Способ определения мест двойного замыкания многопроводной электрической сети



Способ определения мест двойного замыкания многопроводной электрической сети
Способ определения мест двойного замыкания многопроводной электрической сети
Способ определения мест двойного замыкания многопроводной электрической сети

 


Владельцы патента RU 2505825:

Общество с ограниченной ответственностью "Исследовательский центр "Бреслер" (RU)

Изобретение относится к релейной защите и автоматике электрических систем. Сущность: контролируемая сеть наблюдается на обеих сторонах. Наблюдения синхронизированы, происходит обмен информацией между концевыми подстанциями. Используется модель контролируемой сети с тремя участками. Модель задает операции преобразования наблюдаемых токов и напряжений. Первые два участка преобразуют наблюдаемые сигналы в напряжения двух разных предполагаемых повреждений, а также в токи, подводимые к этим местам от концевых подстанций. Третий участок преобразует указанные напряжения в два других тока, протекающих за местами повреждений. Пары токов преобразуются в дифференциальные токи первого и второго мест повреждения. По напряжениям и токам каждого предполагаемого повреждения определяют их реактивные и активные мощности. Фиксируют координаты обоих мест повреждения, если обе реактивные мощности переходят через нулевые значения, а обе активные мощности неотрицательны. Технический результат: расширение функциональных возможностей. 3 ил.

 

Изобретение относится к релейной защите и автоматике электрических систем. Оно решает задачу, сама постановка которой стала возможной только в последнее время, когда появилась возможность обмениваться результатами наблюдения протяженного объекта в удаленных друг от друга местах.

Известны способы локации замыкания в линии электропередачи с использованием ее модели [1]; с появлением таких способов в теорию и практику релейной защиты вошло понятие «место предполагаемого повреждения». Это место варьируется и, следовательно, задается произвольно. Модель объекта составляется для каждого фиксированного места предполагаемого повреждения. Оставаясь стереотипной, она при переходе от одного места к другому изменяет всего лишь параметры участков, преобразующих наблюдаемые токи и напряжения в электрические величины места предполагаемого повреждения. Первый из способов такого рода предназначен для линий, наблюдаемых с одной стороны [2].

Известен также более общий способ локации замыканий в электрической системе на основе многосторонних наблюдений [3]. Модель поврежденной линии в этом способе включает в свой состав два участка. Первый участок преобразует токи и напряжения, наблюдаемые на одной стороне линии, в токи и напряжения до места предполагаемого повреждения. Второй участок преобразует токи и напряжения, наблюдаемые на другой стороне сети, в токи и напряжения после места предполагаемого повреждения. Физическая достоверность моделей, составленных для разных мест предполагаемого повреждения, проверяется критерием повреждения.

Недостатки упомянутого способа обусловлены присущими ему ограничениями. Он рассчитан на распознавание повреждения сети только в одном месте (одиночное повреждение) и приспособлен только к трехфазной системе. Ему свойственна узкая трактовка условий повреждения сети в виде критерия резистивности, предполагающего построение модели повреждения только из резистивных элементов.

Предлагаемый способ призван расширить функциональные возможности прототипа. Обобщение способа касается распознавания мест двойных замыканий (в двух разных местах) в многопроводных сетях, например, двухцепных линиях электропередачи, а также использования энергетического критерия повреждения, более общего, чем критерий резистивности.

Поставленная цель достигается благодаря своеобразному построению модели контролируемой сети и введению новых преобразователей наблюдаемых токов и напряжений. Модель строится не для одного, а для двух мест предполагаемых повреждений, и координаты обоих мест варьируются. Помимо двух участков модели от мест наблюдения до места предполагаемого повреждения вводится третий участок между двумя различными местами. Новый участок модели выполняет преобразование напряжений двух предполагаемых повреждений в токи, протекающие за первым местом и до второго места. Далее определяются токи, текущие в поперечные ветви повреждений (дифференциальные токи) и определяются мощности, потребляемые каждым повреждением. Критерий резистивности повреждений применяется одновременно к обоим предполагаемым повреждениям. Предполагаемые повреждения признаются реальными, если их реактивные мощности достигают нулевых значений. Подчеркнем, что критерий резистивности должен выполняться сразу в двух местах предполагаемых повреждений.

