагается поперечное сшивание α-олефиновых полимеров и сополимеров для улучшения характеристик механической устойчивости при нагревании. Предложенное решение заключается в прививке карбоновой кислоты в присутствии генератора радикалов и последующее солеобразование с помощью соединений металлов.

Известен наиболее близкий способ получения функционализированных полиолефинов RU 2243976, опубл. 2003 г., согласно которому способ получения полиолефинов включает а) стадию прививки кислотных групп к полиолефинам с помощью прививаемого мономера, содержащего по меньшей мере одну функциональную группу, выбираемую из карбонила и остатка ангидрида кислоты, в случае необходимости, в присутствии другого прививаемого мономера, содержащего винилненасыщенную связь и, возможно, одно или несколько ароматических ядер, б) стадию очистки, состоящей в удалении по меньшей мере части непрореагировавшего с полиолефинами прививаемого мономера, содержащего по меньшей мере одну функциональную группу, выбираемую из карбонила и остатка ангидрида кислоты, и в) стадию нейтрализации кислотных групп с помощью по меньшей мере одного нейтрализующего агента, отличающийся тем, что нейтрализацию осуществляют ацетатом цинка с получением полиолефинов, характеризующихся наличием ионных кластеров, содержащих ионы Zn++. Изобретение относится также к полиолефинам, полученным указанным способом, к их использованию и к способу экструзии полиолефинов с вспениванием. Способ позволяет получать полиолефины, обладающие повышением вязкости при удлинении в зависимости от времени и повышением динамической вязкости при низких частотах сдвига.

Кроме того, следует отметить, что обычные технологии графтинга полимеров в экструзионном процессе имеют общие недостатки.

1) Время реакции достаточно ограничено и определяется временем нахождения материала в экструзионном процессе.

2) Температура экструзионного процесса выше, чем в методах твердофазного графтинга или графтинга в растворе или суспензии.

3) В обычном процессе графтинга в расплаве присутствуют нежелательные процессы, так называемые «side reactions», а именно: сшивка (cross-linking) - для полиэтилена или этилен винилацетата, либо значительная потеря молекулярного веса «betta-scissions» -для полипропиленов.

4) В обычных экструзионных процессах графтинга конверсия привитого мономера незначительна и как правило составляет около 30%.

5) Присутствие значительного количества непрореагировавшей «свободной» кислоты в полимере и как следствие изменение цвета полимера от темно-желтого до светло-коричневого оттенка и наличие запаха.

Заявленная технология экструзионного синтеза графт-полимеров преодолевает вышеуказанные недостатки.

Задача решается тем способом получения функционализированных полиолефинов в расплаве посредством прививки ненасыщенной карбоновой кислоты или ее ангидрида на полиолефин в присутствии свободно-радикального инициатора, со-агентов мономеров ароматического и алифатического ряда, а также агентов передачи цепи на основе аминных и/или фосфатных соединений, при экструдировании смеси реагентов при температуре выше температуры плавления полиолефина в экструдере и кондиционировании полученный полимерной смеси вакуумной дегазацией.

Дополнительно способ может быть непрерывным, в качестве свободно-радикального инициатора можно использовать перекиси с температурой полураспада не менее 190°С за одну минуту, олефиновый полимер выбирается из группы, состоящей из гомополимеров, статистических сополимеров и тер-полимеров линейного или разветвленного С2-8-альфа-олефина или сополимеров линейного или разветвленного С2-8-альфа-олефина; полимеризующимся с помощью свободных радикалов мономером является винильный мономер, выбранный из группы, состоящей из винилзамещенных ароматических, гетероциклических и алициклических соединений, ненасыщенных алифатических карбоновых кислот и их производных, ненасыщенных алифатических нитрилов, сложных виниловых эфиров ароматических и насыщенных алифатических карбоновых кислот, дивинилового соединения и их смесей; в качестве со-агенты полимеризации используются полимеры и/или мономеры ароматического ряда на основе стирола или бутилакрилата или алифатического ряда на основе октена-1 или гексена-1 или десена-1, в количестве не превышающем 50% от весового содержания прививаемого мономера карбоновой кислоты или ангидрида или их смесей; в качестве агентов передачи цепи используются диметилформамид и/или трифенилфосфат, в количестве не превышающем 10% от весового содержания прививаемого мономера карбоновой кислоты или ангидрида и их смесей.

