Устройство для обнаружения объекта на удаленном фоне

Изобретение относится к фотоследящим устройствам и может быть использовано в системах обнаружения, слежения и управления за воздушным движением. Устройство включает приемники сигналов, которые установлены на правом и левом карданных подвесах и содержат защищенные тубусами фотоэлементы, установленные в защитном корпусе с увиолевым стеклом. Датчики токов, установленные в электрической цепи фотоэлементов, связаны многоканальными кабелями с программно-логическими комплексами, которые кабелями связаны с системным блоком компьютера и телевизионной системой монитора компьютера. Правый и левый карданные подвесы приемников сигналов соединены интегрированными шаговыми сервоприводами с системным блоком компьютера. Технический результат заключается в уменьшении времени поиска воздушного объекта за счет замены обработки информации спектра радиоволн видимого диапазона на спектр радиоволн ультрафиолетового диапазона, независимость определения объекта от помех. 4 ил.

 

Изобретение относится к фотоследящим устройствам и может быть использовано в системах обнаружения, слежения и управления за воздушным движением.

Известны устройства для обнаружения и слежения (SU №140226, МКИ G02B 23/00, опубл. 30.08.1961; SU №305442, G02B 23/00, опубл. 04.06.1971; RU №2002278 C1, МКИ G01S 17/00, опубл. 30.10.1993), содержащие излучатель сигнала, приемник сигнала, фотоэлементы, блоки обработки сигнала, блоки управления положения устройства, межблочные соединительные кабели.

Недостатком известных устройств является невозможность высококачественной обработки отраженного от воздушного объекта сигнала, посланного излучателем, из-за метеорологических и электромагнитных помех.

Известно устройство содержащее первую и вторую регистрирующие системы, блок разверсток и синхронизации, блок памяти и видеоконтрольное устройство, коррелятор, блок анализа светового поля, регулируемая линия задержки, второй блок памяти, блок вычитания порогового устройства и блок стробирования (RU №2042154 C1, МКИ G01S 17/00, опубл. 20.08.1995).

Недостатком известной конструкции является то, что при непросвечивающей облачности, искажении отраженного сигнала геометрией воздушного объекта, изготовлении воздушного объекта из материалов, не отражающих или поглощающих спектр радиоволн видимого диапазона, невозможно принять отраженный от воздушного объекта сигнал на регистрирующие системы.

Изобретение решает задачу уменьшения времени поиска воздушного объекта в условиях метеорологических и электромагнитных помех.

Технический результат заключается в уменьшении времени поиска воздушного объекта за счет замены обработки информации спектра радиоволн видимого диапазона на спектр радиоволн ультрафиолетового диапазона, независимость определения объекта от помех.

Указанный технический результат достигается тем, что в устройстве для обнаружения объекта на удаленном фоне, включающем приемники сигналов, блок обработки сигналов, телевизионную систему, приемники сигналов, установленные на правом и левом карданных подвесах, содержат защищенные тубусами фотоэлементы, установленные в защитном корпусе с увиолевым стеклом, при этом датчики токов, установленные в электрической цепи фотоэлементов, связаны многоканальными кабелями с программно-логическими комплексами, которые кабелями связаны с системным блоком компьютера и телевизионной системой монитора компьютера, при этом правый и левый карданные подвесы приемников сигналов соединены интегрированными шаговыми сервоприводами с системным блоком компьютера.

Использование в конструкции устройства приемника оптического сигнала с большим количеством фотоэлементов с тубусами, работающих в ультрафиолетовом диапазоне, улавливающих только прямую ультрафиолетовую радиацию, позволяет отслеживать величину проходящей через любой воздушный объект ультрафиолетовой радиации, частично или полностью поглощая ее или отражая, при этом само устройство для обнаружения объекта остается незамеченным.

На фиг. 1 изображена электрическая схема фотоэлемента в защитном корпусе с тубусом, на фиг. 2 - корпус принимающего устройства, на фиг. 3 - защитный корпус фотоэлемента с тубусом в корпусе принимающего устройства, местный разрез, на фиг. 4 - функциональная схема устройства для обнаружения объекта на удаленном фоне, где - α1 и α3 углы наклона левого и правого карданных подвесов 8 и 7 относительно поверхности земли, α2 и α4 - углы наклона корпусов приемников 1, относительно плоскости карданных подвесов 8 и 7.