На фиг.1 приведена структура многопроводной сети, наблюдаемой на обеих концевых подстанциях. В сети произошло двойное замыкание в местах с координатами хff1 и хff2. На фиг.2 приведена модель контролируемой сети, предназначенная для распознавания двойных замыканий. Модель составлена для двух мест предполагаемых замыканий. Произвольные координаты этих мест - хf1 и хf2. На фиг.3 приведена структурная схема, иллюстрирующая предлагаемый способ.

Многопроводная электрическая сеть 1 наблюдается на подстанциях 2 и 3. Она повреждена в двух местах, координаты которых хff1 и хff2 неизвестны и подлежат определению. Токи и напряжения, наблюдаемые на подстанции 2, обозначены как n - мерные комплексы , , где n - число проводов, на подстанции 3 - как , .

Модель сети составлена из крайних участков 4, 5 и из среднего участка 6, а также из ответвлений 7, 8, обусловленных замыканиями.

В структурной схеме по фиг.3 выполняются те же преобразования, что и в модели сети. Отличие состоит в том, что структурная схема физически реализуема и действует по предложенному способу, в то же время как модель сети отображает состояние объекта с двумя предполагаемыми повреждениями. Подать на модель наблюдаемые электрические величины физически невозможно, так как на одних и тех же зажимах нельзя одновременно задать и ток, и напряжение.

Структурная схема состоит из преобразователей, включающих в себя масштабирующие элементы 9-20 и сумматоры 21-24, формирователей комплексной мощности 25, 26, нуль-индикаторов 27, 28, пороговых элементов 29-30 и логического блока 31.

В модели сети по фиг.2 указана зависимость всех величин, получаемых в результате преобразований наблюдаемых токов и напряжений, от координат хf1 и хf2 двух мест предполагаемых повреждений. Те же величины в схеме по фиг.3 приведены без указания этой зависимости. Рассмотрим последовательность операций, выполняемых по предлагаемому способу для некоторой пары значений хf1 и хf2. Длины участков 4-6 электрической сети при этом принимают конкретные значения, и для каждого из трех участков модели сети определяются коэффициенты передачи известных сигналов в неизвестные. Каждый участок представляет собой многополюсник с n выходными зажимами. Первый участок задается уравнениями обратной передачи сигналов

,

,

второй (крайний, как и первый) участок задается уравнениями прямой передачи

,

,

наконец, третий (центральный) участок задается уравнениями формы

,

.

Безразмерные коэффициенты передачи обозначены здесь буквой , с размерностью проводимости - , сопротивления - .

Из описания участков модели сети коэффициенты передачи переносятся в структурную схему преобразования сигналов. Таким образом, масштабирующие элементы 9-20 получают следующие параметры, перечисляемые в порядке следования номеров: , , , , , , , , , , . Наблюдаемые токи и напряжения , , , преобразуются элементами 9-20 в токи

,

,

,

и напряжения

,

,

,

.

В сумматорах 21, 22 формируются напряжения мест предполагаемых повреждений

,

,

затем эти напряжения преобразуются масштабирующими элементами 17-20 в токи

,

,

,

.

Коэффициенты передачи масштабирующих элементов 9-20 указаны непосредственно на схеме.

Четырехвходовые сумматоры 23, 24 формируют токи в местах предполагаемых повреждений 7, 8, объединяя слагаемые токов и и как это следует из модели сети по фиг.2:

,

.

Органы 25, 26, формирующие комплексные мощности, потребляемые предполагаемыми повреждениями 7, 8, перемножают вектор комплексных напряжений и вектор сопряженных комплексов токов каждого повреждения

,

.

На выходы органов мощности 25, 26 поступают сигналы, передающие значения активной реактивной мощностей - составляющие комплексной мощности

,

.

Нуль-индикаторы 27, 28 реагируют на выполнение главных условий реальности повреждения

,

,

а пороговые элементы 29, 30 дополнительно проверяют физическую достоверность модели сети по условию неспособности повреждений генерировать активную мощность

,

.

Нулевые значения возможны при металлических коротких замыканиях.

Оконечный логический элемент 31 фиксирует выполнение всех четырех условий для реактивных и активных мощностей двух повреждений по срабатыванию четырех элементов 27-30 и выдает значения , варьируемых координат хf1, хf2 мест предполагаемых повреждений, при которых это совместное срабатывание произошло.