Показатель текучести расплава (ПТР) образцов модификаторов, изготовленных на основе ПЭ, определяли согласно ГОСТ 11645 при температуре 190°С и нагрузке 2,16 кг.

Плотность литьевых образцов определяли согласно ГОСТ 15139.

Выбор основных материалов и реагентов показан в Таблице 1.

Таблица 1
Название Свойства
LLDPE 318B Плотность - 0,918 г/см3
ПТР(190С,2,16 кг) - 2,8 г/10 мин
Прочность на разрыв - 18,5 МРа
Относительное удлинение - 610%
LLDPE MG200024 Плотность - 0,924 г/см3
ПТР(190С,2,16 кг) - 20 г/10 мин
Прочность на разрыв - 12 МРа
Относительное удлинение >500%
LLDPE M500026 Плотность - 0,924 г/см3
ПТР(190С,2,16 кг) - 50 г/10 мин
Прочность на разрыв - 12,4 МРа
Относительное удлинение 120%
HDPE IM 59/64 Плотность - 0,96-0,964 г/см3
ПТР(190С,2,16 кг) - 13-21 г/10 мин
Прочность на разрыв - 30 МРа
Относительное удлинение >1000%
HDPE Shurtan I-1561 Плотность - 0,96- г/см3
ПТР(190С,2,16 кг) - 15,5+/-2,5 г/10 мин
Прочность на разрыв - 26 МРа
Относительное удлинение >500%
Малеиновый ангидрид (брикеты) Степень очистки 99,81 min
Зольность 0.0007%
Малеиновый ангидрид (хлопья) Степень очистки 99,5 min
Зольность 0.005%
Органический пероксид DTBP (дитретбутил пероксид) Описание: бесцветная подвижная жидкость, содержащая технически чистый дитретбутил пероксид.
Время полураспада - 10 ч/1 ч/1 мин
125/146/190С
DBM(Дибутиловый эфир малеиновой кислоты) Описание: бесцветная подвижная жидкость, содержащая дибутиловый эфир фумаровой и малеиновой кистот.
Чистота min 98,5%
Стирол (Фенилэтилен) Описание: прозрачная однородная жидкость Массовая доля стирола >99,8%
Ацетон (Диметилкетон) Описание: бесцветная прозрачная жидкость
Массовая доля ацетона >99,75%
Альфа-олефины Октен-1, Децен-1, Гексен-1 Описание: бесцветная прозрачная жидкость
Мольная доля альфа-олефинов >94%

Сущность изобретения заключается в том, что помимо функционального мономера, который прививается к полимеру используется 2 типа со-мономеров, из которых:

Один - из ряда алифатических ди-олефинов- альфа-олефины, предпочтительно: 1-octene, 1-decene или 1-hexene.

Другой - из ряда ароматических виниловых мономеров или акрилатов, предпочтительно: бутил акрилат или стирол (лучше пара-метил стирол).

Общее содержание со-мономеров колеблется в пределах от 0,1- 10% по весу, от количества полимера.

Выбор функционального мономера

Функциональные мономеры - предпочтительно, из ряда ненасыщенных карбоновых кислот, например: малеиновый ангидрид или функциональные эпокси-амино-гидрокси-акрилаты, например: глицидил метакрилат.

Малеиновый ангидрид, предпочтительно может быть растворен в растворителях (ацетон или метилэтилкетон).

Разработка технологии производства графт-сополимеров производилась с использованием оборудования НТЛ ЗАО «Метаклэй», а именно:

Использовалась экструзионная линия MKS 30 BUSS со стренговой грануляцией, вакуумированием, сухой (порошки, гранулы) и жидкой дозаписи.

Рецептуры разрабатывались и тестировались на партиях 3-5 кг.

Пример №1 Рецептура графт-сополимера для использования в адгезивах для изоляции труб показано в Таблице 2 (с использованием жидкого ввода)

Таблица 2
HDPE Shurtan 1-1561 гранулы 37,90%
LLDPE Sabic 200024M гранулы 55,45%
Малеиновый ангидрид порошок 3,00%
Стирол жидкость 0,50%
Ацетон жидкость 3,00%
Перекись DTDP жидкость 0,10%
Солвент DBM жидкость 0,05%

Предварительно, полиэтилены HDPE и LLDPE смешивались и вводились дозатором через основной загрузочный порт.

