Подогреватель нефти

Изобретение относится к подогревателям нефти и может быть использовано для нагрева нефти при их транспортировке и промысловой подготовке. Подогреватель нефти включает корпус, подогреватель теплоносителя, трубопроводы циркуляции теплоносителя, трубчатые змеевики протекания нефти в виде ряда горизонтально вытянутых параллельных участков труб с изогнутыми участками труб в местах поворота. В первой секции трубчатые змеевики выполнены кожухо-трубными однопоточными с расположением нагреваемой нефти между наружной и внутренней трубами и расположением теплоносителя в корпусе за наружной трубой и внутри внутренней трубы. Входы и выходы нефти и теплоносителя организуют противоположно с осуществлением противотока нефти и теплоносителя. Соотношение диаметров наружной и внутренней труб составляет (108-245):(65-150). Во второй секции трубчатые змеевики выполнены многопоточными труба в трубе, труба с нефтью разделена на несколько труб, размещенных в корпусе, внутри которого размещен теплоноситель, соотношение диаметров наружной и внутренней труб составляет (108-425):(32-89). В третьей секции трубы с нефтью разделены на несколько труб каждая и размещены в корпусе, внутри которого размещен теплоноситель, соотношение диаметров наружной и внутренней труб составляет (108-245):(22-89). 1 з.п.ф-лы, 2 ил.

 

Изобретение относится к подогревателям нефти и может быть использовано для нагрева нефти при их транспортировке и промысловой подготовке.

Известен трубчатый подогреватель, который содержит корпус с размещенной в нем жаровой трубой, теплообменный элемент в виде ряда труб, прямые участки которых расположены параллельно продольной оси корпуса, промежуточный теплоноситель, газоповоротную камеру и расположенные со стороны, противоположной газоповоротной камере, горелочное устройство, газоотвод в виде дымовой трубы, конвективную камеру и рубашку вокруг жаровой трубы, в которую помещен промежуточный теплоноситель. Теплообменный элемент выполнен в виде продуктового змеевика, состоящего из двух последовательно соединенных секций, трубы которого ориентированы вокруг центральной продольной оси корпуса, причем одна секция продуктового змеевика помещена в рубашку жаровой трубы, а вторая - в конвективную камеру, образованную пространством между рубашкой и внутренней стенкой корпуса (Патент РФ №2256846, опубл. 20.07.2005).

Наиболее близким к предложенному изобретению по технической сущности является подогреватель нефти, который имеет горизонтально вытянутый цилиндрический корпус, заполненный промежуточным теплоносителем, горелочное устройство, дымовую трубу и расширительный бак. В корпусе размещены топочная камера U-образной формы, в которую введены поперечные переточные трубы, и расположенный над ней, по меньшей мере, один продуктовый трубчатый змеевик в виде ряда секций, смещенных относительно друг друга. Трубы продуктового змеевика плотно уложены в каждой из секций по типу двухзаходной спирали в виде ряда горизонтально вытянутых параллельных участков труб в направлении протяженности подогревателя с изогнутыми участками труб в местах поворота и перехода с уровня на уровень. При этом расстояние между соседними трубами в месте наибольшего изгиба на поворотном участке в 2.9÷3.1 раза больше, чем расстояние между соседними трубами продуктового змеевика на прямолинейном горизонтально вытянутом участке. В центре продуктового змеевика сформирован участок трубы из двух симметричных частей, зеркально отображенных относительно друг друга, образуя S-образное изогнутое цилиндрическое тело (Патент РФ №2380611, опубл. 27.01.2010 - прототип).

Недостатком известных технических решений является невысокая эффективность нагрева высоковязкой нефти.

В предложенном изобретении решается задача повышения эффективности нагрева высоковязкой нефти.