Устройство для обнаружения объекта на удаленном фоне состоит из двух принимающих устройств, состоящих из двух корпусов приемника 1 правого и левого, с закрепленными внутри них фотоэлементами 2 типа Ф-4 или Ф-29, работающими в ультрафиолетовом диапазоне. Фотоэлементы 2 установлены в защитном корпусе 3, закрытые увиолевым стеклом 4 для защиты от осадков. На увиолевое стекло 4 нанесен светофильтрующий слой типа БС16 или БС3, пропускающий диапазон волн λ=150-380 нм. Фотоэлементы 2 закрыты тубусами 5 для защиты от рассеянной ультрафиолетовой радиации (УФР). В электрической цепи каждого фотоэлемента 2 установлен датчик токов 6. Корпуса приемников 1 установлены на правом 7 и левом 8 карданном подвесе. Каждый датчик тока 6 фотоэлемента 2 корпуса приемника 1 правого карданного подвеса 7 связан многоканальным кабелем 9 с программно-логическим комплексом 10, а каждый датчик тока 6 фотоэлемента 2 корпуса приемника 1 левого карданного подвеса 8 связан многоканальным кабелем 11 с программно-логическим комплексом 12.

Программно-логические комплексы 10 и 12 связаны кабелями 13 с системным блоком компьютера 14. Системный блок компьютера 14 многоканальным кабелем 15 связан с монитором компьютера 16. Для управления положением правого карданного подвеса 7 используются интегрированные шаговые сервоприводы 17 и 18 типа СПШ10, а для управления положением левого карданного подвеса 8 используются интегрированные шаговые сервоприводы 19 и 20 типа СПШ10, снабженные системой встроенных датчиков. Интегрированные шаговые сервоприводы 18, 19 и 20, 21 соединены многоканальными кабелями 21 с системным блоком компьютера 14. Управление всем устройством для обнаружения объекта на удаленном фоне осуществляется от клавиатуры компьютера 22 оператором (на фиг. не показано). Экран монитора 16 разделен на правую и левую часть для приема сигналов с фотоэлементов правого и левого принимающих устройств.

Устройство для обнаружения объекта на удаленном фоне работает следующим образом. Воздушный объект, появившийся из-за горизонта, перекрывает попадание прямой ультрафиолетовой радиации на фотоэлементы 2, защищенные от рассеянной ультрафиолетовой радиации тубусом 5. В результате этого на фотоэлементе 2 прекращается фототок, что фиксирует датчик тока 6. Каждый датчик тока 6 фотоэлементов 2 правого карданного подвеса 7 посылает сигнал по многоканальному кабелю 9 к программно-логическому комплексу 10. От программно-логического комплекса 10 обработанные сигналы с датчиков тока 6 фотоэлементов 2 поступают по кабелю 13 в системный блок компьютера 14. От системного блока компьютера 14, обработанные сигналы датчиков тока 6 от фотоэлементов 2 по многоканальному кабелю 15 передаются на монитор компьютера 16. На экране монитора 16, разделенного на правую и левую части, отображаются все фотоэлементы 2 в светящимся режиме от правого карданного подвеса 7 и левого карданного подвеса 8, соответственно, кроме тех, которым перекрыт поток прямой ультрафиолетовой радиации воздушным объектом.

Оператор, управляя интегрированными шаговыми сервоприводами 17 и 18 правого карданного подвеса 7, при помощи клавиатуры компьютера 22 производит установку корпуса приемника 1 к воздушному объекту так, чтобы к усеченной вершине приемника 1 был перекрыт поток прямой ультрафиолетовой радиации воздушным объектом. Данное положение правого карданного подвеса 7 соответствует положению черной точки в центре правой части экрана монитора 16.

Каждый датчик тока 6 фотоэлементов 2 левого карданного подвеса 8 посылает сигнал по многоканальному кабелю 11 к программно-логическому комплексу 12. Далее, от программно-логического комплекса 12 обработанные сигналы датчиков тока 6 с фотоэлементов 2 поступают по кабелю 13 в системный блок компьютера 14. От системного блока компьютера 14 обработанные сигналы датчиков тока 6 от фотоэлементов 2 передаются по многоканальному кабелю 15 на монитор 16.

