Способ определения меди

Настоящее изобретение относится к аналитической химии и может быть использовано для определения меди (II) в технических объектах. Способ определения меди заключается в прямом потенциометрическом титровании комплексоном (III) при рН от 4,1-9,0 с индикаторным электродом из металлического висмута в ацетатном буферном растворе. Изобретение позволяет определять медь (II) при ее содержании 32-660 мкг/мл раствора в электрохимической ячейке с ошибкой единичных определений не более 1%. Результатом является упрощение анализа при использовании нетоксичных материалов. 2 табл., 1 ил., 1 пр.

 

Изобретение относится к аналитической химии, а именно для определения широкого диапазона концентраций меди(II) в технических объектах, в частности сплавах и растворах для гальванического покрытия.

Известен способ (аналог) комплексонометрического определения меди(II) в растворе путем его титрования комплексоном(III) с использованием металлоиндикаторов, представленный рядом методик, использующих в качестве органического индикатора различные вещества и смеси, такие как пирокатехиновый фиолетовый, эриохромцианин, хромазурол S, ксиленоловый оранжевый, ПАН, смесь ЭДТАСи и ПАН и прочее. [Schwarzenbach G. Komplexon-Methoden. - Zofingen, 1948; Suk V., Malat M., Jenickova A. // Coll Czech. Chem. Comm., 1955 - Vol.20 - P.158; Manoliu С. // Reviste Chim., 1957 - Vol.16 - P.716; Pande C.S., Srivastava T.S. Complexometric titration of copper(II) using nitrosochromotropic asid as a new metal indicator // Z. Anal. Chem., 1961. - Vol.184. P.248-251; Theis M. Die komplexometrische bestimmung des kupfers in saurer und ammoniakalischer Lösung unter verwenaung von chromazurol S als indicator // Z. Anal. Chem., 1955. - Vol.144. - P.275; Cheng K.L. Bray R.H. 1-(2-Pyridylazo)-2-naphthol as possible analytical reagent // Anal. Chem., 1955. - Vol.27. - P.782-7851. Данные способы позволяют определять медь(II) в растворах при ее содержании до 200-300 мкг/мл.

К недостаткам представленных методик с визуальным контролем конечной точки титрования относятся сложность регистрации последней в мутных или окрашенных посторонними ионами растворах, побочные реакции самого металлоиндикатора, а также нередко размытость перехода окраски.

Из известных технических решений наиболее близким (прототипом) по назначению и технической сущности к заявляемому объекту является титриметрический способ определения меди с мурексидом в аммиачном буферном растворе с рН 8 [Flaschka H. // Mikrochem, 1952 - Vol.39 - P.38]. К недостаткам данного способа (прототипа) можно отнести:

- использование визуального способа, который вносит ошибку от субъективного восприятия аналитиком момента перехода окраски;

- необходимость точно дозировать буферный раствор и постоянно контролировать значение рН вследствие его низкой концентрации и недостаточной буферной емкости;

- реакция мурексида является конкурирующей с реакцией образования комплекса с титрантом, что снижает чувствительность метода и скорость протекания аналитической реакции;

Недостатки прототипа устраняет:

Предлагаемый способ прямого титрования в ацетатном буферном растворе, при рН от 4,1 до 9,0, в котором используется потенциометрическая фиксация точки эквивалентности с индикаторным электродом из металлического висмута. При этом не требуется точного контроля рН. Точка эквивалентности всегда находится на пике дифференциальной кривой титрования, равновесие устанавливается за 1-2 мин в каждой точке, заявляемый способ определяет содержании меди(II) в исходном растворе 32-660 мкг/мл с ошибкой до 1%.

Осуществление способа.

Анализы известных проб показывают корректную работу электрода: результаты, полученные методом «введено-найдено», имеют отклонение результатов от истинных значений не более 1% в диапазоне концентраций меди 32-660 мкг/мл раствора в электрохимической ячейке, и не более 3% при содержании 19-32 мкг/мл раствора.

Определению меди по заявляемому способу не мешает наличие в растворе таллия (I), щелочных и щелочноземельных металлов, содержание которых может превышать содержание меди в растворе на порядок и более. Ионы цинка (II), свинца (II), олова (II), кобальта (II), никеля (II), кадмия (II), галлия (III), хрома (III) и алюминия (III) титруются совместно с медью и должны быть удалены любым из известных способов.

Наличие в растворах железа (III) и серебра даже в небольших количествах делают анализ невозможным вследствие окисления поверхности индикаторного электрода. Галогениды в анализируемом растворе приводят к образованию нежелательных соединений с материалом электрода и должны быть удалены.