Задача решается тем, что в подогревателе нефти, включающем корпус, подогреватель теплоносителя, трубопроводы циркуляции теплоносителя, трубчатые змеевики протекания нефти в виде ряда горизонтально вытянутых параллельных участков труб с изогнутыми участками труб в местах поворота, отличающийся тем, что в первой секции трубчатые змеевики выполнены кожухо-трубными однопоточными с расположением нагреваемой нефти между наружной и внутренней трубой и расположением теплоносителя в корпусе за наружной трубой и внутри внутренней трубы, входы и выходы нефти и теплоносителя расположены противоположно с осуществлением противотока нефти и теплоносителя, соотношение диаметров наружной и внутренней труб составляет (108-245):(65-150), во второй секции трубчатые змеевики выполнены многопоточными труба в трубе, труба с нефтью разделена на несколько труб, размещенных в корпусе, внутри которого размещен теплоноситель, соотношение диаметров наружной и внутренней труб составляет (108-425):(32-89).

В третьей секции трубы с нефтью разделены на несколько труб каждая и размещены в корпусе, внутри которого размещен теплоноситель, соотношение диаметров наружной и внутренней труб составляет (108-245):(22-89).

Сущность изобретения

Для подогрева высоковязкой нефти используют различные подогреватели, однако их эффективность невелика, т.к. они расходуют повышенное количество топлива для подогрева теплоносителя и соответственно нефти. В предложенном изобретении решается задача повышения эффективности нагрева высоковязкой нефти. Задача решается подогревателем нефти, представленным на фиг.1-2

Подогреватель нефти (фиг.1) состоит из модуля теплогенератора 1, модуля теплообмена 2 и теплообменника 3. В модуле теплогенератора 1 размещены блок подготовки теплоносителя 4, горелочное устройство 5, блок насосов 6 и дымовая труба 7. В модуле теплообмена 2 размещены первая секция теплообменника 8, вторая секция теплообменника 9, третья секция теплообменника 10.

Первая секция теплообменника представлена на фиг.2.

На фиг.2 изображены трубчатые змеевики протекания нефти 11 в виде ряда горизонтально вытянутых параллельных участков труб с изогнутыми участками труб в местах поворота, наружной 12 и внутренней 13 трубой кожухо-трубных однопоточных трубчатых змеевиков протекания теплоносителя с расположением трубчатых змеевиков протекания нефти 11 между трубами 12 и 13 и расположением теплоносителя за наружной трубой 12 и внутри внутренней трубы 13.

Подача (вход) нефти и выход теплоносителя с одной стороны и вход теплоносителя и выход нефти расположены рядом и организуют противотока нефти и теплоносителя в смежных трубах. Соотношение диаметров наружной 12 и внутренней 13 трубы составляет (108-245):(65-150).

Один горизонтальный трубопровод называют ходом нефти или теплоносителя. В первой ступени может находиться от двух до шести ходов.

Во второй секции 9 трубчатые змеевики выполнены многопоточными труба в трубе. Труба с нефтью из первой секции разделена на несколько внутренних труб, окруженных одной наружной трубой (корпусом) с теплоносителем. Соотношение диаметров наружной и внутренней трубы составляет (108-425):(32-89).

В третьей секции повторена конструкция второй ступени. Соотношение диаметров наружной и внутренней трубы составляет (108-245):(22-89).

Подогреватель нефти работает следующим образом.

Топливный газ предварительно подогретый в теплообменнике 3 сгорает в горелочном устройстве 5. Продукты горения проходят через блок подготовки теплоносителя 4 с размещенными в нем трубами с циркулирующим теплоносителем, и выбрасывается в дымовую трубу 7. Теплоноситель нагревается и направляется насосами 6 в секции 8, 9 и 10 теплообменника.

Теплоноситель циркулирует по трубопроводам циркуляции теплоносителя и нагревает трубчатые змеевики протекания нефти. Нефть нагревается и поступает от секции к секции, постепенно повышая свою температуру.

Кожухо-трубное однопоточной расположение змеевиков позволяет наиболее эффективно нагревать нефть в первой секции, когда ее вязкость чрезвычайно велика и нефть с большим трудом протекает по трубам. Соотношение диаметров наружной 7 и внутренней 8 труб в первой секции, равное (108-245):(65-150) позволяет прокачать по трубам вязкую нефть с минимальными гидравлическими потерями и максимально быстро нагреть нефть до состояния увеличенной текучести (сниженной вязкости). Противоток нефти и теплоносителя позволяет нагреть нефть равномерно по всей секции и максимально повысить температуру перед второй секцией. Максимальному прогреву нефти в первой секции способствует наличие теплоносителя во внутренней трубе. Нагрев нефти в первой ступени осуществляется с 10 до 30°С, вследствие чего вязкость нефти снижается на 40-50%.