Предполагаемый способ распознавания двойного замыкания свободен от методической погрешности. Обеспечиваемая им точность локации полностью определяется степенью адекватности модели сети реальному объекту. Необходимо заметить, что предполагается синхронизация наблюдений на обеих сторонах сети. Она выполняется либо посредством спутниковой связи, либо с помощью модели неповрежденной сети при наблюдении предшествующего режима.

Источники информации

1. Ю.Я. Лямец, В.И. Антонов, В.А. Ефремов и др. Диагностика линий электропередачи. Межвуз. сб. науч. тр., Чебоксары, изд-во Чуваш, ун-та, 1992, С.9-32.

2. Патент РФ №2033622, кл. G01R 31/11, Н02Н 3/28, 1995.

3. Патент РФ №2033623, кл. G01R 31/11, Н02Н 3/28, 1995.

Способ определения мест двойного замыкания в многопроводной электрической сети с использованием ее модели при двухстороннем наблюдении, при котором модель содержит первый участок, преобразующий токи и напряжения, наблюдаемые на одной стороне сети, в первые токи и напряжения места предполагаемого повреждения, и второй участок, преобразующий токи и напряжения, наблюдаемые на другой стороне сети, во вторые токи и напряжения места предполагаемого повреждения, отличающийся тем, что модель сети дополняют третьим участком от места первого предполагаемого повреждения до места второго предполагаемого повреждения, выполняют третий участок в виде преобразователя напряжений первого и второго предполагаемых повреждений в третьи токи первого места предполагаемого повреждения и четвертые токи второго места предполагаемого повреждения, преобразуют первые и третьи токи в первые дифференциальные токи первого места предполагаемого повреждения, преобразуют вторые и четвертые токи во вторые дифференциальные токи второго места предполагаемого повреждения, преобразуют первые напряжения и первые дифференциальные токи в реактивную и активную мощности первого места предполагаемого повреждения, преобразуют вторые напряжения и вторые дифференциальные токи в реактивную и активную мощности второго места предполагаемого повреждения, и фиксируют координаты обоих мест повреждения, если обе реактивные мощности переходят через нулевые значения, а обе активные мощности неотрицательны.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи. Сущность: измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов времени.

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью.

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью.

Использование: в электроэнергетике для определения места короткого замыкания на линии электропередачи переменного тока. Технический результат: повышение достоверности определения расстояния до места повреждения в линии электропередачи.

Изобретение относится к электроэнергетике и может быть использовано для определения места повреждения (ОМП) в линиях нейтралей, соединяющих средние точки преобразовательных подстанций электропередач постоянного тока (ППТ) высокого напряжения.

Изобретение относится к релейной защите и автоматике линий электропередачи и предназначено для случая, когда наблюдение сети производится с обеих сторон без синхронизации наблюдений.

Изобретение относится к определению замыкания фазы на землю в трехфазной электрической сети. .

Изобретение относится к дефектоскопии изоляции кабельных изделий электроискровым методом неразрушающего контроля. .

Изобретение относится к электротехнике, к области кабельной передачи информации, может применяться для обнаружения обрыва кабеля, в частности, при использовании пакетной технологии передачи данных Ethernet без отключения устройств потребителей.