Добавляли в качестве агентов передачи цепи диметилформамид и трифенилфосфат, в количестве 9,5% от весового содержания прививаемого мономера карбоновой кислоты (можно также - от весового содержания ангидрида либо их смесей).

Мономер (МЛН) растворяли в ацетоне и вводили DBM, DTBP, стирол. Жидкий «коктейль» вводили и отдельно (в расплав в Z2) и через основной порт (вместе с полимерами).

Пример №2 Рецептура графт-сополимера для использования в адгезивах для изоляции труб показана в Таблице 3.

Кроме того, добавляли в качестве агента передачи цепи диметилформамид, в количестве 10% от весового содержания прививаемого мономера карбоновой кислоты.

Для примера 3 добавляли в качестве агента передачи цепи трифенилфосфат, в количестве 8,5% от весового содержания прививаемого мономера карбоновой кислоты (с использованием перокси-полимерной мастэрбэчи, «сухая» технология)

Таблица 3
HDPE Shurtan I-1561 гранулы 37,90%
LLDPE Sabic 200024M гранулы 55,45%
Малеиновый ангидрид порошок 3,00%
Перокси-полимерная мастэрбэч - 2%
Мастербэч (* LLDPE Sabic 200024M гранулы (96%)+Перекись DTDP (3%)+Солвент DBM) (1%)

Перокси-полимерная мастэрбэч готовится заранее. (*по указанной рецептуре) при температуре экструзии 120-135С.

Смесь полиэтиленов HDPE и LLDPE и Перокси-полимерная мастэрбэч вводились дозатором через основной загрузочный порт.

Мономер (МАН) предварительно измельченный в порошок вводили через порошковый дозатор в основной загрузочный порт (вместе с полимерами)

Сравнение 2х технологических процессов производства привитых (графт) сополимеров показано в Таблице 4.

Таблица 4
Технологический процесс Рецептура 1 Рецептура 2
Мокрый способ Сухой способ
Показатель текучести расплава (ПТР) при 190°С и нагрузке 2,16 кг 0,6 1,0
% Привитого МАН 1,2 1,8-1,9
Хим.титрование подтверждает подтверждает
ИК Спектроскопия подтверждает подтверждает
Цвет желтоватый натуральный(белый)
Запах остаточный запах стирола запах отсутствует

Образцы графт-сополимеров были протестированы в Лаборатории модификации полимеров НИИСПМ им. Ениколопова, в ЦЗЛ ЗАО « Метаклэй», в компании BYK/Kometra GmbH (Германия).

Спектральный анализ FTIR произведен в НТЛ ЗАО «Метаклэй»

Физико-химические методы анализа.

Фурье-ИК-спектроскопия. Для идентификации химического состава образцов использовали метод Фурье-ИКС.

ИК-спектры образцов снимали в НИИСП им. Ениколопова и НТЛ ЗАО «Метаклэй» с помощью: Фурье-ИКС Avatar 370 ф. Thermo Nicolet (США), оснащенном самоюстирующейся приставкой НПВО Smart Performer с кристаллом ZnSe (глубина проникновения 2,01 мкм).

Идентификацию спектров проводили с использованием базы данных прибора.

FT-IR спектрометр от немецкой компании Bruker Optics TENSOR 27 - компактный Фурье-ИК спектрометр. Мощный спектрометр среднего ИК диапазона с герметичной и осушаемой оптикой для рутинных применений в лаборатории.

Параметры оборудования:

Спектральный диапазон 7500-370 см-1

Стандартное разрешение 1 см-1

Точность волнового числа <0.01 см-1

Охлаждаемый воздухом MIR источник

Постоянно-юстируемый интерферометр

KBR многослойный лучеделитель

Бесфрикционный механический сканер (не требуется подачи сжатого газа)

Высокочувствительный DTGS детектор

Оптическая скамья контролируется микро-процессором, автоматический выбор предусиления, 32 бит A/D конвертор.

Программное обеспечение OPUS 6.5

Химическое титрование. Проводилось по методике НИИСПМ им. Ениколопова (Россия) и методике BYK/Kometra GmbH (Германия).

Дифференциальная сканирующая калориметрия (ДСК). Термограммы ДСК образцов снимали с помощью прибора Pyris 6 DSC ф. PerkinElmer при скорости нагрева/охлаждения 20°С/мин в среде азота согласно ISO 11357. Определение индукционного периода окисления образцов определяли согласно ISO 11357-6 при 200°С (для образцов на основе ПЭ).