Пример

Собирают гальваническую цепь, состоящую из высокоомного потенциометра, хлоридсеребряного электрода сравнения, индикаторного электрода из металлического висмута в ячейке для титрования и соединительного электролитического мостика (ключа), заполненного насыщенным раствором нитрата калия. Нитрат калия в данном способе заменяет собой хлорид калия во избежание осаждения оксохлорида висмута (III) на поверхности индикаторного электрода. Индикаторный электрод должен иметь большую площадь поверхности для получения максимального отклика и быть тщательно зачищен от окислов фильтровальной бумагой. Зачистка абразивами или синтетическими материалами не рекомендуется.

Азотнокислый или сернокислый анализируемый раствор, содержащий 0,32-6,6 мг меди на каждые 10 мл, помещают в ячейку для титрования, нейтрализуют щелочью и вводят 0,1 мл 1 М ацетатного буферного раствора с рН 4,1-7,0 или 0,1 мл 1 М раствора ацетата натрия. Для получения максимальных скачков потенциала в точке эквивалентности рН раствора должно иметь значение 5,0-9,0.

Определение проводят следующим образом. Титруют пробу из микробюретки 0,001-0,05 моль/л раствором комплексона (III), ожидая установления потенциала в каждой точке не менее 1 минуты. Точка эквивалентности соответствует потенциалу середины скачка на интегральной кривой потенциала или пику на дифференциальной кривой (Фиг.1). Скачки потенциала составляют от 20 до 40 мВ, но прослеживаются очень четко, так как вблизи точки эквивалентности в процессе титрования потенциал практически не изменяется.

Анализируют не менее трех различных аликвот, рассчитывают содержание меди в образце и проводят статистическую обработку данных. В табл.1 приведены экспериментальные результаты зависимости величины скачка потенциала от рН раствора. Как видно из табл.1, наибольшие скачки потенциала в точке эквивалентности, следовательно, наибольшая чувствительность и точность заявляемого способа достигается при значениях рН от 4,7 до 9,0.

В таблице 2 представлены результаты контрольных определений меди (II) в растворе по предлагаемому способу. Результаты опытов, приведенные в табл.2 показывают, что заявляемый способ определяет содержании меди (II) в исходном растворе 32-660 мкг/мл с ошибкой до 1%, а в исходном растворе 19-32 мкг/мл с ошибкой до 3%.

Таблица 1
Контрольные определения меди (II) в ацетатной буферной смеси
рН р-ра Введено, мг Найдено, мг Величина скачка потенциала, мВ Ошибка, %
3,6 7,999 8,399 35 5,0
4,1 7,999 8,051 20 0,65
4,7 7,999 8,011 30 0,15
5,0 7,999 8,011 35 0,15
6,0 5,730 5,745 40 0,26
7,2 16,02 15,94 35 -0,50
9,0 16,02 15,94 40 -0,50

Влияние рН на правильность определений меди (II) (объем раствора 25 мл, температура 25°С, время 2,5-5 мин, число параллельных определений 3)

Таблица 2
Контрольные определения меди (II)
Введено, мг Найдено, мг Опр. конц., моль/л Опр. конц., мкг/мл Скачок потенциала, мВ Ошибка, %
16,46 16,42 1,036×10-2 658,4 65 -0,24
9,863 9,875 6,218×10-3 394,5 65 0,12
6,576 6,544 4,145×10-3 263,0 50 -0,49
1,926 1,923 1,214×10-3 77,04 45 -0,16
1,605 1,597 1,012×10-3 64,20 40 -0,50
0,8024 0,8085 5,058×10-4 32,10 30 0,76
0,4814 0,4947 3,035×10-4 19,26 20 2,76

Объем раствора 25 мл, температура 25°С, время 2,5-5 мин, pH=7,2, число параллельных определений 3

Способ определения меди, включающий прямое потенциометрическое титрование, отличающийся тем, что в процессе прямого титрования в ацетатном буферном растворе при рН от 4,1-9,0 используют индикаторный электрод из металлического висмута.



 

Похожие патенты:

Настоящее изобретение относится к аналитической химии и может быть использовано для определения свинца(II) в технических объектах. Способ определения свинца заключается в потенциометрическом титровании пробы комплексоном(III) с индикаторным электродом из металлического висмута с буферным раствором при рН 3,5-9,0.

Изобретение относится к области аналитической химии, а именно к способу количественного определения формиатов щелочных металлов в противогололедных реагентах, дополнительно содержащих хлориды кальция и щелочных металлов.

Изобретение относится к аналитической химии и может быть использовано для определения висмута(III) в технических объектах. .