Изобретение относится к электроэнергетике, конкретнее - к релейной защите и автоматике электрических систем. Сущность: определение места повреждения выполняется в два этапа. На первом этапе полагают, что повреждены все провода. Определяют место повреждения по токам и напряжениям всех проводов до и после мест предполагаемых повреждений. Определяют для каждого провода сигнал абсолютного значения разности модулей токов до и после обнаруженного на первом этапе места повреждения, сигнал абсолютного значения разности модулей напряжений до и после этого места, сдвиг фаз между напряжением и током каждого провода до этого места и сдвиг фаз между напряжением и током после этого места, сигнал абсолютного значения разности первого и второго сдвигов фаз. Сравнивают три упомянутых разностных сигнала каждого провода с соответствующими порогами. Подразделяют провода сети на неповрежденные и поврежденные, для чего относят к первым те провода, все три разностных сигнала которых не превысили своих порогов. На втором этапе определяют место повреждения по токам и напряжениям только вторых проводов до и после мест предполагаемых повреждений. Технический результат: повышение точности и расширение функциональных возможностей. 1 з.п. ф-лы, 7 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи по несинхронизированным замерам с двух ее концов. Технический результат: повышение точности определении места повреждения. Сущность: измеряют с двух концов линии несинхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания. Определяют значения сопротивлений от первого конца линии до места повреждения и сопротивления от второго конца линии до места повреждения. Преобразуют фазные токи и напряжения в симметричные составляющие - комплексные токи и напряжения прямой, обратной и нулевой последовательностей. Определяют значение угла между напряжениями нулевой, обратной или прямой последовательности по концам линии или значение угла между фазными напряжениями по концам линии. Выполняют синхронизацию путем поворачивания векторов комплексных величин токов и напряжений на полученный угол. Определяют относительные расстояния от концов линии до места повреждения по соответствующим выражениям. 3 н.п. ф-лы, 2 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в кабельной промышленности для контроля и ремонта эмалевой изоляции проводов. Цель изобретения - увеличение точности контроля и протяженности дефектных участков в изоляции провода, а также создание возможности ремонта дефектных участков эмалевой изоляции проводов путем несения эмали на место обнаруженного дефекта при непрерывно перемещающемся проводе. Заявляемый способ заключается в подаче высокого напряжения на коронирующий датчик-электрод, протягивании контролируемого провода через коронирующий датчик-электрод и в формировании импульсов дефектов с коронирующего датчика-электрода, при этом дополнительно устанавливают на строго фиксированном расстоянии D от коронирующего датчика-электрода узел нанесения эмали. Затем при наличии дефекта формируют импульс протяженности дефекта, длительность которого Ti равняется времени прохождения дефекта в зоне действия коронирующего датчика-электрода. Передний фронт упомянутого импульса формируется по первому импульсу коронного разряда с дефекта, а задний фронт импульса формируется с задержкой после последнего импульса коронного разряда с дефекта на время где tз - время задержки; lк - среднеквадратическое значение длины контролируемого участка провода с момента погасания до момента зажигания коронного разряда в зонах его нестабильности горения при подходе к датчику-электроду и выходу из него дефектного участка изоляции; σ - среднеквадратичное отклонение lк от среднего значения; V - скорость движения контролируемого провода. После формирования переднего импульса дефекта через время t2=(D-VТд)/V, где Тд - время от открытия электромагнитного клапана узла нанесения эмали до попадания струи эмали из узла нанесения эмали на поверхность дефекта, расширяют импульс дефекта до величины Тр=Ti+Тд. По переднему фронту этого импульса открывают в момент времени t2 в узле нанесения эмали электромагнитный затвор и формируют электростатически заряженную струю эмали путем пропускания ее вдоль поверхности высоковольтного электрода, на