1. Способ получения функционализированных полиолефинов в расплаве посредством прививки ненасыщенной карбоновой кислоты или ее ангидрида на полиолефин в присутствии свободнорадикального инициатора, соагентов мономеров ароматического и алифатического ряда, а также агентов передачи цепи на основе аминных и/или фосфатных соединений, при экструдировании смеси реагентов при температуре выше температуры плавления полиолефина в экструдере и кондиционировании полученной полимерной смеси вакуумной дегазацией.

2. Способ по п.1, отличающийся тем, что способ является непрерывным.

3. Способ по п.1 и 2, отличающийся тем, что в качестве свободнорадикального инициатора используют перекиси с температурой полураспада не менее 190°C за одну минуту.

4. Способ по п.1, отличающийся тем, что олефиновый полимер выбирается из группы, состоящей из гомополимеров, статистических сополимеров и терполимеров линейного или разветвленного С2-8-альфа-олефина или сополимеров линейного или разветвленного С2-8-альфа-олефина.

5. Способ по п.1, отличающийся тем, что полимеризующимся с помощью свободных радикалов мономером является винильный мономер, выбранный из группы, состоящей из винилзамещенных ароматических, гетероциклических и алициклических соединений, ненасыщенных алифатических карбоновых кислот и их производных, ненасыщенных алифатических нитрилов, сложных виниловых эфиров ароматических и насыщенных алифатических карбоновых кислот, дивинилового соединения и их смесей.

6. Способ по п.1, отличающийся тем, что в качестве соагентов полимеризации используются полимеры и/или мономеры ароматического ряда на основе стирола или бутилакрилата или алифатического ряда на основе октена-1 или гексена-1 или десена-1, в количестве, не превышающем 50% от весового содержания прививаемого мономера карбоновой кислоты или ангидрида или их смесей.

7. Способ по п.1, отличающийся тем, что в качестве агентов передачи цепи используются диметилформамид и/или трифенилфосфат, в количестве, не превышающем 10% от весового содержания прививаемого мономера карбоновой кислоты или ангидрида и их смесей.



 

Похожие патенты:

(57) Изобретение относится к энергетически активируемой полимерной композиции, включающей: твердые частицы, содержащие первый полимер; жидкий носитель, в котором твердые частицы эмульгированы, диспергированы и/или суспендированы; и технологическую добавку.

Изобретение относится к способу прививки гидролизуемых и сшиваемых групп на полиолефины. Предложен способ прививки гидролизуемых силановых групп на полиолефин, в котором этиленовые звенья в случае присутствия таковых составляют менее 50% при расчете на массу совокупного полиолефина, включающий проведение реакции между полиолефином и ненасыщенным силаном формулы или , где Z - электроноакцептирующий фрагмент, замещенный группой -SiRaR'(3-a), где R представляет собой гидролизуемую группу; R' представляет собой гидрокарбильную группу, содержащую 1-6 атомов углерода; а равно от 1 до 3 включительно; a R'' представляет собой водород или группу, демонстрирующую электроноакцептирующий эффект или любой другой активационный эффект по отношению к связи -CH=CH- или -C=C-, или его гидролизатом в присутствии средств, способных генерировать свободно-радикальные активные центры в полиолефине, и реакцию прививки проводят в присутствии соагента, который ингибирует разложение полимера в результате бета-деструкции в присутствии средства, способного генерировать свободно-радикальные активные центры в полиолефине.

Изобретение относится к способам прививки гидролизуемых и сшиваемых групп на полиэтилен. .

Изобретение относится к способам прививки гидролизуемых и сшиваемых групп к полимерам, к образующимся привитым полимерам и способам поперечного сшивания привитых полимеров.
Изобретение относится к полиолефиновым композитам, содержащим целлюлозные волокна. .

Изобретение относится к области химии полимеров, биотехнологии, медицины и касается осуществления экологически чистого и экономически эффективного производства модифицированных полимеров в промышленных масштабах.
Изобретение относится к области получения высокомолекулярных соединений, в частности, к модификации поверхности изделий и материалов на основе изотактического полипропилена.