Во второй секции появляется возможность выполнить трубопроводы нефти меньшего диаметра при соотношении диаметров наружной и внутренней трубы (108-425):(32-89). Нагретая нефть с пониженной вязкостью способна быть прокаченной по таким трубам. Кроме того, в таких трубах с такими соотношениями диаметров нагретая нефть в большей степени нагревается до еще большей температуры порядка 50-60°С.

Весьма важным для скорейшего прогрева нефти является соотношение диаметров внутренний труб первой и второй ступени (65-150) и (32-89).

При необходимости нефть нагревают в третьей секции до 80-90°С. Соотношение диаметров наружной и внутренней трубы, составляющее (108-245):(22-89), обеспечивает нагрев до указанных температур.

В качестве теплоносителя может быть использована вода, антифриз, масло и т.п.

Ниже приведены характеристики заявленного подогревателя нефти.

Характеризующие факторы:

1. Диапазон мощностей теплообменников:

1-я ступень: 500-1000 кВт;

2-я ступень: 500-2000 кВт;

3-я ступень: 1000-3000 кВт.

2. Диапазон диаметров теплообменных труб теплообменника 1-й ступени:

76-159 мм (указан наружный диаметр труб или 65-150 мм внутренний диаметр труб)

3. Диапазон диаметров кожуховых труб теплообменника 1-й ступени:

108-245 мм (указан наружный диаметр труб или 100-230 мм внутренний диаметр труб)

4. Диапазон диаметров дополнительной теплообменной трубы, расположенной внутри трубы нагреваемого продукта теплообменника 1-й ступени:

22-45 мм (указан наружный диаметр труб или 15-40 мм внутренний диаметр труб)

5. Диапазон количества потоков нагреваемой среды в теплообменнике 2-й ступени:3-7 шт.

6. Диапазон количества потоков нагреваемой среды в теплообменнике 3-й ступени: 5-12 шт.

7. Диапазон диаметров теплообменных труб теплообменника 2-й ступени:

32-89 мм (указан наружный диаметр труб или 15-80 мм внутренний диаметр труб)

8. Диапазон диаметров теплообменных труб теплообменника 3-й ступени:

22-89 мм (указан наружный диаметр труб или 25-80 мм внутренний диаметр труб)

9. Диапазон диаметров кожуховых труб теплообменника 2-й ступени:

108-425 мм (указан наружный диаметр труб или 100-230 мм внутренний диаметр труб)

10. Диапазон диаметров кожуховых труб теплообменника 3-й ступени:

108-245 мм (указан наружный диаметр труб или 100-400 мм внутренний диаметр труб)

11. Диапазон диаметров входного и выходного патрубков нагреваемой среды теплообменников:

57-219 мм (указан наружный диаметр труб или 50-200 мм внутренний диаметр труб)

12. Диапазон диаметров входного и выходного патрубков теплоносителя теплообменников:

57-219 мм (указан наружный диаметр труб или 50-200 мм внутренний диаметр труб)

13. Диапазон суммарной площади проходных сечений теплообменных труб, по которым проходит нагреваемый продукт:

35-230 см2.

14. Диапазон площади проходных сечений труб, по которым проходит теплоноситель:

30-600 см2.

15. Диапазон номинальной наружной поверхности теплообмена теплообменника 1-й ступени: 3,5-20 м2.

16. Диапазон номинальной наружной поверхности теплообмена теплообменника 2-й ступени: 5-55 м2.

17. Диапазон номинальной наружной поверхности теплообмена теплообменника 3-й ступени: 3,5-45 м2.

18. Диапазон расхода нагреваемого продукта: 20-230 т/час.

19. Диапазон расхода теплоносителя: 20-110 т/час.

20. Диапазон скорости циркуляция теплоносителя 1-3 м/сек.

21. Диапазон удельной теплоемкости теплоносителя: 3,35-4,25 кДж/(кг·К).