который в момент времени t2 открытия электромагнитного затвора одновременно подают постоянный высоковольтный потенциал относительно заземленной жилы провода, величина которого лежит в диапазоне 2-5 кВ. Сформированную струю электростатически заряженной жидкой эмали подают на дефектный участок в течение времени Ti, затем по заднему фронту расширенного импульса отключают высоковольтный потенциал с высоковольтного электрода и закрывают электромагнитный затвор в узле нанесения эмали. После этого снимают излишки эмали, нанесенной на дефектный участок эмальизоляции, путем пропускания упомянутого участка с нанесенной на него жидкой эмалью через калибр, внутренний диаметр которого соответствует диаметру изолированного провода. После снятия с дефектного участка излишков эмали дефектный участок с нанесенной на него жидкой эмалью подвергают запечке и сушке. Заявляемый способ контроля и ремонта изоляции проводов позволяет по сравнению со способом-прототипом значительно повысить точность контроля и способен производить не только контроль, но и процесс ремонта дефектных участков эмалевой изоляции провода. 3 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в кабельной промышленности для контроля и ремонта эмалевой изоляции проводов. Сущность: провод протягивают через датчик дефектов и датчик скорости. При прохождении дефектного участка изоляции провода формируют импульс дефекта. Под движущимся проводом устанавливают узел для нанесения эмальизоляции на дефектный участок, выполненный в виде сосуда из электропроводного материала, корпус которого заземляют. Сосуд заполняют электрофоретическим составом. Над сосудом на расстоянии L1 от датчика дефектов устанавливают ролик. На расстояние L2 от ролика устанавливают подвижный элемент вертикального перемещения, на конце которого закреплена вилка с роликом, прижатым к поверхности контролируемого провода. Вилку с роликом закрепляют на высоте h от поверхности электрофоретического состава. За вилкой устанавливают калибр, диаметр которого соответствует диаметру контролируемого провода. Контролируемый провод протягивают через вилку с роликом и калибр. При обнаружении дефектного участка в изоляции провода задерживают сформированный импульс дефекта на время где V - скорость провода, tв - время вертикального перемещения провода на расстояние h+Δ, где Δ - глубина погружения провода в электрофоретический состав. По истечении времени tз по сформированному переднему фронту импульса дефекта включается исполнительное устройство вертикального перемещения и дефектный участок погружают на глубину Δ в электрофоретический состав. После этого отводят элемент вертикального перемещения в исходное положение и по команде из блока управления, сформированной по заднему фронту импульса дефекта провод останавливают. Отключают исполнительное устройство вертикального перемещения, отключают от датчика дефектов питающее напряжение, отсоединяют жилу провода от земли, подключают к ней положительный потенциал регулируемого источника постоянного тока и включают источник постоянного регулируемого тока. При этом величину положительного потенциала источника постоянного регулируемого тока изменяют до тех пор, пока значение тока анафореза не достигнет заданной величины. При этом токе осаждают пленку эмали на дефектный участок изоляции провода. Затем отключают от жилы провода источник постоянного регулируемого тока и выключают его. Жилу провода вновь заземляют. Подключают питающее напряжение к датчику дефектов. Включают узел запечки эмали и провод вновь приводят в движение, протягивая дефектный участок с нанесенной на него слоем эмали через калибр и узел запечки эмали. Технический результат: повышение точности контроля, возможность ремонта дефектных участков эмалевой изоляции провода. 3 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по несинхронизированным замерам с двух концов линии мгновенных значений токов и напряжений. Технический результат: повышение точности определении места повреждения. Технический результат достигается за счет точной синхронизации измеренных величин токов и напряжений по концам линии, не синхронизированных по времени при измерении. Синхронизация выполняется путем совмещения осциллограмм с двух концов линии по срезу начала короткого замыкания. 3 ил.