На левой части экрана монитора 16 отображены все фотоэлементы 2 левого карданного подвеса 8 в светящимся режиме, кроме тех, которым был перекрыт поток прямой ультрафиолетовой радиации воздушным объектом. Оператор, управляя интегрированными шаговыми сервоприводами 20 и 21 левого карданного подвеса 8, при помощи клавиатуры компьютера 22 производит установку корпуса приемника 1 к воздушному объекту так, чтобы к его усеченной вершине был перекрыт поток прямой ультрафиолетовой радиации воздушным объектом. Данное положение левого карданного подвеса 8 соответствует положению черной точки в центре левой части экрана монитора 16.

При больших углах наклона правого 7 и левого 8 карданных подвесов, часть фотоэлементов 2 будет наклонена к земной поверхности и на экране монитора 16 появится темный фон. В этом случае оператор отслеживает только точки на правой и левой части экрана монитора 16.

По углам наклона α1 и α3 левого и правого карданных подвесов 8 и 7 относительно поверхности Земли, и углов наклона α2 и α4 корпусов приемников 1, относительно плоскости карданных подвесов 8 и 7 и зная расстояние между карданными подвесами 7 и 8, оператор вычисляет расстояние до воздушного объекта и расстояние от воздушного объекта до поверхности Земли.

Устройство для обнаружения объекта на удаленном фоне, включающее приемники сигналов, блок обработки сигнала, телевизионную систему, отличающееся тем, что приемники сигналов, установленные на правом и левом карданных подвесах, содержат защищенные тубусами фотоэлементы, установленные в защитном корпусе с увиолевым стеклом, при этом датчики токов, установленные в электрической цепи фотоэлементов, связаны многоканальными кабелями с программно-логическими комплексами, которые кабелями связаны с системным блоком компьютера и телевизионной системой монитора компьютера, при этом правый и левый карданные подвесы приемников сигналов соединены интегрированными шаговыми сервоприводами с системным блоком компьютера.



 

Похожие патенты:

Изобретение относится к оптико-механическим системам обзора и может быть использовано в технике активной и пассивной локации пространства. .

Изобретение относится к радиоэлектронным устройствам и представляет собой пассивную комбинированную систему скрытого круглосуточного наблюдения за наземной и/или надводной обстановкой на дальности до 20 км в пределах прямой видимости, в том числе обнаружения и распознавания объектов наблюдения с удаленного рабочего места оператора.

Изобретение относится к обнаружению объектов. .

Изобретение относится к устройствам селекции объектов на неоднородном удаленном фоне. .

Изобретение относится к автоматическому регулированию, предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением.

Изобретение относится к области систем слежения за подвижными объектами, в том числе с качающегося основания, а также может быть использовано для управления воздушным движением.

Изобретение относится к оптико-электронным устройствам, предназначенным для обнаружения источников оптического излучения и диагностирования оптических характеристик этих источников.

Изобретение относится к области систем наведения и автоматического сопровождения объектов в пространстве, преимущественно с подвижного основания. .

Изобретение относится к области неразрушающего контроля нефтегазопроводов и может быть использовано для целей бесконтактного оптического определения пройденного расстояния на борту внутритрубного снаряда-дефектоскопа.

Изобретение может быть использовано в ретрорефлекторных системах (PC) космических аппаратов. Кольцевая ретрорефлекторная система состоит из уголковых отражателей с пирамидальной вершиной и основанием, на боковых гранях которых имеется отражающее покрытие. В каждом уголковом отражателе один из трех двугранных углов при вершине выполнен с заданным отступлением от 90°. Вершины уголковых отражателей расположены равномерно по окружности так, что основания уголковых отражателей расположены в одной плоскости. Каждый уголковый отражатель развернут таким образом, чтобы проекция ребра двугранного угла уголкового отражателя, выполненного с заданным отступлением от 90°, на плоскость составляла с касательной к окружности одинаковые углы для всех уголковых отражателей. Проекции диаметрально противоположных ребер двугранных углов уголковых отражателей, выполненных с заданным отступлением от 90°, параллельны. Технический результат - повышение точности измерения расстояния до центра РС и возможность ее использования в одноосно ориентированных спутниках, например, ГЛОНАСС. 3 ил.