22. Диапазон теплопроводности теплоносителя: 0,38-0,69 Вт/(м·К).

23. Диапазон динамической вязкости теплоносителя: 0,00023-0,002 Па·с.

24. Диапазон удельной теплоемкости нагреваемой среды (нефти, нефтяной эмульсии): 1,7-2,3 кДж/(кг·К).

25. Диапазон теплопроводности нагреваемой среды (нефти, нефтяной эмульсии): 0,12-0,19 Вт/(м·К).

26. Диапазон кинематической вязкости нагреваемой среды (нефти, нефтяной эмульсии): 100-10 мм2/с (сСт).

27. Диапазон плотности нагреваемой среды (нефти, нефтяной эмульсии): 850-970 кг/м3.

28. Вид теплообменных труб:

- гладкие;

- ребристые с продольными ребрами;

- ошипованные;

- ребристые со спиральной навивкой;

- с турбулизаторами потока в виде кольцевых канавок, накатанными на гладкой трубе (на внутренней поверхности трубы получатся плавно очерченные выступы).

Применение предложенного подогревателя нефти позволит решить задачу повышения эффективности нагрева высоковязкой нефти.

1. Подогреватель нефти, включающий корпус, подогреватель теплоносителя, трубопроводы циркуляции теплоносителя, трубчатые змеевики протекания нефти в виде ряда горизонтально вытянутых параллельных участков труб с изогнутыми участками труб в местах поворота, отличающийся тем, что в первой секции трубчатые змеевики выполнены кожухо-трубными однопоточными с расположением нагреваемой нефти между наружной и внутренней трубой и расположением теплоносителя в корпусе за наружной трубой и внутри внутренней трубы, входы и выходы нефти и теплоносителя организуют противоположно с осуществлением противотока нефти и теплоносителя, соотношение диаметров наружной и внутренней трубы составляет (108-245):(65-150), во второй секции трубчатые змеевики выполнены многопоточными труба в трубе, труба с нефтью разделена на несколько труб, размещенных в корпусе, внутри которого размещен теплоноситель, соотношение диаметров наружной и внутренней трубы составляет (108-425):(32-89).

2. Подогреватель нефти по п.1, отличающийся тем, что в третьей секции трубы с нефтью разделены на несколько труб каждая и размещены в корпусе, внутри которого размещен теплоноситель, соотношение диаметров наружной и внутренней трубы составляет (108-245):(22-89).



 

Похожие патенты:

Теплогенератор-утилизатор предназначен для использования в деревообрабатывающей отрасли при сушке пиломатериалов, а также в теплоэнергетике для отопления жилых и производственных помещений.

Изобретение относится к области электротехники. Техническим результатом является повышение надежной защиты от перегрева, точности и единообразности срабатывания.

Изобретение относится к теплоэнергетике, а именно к устройствам газификации твердого топлива, используемым для обеспечения потребителя теплом и горячим водоснабжением.

Изобретение относится к теплоэнергетике и может быть использовано для отопления и горячего водоснабжения. Конденсационный водогрейный котел содержит радиационную, адиабатную и контактно-рекуперативную части.

Изобретение относится к энергетике и может быть использовано при изготовлении котлов малой мощности. Универсальный котел содержит топочное устройство, ограниченное стенами из огнеупорных материалов, радиационные и конвективные поверхности нагрева, состоящие из пакета коллекторов, соединенных трубами, с общими коллекторами входа и выхода, причем верхние коллекторы панелей конвективных поверхностей нагрева установлены под углом к горизонту, а плоскости панелей установлены под углом к вертикали в обе стороны с образованием полости расширения нижней части пакета панелей, при этом боковые панели пакета поверхностей нагрева являются опорами для установки теплоизоляции.

Изобретение относится к теплоэлектроэнергетике и может быть использовано для обеспечивания тепловой и электрической энергией индивидуальных домов и квартир. Техническим результатом изобретения является повышение надежности и эффективности теплоэлектрического генератора.

Изобретение относится к водонагревательным устройствам и может использоваться для обогрева малоэтажных зданий, индивидуальных домов, а также различных бытовых и промышленных объектов.