Изобретение относится к контрольно-измерительной технике. Сущность: устройство (12) обнаружения неисправности вдоль кабеля (10) связи, соединяющего кодирующий блок (3) и маяк (5) наземного оборудования установки контроля железнодорожного транспортного средства, содержит: средства (14, 16, 34, 42) измерения полного сопротивления, выполненные с возможностью измерения на заранее определенной частоте (F6) фазы и модуля полного сопротивления кабеля (10) во время передачи электрического сигнала связи, генерируемого кодирующим блоком, в направлении маяка; и средства определения состояния кабеля, выполненные с возможностью сравнения измеренных фазы и модуля с контрольными значениями фазы и модуля полного сопротивления кабеля таким образом, чтобы определить одно из следующих состояний кабеля: состояние нормальной работы, состояние короткого замыкания и состояние разрыва цепи. Технический результат: возможность обнаружения неисправности практически в момент ее появления, указания ее местоположения и уточнение характера неисправности. 3 н. и 12 з. п. ф-лы, 1 табл., 5 ил.

Изобретение относится к электроэнергетическим системам и может быть использовано для определения расстояния до места однофазного замыкания на землю линии электропередачи в сети переменного тока с изолированной нейтралью. Технический результат: расширение функциональных возможностей и повышение точности способа. Сущность: перед испытанием отключают поврежденную линию от рабочего источника и соединяют между собой фазы поврежденной линии на приемном конце. Затем подают испытательное напряжение U относительно земли на поврежденную линию и измеряют значения испытательных токов I1 и I2 в целой и поврежденной фазах линии. Находят величину сопротивления R2 от питающего конца линии до места повреждения R 2 = R 1 − U ( I 2 − I 1 ) 2 ⋅ I 2 ⋅ I 1 . Определяют расстояние l от точки приложения испытательного напряжения до места однофазного замыкания по формуле l = R 2 R 1 ⋅ L , где R1 - сопротивление целой фазы линии, L - длина линии. Точность замеров повышается, если перед началом испытаний измерить фактическое значение сопротивления целой фазы линии электропередачи из зависимости R1=0,5 U/I. Для этого подключают испытательный источник к двум фазам поврежденной линии и измеряют испытательный ток I. Точность повышается также, если использовать постоянное испытательное напряжение. 2 з.п. ф-лы, 1 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в кабельной промышленности для контроля и ремонта эмалевой изоляции проводов. Способ заключается в протягивании провода через датчик точечных повреждений и датчик скорости. В контролируемом проводе индуцируют при помощи индуктора периодически изменяющуюся ЭДС. Перед контролем осуществляют калибровку измерений, для чего через датчик скорости протягивают участок провода фиксированной длины lф и подсчитывают количество периодов n наведенной ЭДС за время прохождения этого участка через датчик скорости. По результатам измерений определяют элементарную протяженность провода l э = l ф n       и ее величину принимают за единицу счета протяженности. Далее определяют систематическую погрешность, вносимую в измерение протяженности дефектного участка изоляции провода конечными размерами датчика точечных повреждений. Для этого наносят два дефекта на эмаль-изоляцию провода с протяженностями l1 и l2 на расстоянии друг от друга, превышающем протяженность контакта датчика точечных повреждений с поверхностью контролируемого провода. Протягивают участок провода с нанесенными на него дефектами через датчик точечных повреждений. При прохождении каждого дефектного участка регистрируют количество n1 и n2 периодов наведенной в проводе ЭДС. По результатам этих измерений определяют систематическую погрешность. Затем производят контроль дефектности эмаль-изоляции провода с формированием импульса дефекта. Подсчитывают количество импульсов дефектов и регистрируют количество периодов наведенной ЭДС за время каждого импульса дефекта. Определяют истинную протяженность каждого дефекта, суммарную протяженность всех дефектов. Регистрируют количество периодов наведенной ЭДС за время контроля провода и определяют длину проконтролированного провода. Качество изоляции провода оценивают по количеству дефектов, приходящихся на единицу длины, и по среднестатистической протяженности дефектов, приходящихся на единицу длины провода. Технический результат: повышение точности, информативности и достоверности, упрощение реализации. 3 ил.

Изобретение относится к радиотехнике и предназначено для дистанционного определения места повреждения (ОМП) высоковольтных линий электропередачи (ЛЭП) с разветвленной древовидной структурой. Способ включает определение расстояния до места повреждения с помощью метода импульсного зондирования и снятие неоднозначности результатов зондирования разветвленных сетей путем определения трассы с возросшим коэффициентом битовых ошибок между PLC-модемами. В начале линии устанавливается центральное устройство, которое сочетает в себе функции рефлектометра и PLC-модема. На концах электролинии устанавливаются удаленные устройства, выполняющие функции PLC-модемов. При этом не требуется установки специального оборудования присоединения, т. к. информационный сигнал проходит через уже, как правило, имеющийся силовой трансформатор. Центральное устройство при помощи зондирования линии электропередачи определяет расстояние до места повреждения. Удаленные устройства за счет информационной PLC-связи определяют коэффициент битовых ошибок в пакетах. По возросшей величине данного параметра снимают неоднозначность определения поврежденного участка ЛЭП. Технический результат: возможность определения места повреждения электролинии со сколь угодно сложной древовидной структурой с надежным снятием неоднозначности определения поврежденного участка линии. 1 ил.

Изобретение относится к области электротехники и может быть использовано в системе обнаружения повреждения для обнаружения повреждений линии на электродной линии в системе HVDC. Техническим результатом является повышение надежности системы обнаружения повреждения. Электродная линия содержит первое и второе ответвления, соединенные параллельно. Система обнаружения повреждения содержит первую и вторую схемы генерации импульсов, выполненные с возможностью генерации электрических импульсов в первое и второе ответвления соответственно, а также первое и второе устройства измерения тока, выполненные с возможностью генерации сигналов, указывающих электрические сигналы, имеющие место в первой и второй линиях ввода соответственно. Возможность независимой генерации электрических импульсов в первое и второе ответвления соответственно, а также независимой регистрации первой и второй структур сигнала, представляющих электрические сигналы на первой и второй линиях ввода соответственно, повышает информационное наполнение в собранных данных, что позволяет более надежно анализировать, присутствует ли повреждение на электродной линии. 3 н. и 12 з.п. ф-лы, 13 ил.
Наверх