Изобретение относится к способу прививки гидролизуемых и сшиваемых групп на полиолефины. Предложен способ прививки гидролизуемых силановых групп на полиолефин, в котором этиленовые звенья в случае присутствия таковых составляют менее 50% при расчете на массу совокупного полиолефина, включающий проведение реакции между полиолефином и ненасыщенным силаном формулы или , где Z - электроноакцептирующий фрагмент, замещенный группой -SiRaR'(3-a), где R представляет собой гидролизуемую группу; R' представляет собой гидрокарбильную группу, содержащую 1-6 атомов углерода; а равно от 1 до 3 включительно; a R'' представляет собой водород или группу, демонстрирующую электроноакцептирующий эффект или любой другой активационный эффект по отношению к связи -CH=CH- или -C=C-, или его гидролизатом в присутствии средств, способных генерировать свободно-радикальные активные центры в полиолефине, и реакцию прививки проводят в присутствии соагента, который ингибирует разложение полимера в результате бета-деструкции в присутствии средства, способного генерировать свободно-радикальные активные центры в полиолефине.

Изобретение относится к полимерной дисперсии для улучшения индекса вязкости моторных масел и способу ее получения. .

Изобретение относится к многофункциональному полимеру, содержащему привитой полимер, образованный из а. .

Изобретение относится к полимерным добавкам для смазочных масел, улучшающим индекс вязкости и являющимися диспергаторами. .

Изобретение относится к способу получения полиолефинов, обладающих улучшенными реологическими свойствами и свойствами совместимости, а также к полиолефинам, полученным указанным способом, и к их применению.

Изобретение относится к газофазному способу и устройству получения полиолефиновых привитых сополимеров. .

Настоящее изобретение относится к гребневидным полимерам и их применению в качестве противоусталостных присадок к смазочным маслам. Описано применение гребневидных полимеров, содержащих в основной цепи повторяющиеся звенья, которые являются производными основанных на алкенах с 2-10 атомами углерода и/или алкадиенах с 4-10 атомами углерода макромономеров с молекулярной массой по меньшей мере 500 г/моль, и повторяющиеся звенья, которые являются производными низкомолекулярных мономеров с молекулярной массой менее 500 г/моль, выбранными из группы, включающей алкил(мет)акрилаты с 1-30 атомами углерода в спиртовом остатке, аликилстирольные мономеры с 8-17 атомами углерода, сложные виниловые эфиры с 1-11 атомами углерода в ацильной группе, простые виниловые эфиры с 1-30 атомами углерода в спиртовом остатке, (ди)алкилфумараты с 1-30 атомами углерода в спиртовом остатке и (ди)алкилмалеаты с 1-30 атомами углерода в спиртовом остатке, в качестве противоусталостных присадок в смазочных материалах, представляющих собой трансмиссионное масло, моторное масло или гидравлическое масло. Также описан гребневидный полимер, содержащий в основной цепи повторяющиеся звенья, которые являются производными основанных на алкенах с 2-10 атомами углерода и/или алкадиенах с 4-10 атомами углерода макромономеров с молекулярной массой по меньшей мере 500 г/моль, и повторяющиеся звенья, которые являются производными низкомолекулярных мономеров с молекулярной массой менее 500 г/моль, которые являются производными алкил(мет)акрилатов с 8-30 атомами углерода в спиртовом остатке, и обладает полярностью по тетрагидрофурану, составляющей по меньшей мере 50%, и характеристической вязкостью от 15 до 50 мл/г. Описан гребневидный полимер, содержащий в основной цепи повторяющиеся звенья макромономеров, являющиеся производными основанных на алкенах с 2-10 атомами углерода и/или алкадиенах с 4-10 атомами углерода, с молекулярной массой по меньшей мере 500 г/моль, и по меньшей мере 10% масс. повторяющихся звеньев, являющихся производными низкомолекулярных мономеров с молекулярной массой менее 500 г/моль, содержащих в качестве низкомолекулярных мономеров производные алкилстирольных мономеров с 8-17 атомами углерода, и по меньшей мере 5% масс. повторяющихся звеньев, являющихся производными алкил(мет)акрилатов с 1-6 атомами углерода, и обладающий полярностью по тетрагидрофурану, составляющей по меньшей мере 30%. Также описан способ получения указанных выше гребневидных полимеров, согласно которому макромономеры сополимеризуют с низкомолекулярными мономерами. Описана композиция смазочного масла, содержащая указанные выше гребневидные полимеры. Технический результат - получение соединений, пригодных в качестве противоусталостных присадок к смазочным материалам, которые не сопровождаются повышением вязкости смазочного материала. 5 н. и 23 з.п. ф-лы, 3 табл., 5 пр.
Наверх