Изобретение относится к водонагревательным устройствам и может использоваться для обогрева малоэтажных зданий, индивидуальных домов, а также различных бытовых и промышленных объектов.

Изобретение относится к области отопления и может быть использовано в водо- и воздухонагревателях. .

Изобретение относится к области производства водогрейных котлов наружного и внутреннего размещения, в частности к конденсационным водогрейным котлам, использующим скрытую теплоту парообразования паров воды в дымовых газах за счет дополнительного улавливания энергии при конденсации водяных паров.

Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе теплопередачи в трубчатых аппаратах (теплогенераторах, теплообменниках, отопительных приборах). Техническим результатом изобретения является повышение надежности и эффективности термоэлектрического звена для трубы. Это достигается тем, что термоэлектрическое звено содержит трубу теплоносителя, покрытую слоем диэлектрического материала с высокой теплопроводностью, выполненным из отдельных кольцевых зубчатых ребер с зубцами, плотно прижатых друг к другу, внутри каждого из которых помещены кольцевые зигзагообразные ряды термоэлектрических секций, состоящие из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей, каждый из которых состоит из пары отрезков, выполненных из разных металлов M1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены в зонах нагрева и охлаждения, вблизи кромки зубца ребра и наружной поверхности трубы теплоносителя, соответственно, причем свободные концы зигзагообразных кольцевых рядов каждой термоэлектрической секции соединены между собой перемычками, а свободные концы кольцевых рядов крайних термоэлектрических секций, в свою очередь, соединены электропроводами с коллекторами и токовыводами. 5 ил.

Изобретение относится к теплоэнергетике и может быть использовано в котельных агрегатах. Водогрейный котел содержит корпус с днищем и крышкой, в центральной части которой выполнено отверстие для установки горелки. В корпусе размещены водяной объем, топочная камера, поворотная камера дымовых газов и дымогарные трубы. Дымогарные трубы сообщены входными участками с поворотной камерой дымовых газов, а выходными - с коллектором дымовых газов, связанным с дымовой трубой. Водяной коллектор котла образован уплощенным стаканом, прикрепленным свободной кромкой боковой поверхности к дну поворотной камеры дымовых газов и обращенным дном к днищу котла. Нагревательные элементы выполнены в виде труб, каждая из которых помещена в дымогарную трубу с кольцевым зазором. Впускные концы нагревательных элементов подключены к подводящему трубопроводу через водяной коллектор, выпускные концы - к водяному объему. Коллектор дымовых газов образован крышкой котла и обращенными к крышке поверхностями водяного объема. Поворотная камера дымовых газов снабжена боковой стенкой, установленной с зазором относительно стенки корпуса котла. Водяной объем, заключенный между дном стакана и днищем котла, связан с отводящим трубопроводом. Технический результат: повышение надежности котла и увеличение теплосъема. 2 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике и может использоваться в проточных водогрейных котлах, где сжигание водорода происходит внутри котла. Согласно изобретению способ преобразования энергии горения водорода в тепловую энергию воды водяного котла заключается в том, что давление водорода и кислорода на входе устройства устанавливается одновременным регулированием согласно требуемым пропорциям и давлению, после чего газы поступают в две герметичные изменяющегося объема несвязанные между собой камеры, где смешиваются, поочередно сжимаются, воспламеняются, а полученная в результате горения тепловая энергия в виде пара непрерывно поступает в воду котла. Устройство включает цилиндр, размещенный внутри котла, полости которых связаны посредством клапанов, а Т-образный поршень имеет возможность свободного осевого перемещения, причем после отверстий подачи газов расположены камеры смешивания газов, состоящие из ряда Т-образных перфорированных пластин, отверстия которых выполнены в шахматном порядке, а устройства искрового зажигания прикреплены к перфорированным пластинам, которые являются ограничивающими для устройств смешивания. 4 н.п. ф-лы, 4 ил.