Изобретение относится к методам аналитического контроля качества нефти и может быть использовано в нефтедобывающей и нефтеперерабатывающей отраслях промышленности.
Изобретение относится к аналитической химии применительно к разделению меди (I) и меди (II). .

Изобретение относится к методам аналитического контроля качества газового конденсата и нефтей и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей отраслях промышленности.

Настоящее изобретение относится к аналитической химии и может быть использовано для определения свинца(II) в технических объектах. Способ определения свинца заключается в потенциометрическом титровании пробы комплексоном(III) с индикаторным электродом из металлического висмута с буферным раствором при рН 3,5-9,0.

Изобретение может быть использовано в качестве рабочего и эталонного средства измерений. Компаратор согласно изобретению содержит первичный преобразователь температуры и индуктивный первичный преобразователь электрической проводимости с входным и выходным тороидальными трансформаторами, питающий генератор синусоидального напряжения, трансформаторный делитель напряжения, цифровой и аналоговый компенсаторы тока с двухцикловым режимом уравновешивания, электронный блок, сопряженный с компьютером, термостат электронного блока, при этом индуктивная ячейка помещена в активный водяной термостат с фиксированной температурой, выполнена проточной, во внутренней полости которой размещены первичные преобразователи температуры и электрической проводимости.

Готовят 1% стерильный раствор глюкозы на физиологическом растворе, который используют в качестве питательной среды. Подсоединяют к аспиратору марки «Бриз-1» поглотитель Зайцева, в колбе которого помещают 10 мл подготовленного 1%-ного раствора глюкозы.

Измеряют гидробиологические показатели - индекс сапробности по Пантле и Букку в модификации Сладечек. Одновременно измеряют гидрохимические показатели - водородный показатель, химическое потребление кислорода, концентрация растворенного кислорода и электропроводность.

Изобретение относится к области измерительной техники и может быть использовано для повышения достоверности измерений в кондуктометрии. .

Изобретение относится к технической биохимии, а именно к определению количества пектиновых веществ в растительном сырье. .

Изобретение относится к технической физике, а именно к области контроля параметров влажного пара, и может быть использовано для контроля истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе парогенератора.

Изобретение относится к аналитической химии и может быть использовано для определения висмута(III) в технических объектах. .

Изобретение относится к способам исследования процессов гидродинамики жидких гомогенных и гетерогенных сред и может найти применение в химической, нефтехимической, биохимической, фармакологической, пищевой и других отраслях промышленности, а также в экологических процессах очистки сточных вод.

Изобретение относится к технической физике, а именно к анализу материалов путем бесконтактного фотометрического определения удельного электрического сопротивления (электросопротивления) нагреваемого тела в зависимости от температуры, в частности к определению относительной электропроводности металлов и сплавов в жидком состоянии.

Способ контроля качества (безопасности) растительных масел и расплавленных жиров, который заключается в том, что измеряют удельную активную электропроводность растительного масла или расплавленного жира при различных частотах электромагнитных колебаний и разных температурах, при этом для контроля качества (безопасности) отбирают пробу исследуемого растительного масла или жира, делят пробу на две части, одну из которых подвергают окислению на воздухе при температурах 100…110°C до перекисного числа 10-12 мэкв/кг активного кислорода, перекисное число масла или жира определяют стандартными методами, затем готовят калибровочный образец растительного масла или расплавленного жира с максимально допустимым для пищевого масла или жира содержанием перекисных соединений (10 мэкв активного кислорода/кг), смешивая в определенных соотношениях по массе исходный и окисленный образец масла или жира, измеряют в полученном калибровочном образце в диапазоне частот от 1 до 200 кГц зависимость удельной активной электропроводности от частоты при двух температурах измерения, по пересечению указанных зависимостей находят характеристическую частоту электромагнитного поля, при которой характеристическая удельная активная электропроводность не зависит от температуры измерения, считают полученные значения характеристической частоты и характеристической удельной активной электропроводности максимально допустимыми нормативными значениями характеристической частоты и характеристической удельной активной электропроводности для данного пищевого масла или жира. Техническим результатом изобретения является разработка оперативного способа контроля снижения качества (безопасности) растительного масла при хранении. 1 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к аналитической химии и может быть использовано для определения меди в технических объектах. Способ определения меди заключается в прямом потенциометрическом титровании комплексоном при рН от 4,1-9,0 с индикаторным электродом из металлического висмута в ацетатном буферном растворе. Изобретение позволяет определять медь при ее содержании 32-660 мкгмл раствора в электрохимической ячейке с ошибкой единичных определений не более 1. Результатом является упрощение анализа при использовании нетоксичных материалов. 2 табл., 1 ил., 1 пр.

Наверх