Изобретение относится теплоэнергетике, а именно к конструкции водогрейных котлов, предназначенных для выработки теплоносителя в систему отопления и горячего водоснабжения. Отопительный аппарат имеет корпус, в котором размещена камера сгорания топлива, колосниковая решетка, емкость для приема теплоносителя и подачи его потребителю, устройство для подачи и распределения воздуха, выполненное в виде конуса и полого диска, имеющего сопловые отверстия со сменными соплами, ориентированными под различными углами в направлении топлива и - к стенке камеры сгорания. Устройство для подачи воздуха выполнено в виде телескопической трубы или в виде сильфона, имеющего тягу для регулирования его длины. Регулирование объема подачи воздуха осуществляется с помощью механической заслонки, а контроль температурного баланса в емкости теплоносителя ведется автоматически. Полное дожигание образующихся газов осуществляется образованием зазора между полым диском и стенкой камеры сгорания, при этом окончательная тонкая очистка газов ведется с помощью катализатора, выполненного в виде сменного картриджа, вмонтированного в газоотводную трубу отопительного аппарата. Такой аппарат является более надежным в эксплуатации и экологически безопасным, а также экономичным в преобразовании тепловой энергии. 3 з.п. ф-лы, 7 ил.

(57) Изобретение предназначено для нагрева воды и может быть использовано для отопления. Котел содержит радиационную часть, состоящую из установленных концентрично внутреннего и внешнего цилиндров и из внутренней крышки с патрубком с горелкой, внешней крышки с цилиндрической обечайкой с патрубком, трубной решетки с центральным отверстием и отверстиями, расположенными по периферии, к краям которых прикреплены ∩-образные дымогарные трубы. Под трубной решеткой расположена водяная рубашка с фланцем. К трубной решетке снизу между концами каждой дымогарной трубы прикреплены внешнее и внутреннее днища с фланцем. Диаметр нижнего основания внутреннего днища обеспечивает доступ к сварным швам крепления дымогарных труб и внутреннего цилиндра к трубной решетке. Во внешнем днище имеются отверстия, перепускными трубками сообщающиеся с отверстиями во фланце. Котел содержит контактно-рекуперативную часть, расположенную параллельно радиационной части. Радиационная и контактно-рекуперативная части сообщены между собой посредством закрытого сборника жидкости. К корпусу контактно-рекуперативной части прикреплена труба возврата конденсата, введенная другим концом в закрытый сборник жидкости. Изобретение обеспечивает повышение ремонтопригодности установки, упрощение и удешевление радиационной части. 1 ил.

Изобретение относится к теплоэнергетике, а именно - к области средств генерирования тепловой энергии, и может быть использовано в промышленности, сельском хозяйстве, жилищно-коммунальном хозяйстве, на транспорте и других областях техники. Пиролизный котел содержит вертикально ориентированный корпус с входом для подачи топлива и выходом для отработанных газов, в нижней части корпуса расположена камера горения, сообщенная с входом для подачи топлива, и расположенные над ней две камеры дожига, при этом камеры образованы горизонтально ориентированными перегородками, в которых выполнены щели. В средней части корпуса размещен блок подачи вторичного воздуха в нижнюю камеру дожига, а также теплообменный блок, при этом все стенки корпуса выполнены двойными с внешней изоляцией. Объем верхней камеры дожига составляет от 8 до 20% от объема нижней камеры дожига. Объем нижней части камеры дожига составляет от 8 до 20% объема камеры горения. Для подачи вторичного воздуха в нижнюю камеру дожига использованы инжекторы, подключенные к блоку подачи вторичного воздуха. Технический результат, получаемый при реализации котла, состоит в повышении эффективности генерирования тепловой энергии. 4 з.п. ф-лы, 1 ил.

Изобретение относится к энергетическому машиностроению и может использоваться для автономного обеспечения потребителей различными видами энергии. Изобретение позволяет достигнуть высоких экологических показателей при получении горячей воды и снизить энергопотребление при ее нагреве, расширить диапазон автономного и мобильного обеспечения потребителей различными видами энергии. Указанный технический результат достигается тем, что система содержит источники кислорода и водорода, парогенератор, пароводяной эжектор с активным и пассивным контурами, источник воды и потребитель горячей воды, где парогенератор снабжен трубопроводами подвода кислорода, водорода, балластировочной воды, отвода пароводяной смеси и включает объединенный узел устройства зажигания и форсунок, причем трубопроводы подвода кислорода и водорода к парогенератору оснащены каждый краном и жиклером и подключены на входе к источникам кислорода или водорода, притом к активному контуру эжектора на входе подключен трубопровод отвода пароводяной смеси от парогенератора, пассивный контур эжектора на входе соединен трубопроводом с источником воды, а выход эжектора подключен к потребителю горячей воды. Дополнительно система содержит регуляторы давления и гидротурбину, соединенную валом с потребителем мощности, выход эжектора подключен к потребителю горячей воды через гидротурбину, краны сделаны запорными, регуляторы давления установлены в трубопроводах подвода кислорода и водорода между кранами и жиклерами. 7 з.п. ф-лы, 2 ил.

Изобретение относится к оборудованию для нагрева воды путем сжигания твердых видов топлива и может быть использовано в теплоэнергетике. Водогрейный твердотопливный котел содержит корпус, загрузочный бункер для топлива, соединенный с барабаном и имеющий на радиальной поверхности каналы для размещения порций топлива, ориентированные вдоль оси барабана, топочную камеру, колосниковую решетку для вывода золы из топочной камеры, механизм подачи воздуха топочную камеру. Расположение каналов по окружности на радиальной поверхности барабана выполнено в два ряда, один напротив другого, между ними имеется плоский участок цилиндрической поверхности, каждый ряд начинается с краю барабана, при этом каждый канал одного ряда направлен под острым углом к заданному направлению вращения барабана и ограничен по высоте поверхностью корпуса, огибающего барабан, при этом один конец колосниковой решетки направлен ближе к плоскому участку цилиндрической поверхности барабана навстречу заданному направлению вращения барабана, а другой конец крепится к корпусу. Техническим результатом является снятие теплонапряженности барабана за счет перемещения сжигания топлива в топочную камеру и снижение количества горючих материалов, спадающих вместе с золой. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области отопления, а именно к конструкции отопительных устройств для обогрева бытовых, технических и промышленных помещений. Котел содержит цилиндрический корпус котла, кожух котла, установленный с зазором на корпус котла, цилиндрический теплообменник, установленный в верхней части корпуса котла с зазором, камеру сгорания, установленную в нижней части корпуса котла и в которой выполнено отверстие для подачи топлива, дверной проем, средство подачи воздуха. В камеру сгорания топлива установлена наклонная испарительная площадка таким образом, что верхний край наклонной испарительной площадки установлен со стороны дверного проема. Отверстие для подачи топлива выполнено со стороны дверцы котла, в которое установлена трубка подачи топлива. Трубка подачи топлива установлена непосредственно на верхний край наклонной испарительной площадки, а средство подачи воздуха выполнено в виде вентилятора, закрепленного на корпусе котла. Использование заявленного изобретения позволяет обеспечить увеличение КПД котла и повысить пожарную безопасность. 6 з.п. ф-лы, 6 ил.

Изобретение относится к области энергетики, в частности, к котлам наружного размещения, и может быть использовано в автономных системах отопления с принудительной и естественной циркуляцией теплоносителя. Технический результат сводится к возможности появления циркуляционного давления естественной циркуляции теплоносителя за счет использования всей высоты теплообменника. Котел наружного размещения состоит из корпуса, внутри которого установлен теплообменник с двумя прямыми и обратной линиями, при этом в прямой линии теплообменника установлен автоматический клапан с постоянно открытым соплом, а внутри теплогидроизолированного корпуса установлены деаэрационно-расширительный бак, содержащий регулируемый предохранительный клапан, шаровый кран, манометр и циркуляционный насос, соединенный с деаэрационно-расширительным баком, при этом циркуляционный насос соединен через трехходовой кран подающей линией с прямой линией теплообменника после автоматического клапана, одновременно трехходовой кран - с теплообменником, при этом первая прямая линия соединяет верхнюю часть теплообменника с деаэрационно-расширительным баком 10, а вторая прямая линия - с системой отопления, причем автоматический клапан с постоянно открытым соплом установлен во второй прямой линии до циркуляционного насоса. 1 ил.
Наверх