Изобретение относится к области оптико-электронных устройств слежения, преимущественно к наземному комплексу для обнаружения и распознавания объектов. Наземный транспортный комплекс для обнаружения и распознавания объектов включает наземное транспортное средство, систему электропитания и оптико-электронную систему. Оптико-электронная система содержит видеокамеру и тепловизор и установлена на опорно-поворотном устройстве, закрепленном на подъемно-мачтовом приспособлении и выполненном с возможностью вращения на 360 градусов в азимутальной плоскости, а также с возможностью перемещения по углу места. Опорно-поворотное устройство выполнено с возможностью вращения в азимутальной плоскости со скоростью до 120 градусов в секунду и перемещения по углу места на ±60 градусов со скоростью до 100 градусов в секунду. Оптико-электронная система выполнена с возможностью одновременного вывода изображения с камеры и тепловизора на два монитора. Программное обеспечение комплекса выполнено с возможностью его функционирования под управлением операционной системы Ubuntu Linux. Достигается повышение скорости обнаружения и распознавания объектов. 5 з.п. ф-лы, 7 ил.
Способ относится к оптическим стереоскопическим способам определения местонахождения объекта в окружающем пространстве. При реализации способа принимают и регистрируют опорное и сравниваемое изображения двумя идентичными оптическими системами. Формируют разностные изображения путём вычитания сравниваемого изображение из опорного и опорного из сравниваемого. Обнуляют отрицательные значения в разностных изображениях. И определяют расстояние до объекта на основании сдвига между ненулевыми фрагментами разностных изображений. Причём расстояние между точками регистрации каждой пары опорного и сравниваемого изображений последовательно уменьшают при приближении объектов к оптической системе. Технический результат заключается в согласовании базисного расстояния регистрации кадров стереопары в процессе перемещения оптических систем в пространстве. 3 з.п. ф-лы, 8 ил.

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий микроконтроллер, оптический солнечный датчик, фотоприемники которого выполнены в виде каскадных фотопреобразователей, датчик оборотов первого электродвигателя, датчик оборотов второго электродвигателя. Система обеспечивает сопровождение солнечного диска с необходимой точностью независимо от погодных условий и сводит к минимуму собственное потребление энергии за счет исключения срабатывания оптического солнечного датчика при его засветке от светлых пятен в облаках. 2 ил.
Способ автоматического обнаружения целей может быть использован при модернизации и разработке образцов военной техники сухопутных войск. Достигаемый результат - обеспечение реализации одновременного выполнения функций автоматического обнаружения и государственного опознавания целей, что в итоге сокращает время решения огневой задачи, исключение ситуаций случайного обстрела и поражения своих сил и средств. Сущность изобретения состоит в том, что в способе автоматического обнаружения целей с использованием лазерного локатора, заключающемся в наведении оператором с помощью своего оптико-электронного прицела лазерного локатора на предполагаемую цель, формировании им зондирующего импульса, приеме и обработке приемным устройством отраженного лазерного излучения от оптико-электронного прибора цели и выдаче сигнала о наличии или отсутствии цели, при этом зондирующий импульс содержит кодированную информацию запросчика системы государственного опознавания цели, приемное устройство системы государственного опознавания, установленное на цели, принадлежащей к своим войскам, принимает и обрабатывает полученный кодированный зондирующий импульс и передает ответный кодированный радиосигнал, подтверждающий принадлежность цели к своим войскам. Запросчик системы государственного опознавания принимает кодированный радиосигнал и информирует оператора о принадлежности цели к своим войскам, а при отсутствии от цели подтверждающего кодированного радиосигнала информирует оператора о принадлежности цели к противнику.

Способ противодействия управляемым боеприпасам (УБП) базируется на поэтапном воздействии оптического сигнала на оптико-электронный (ОЭК) УБП в зависимости от координат его местоположения, их разброса и временных промежутков энергетической доступности фоточувствительной площадки его приемника. Предварительно осуществляют по сопровождающему оптическому излучению составных элементов (корпуса ракеты, двигателя) обнаружение и пеленгацию УБП. Далее производят локацию ОЭК УБП оптическим сигналом в интересах формирования базы данных о структуре и характеристиках функционирования ОЭК УБП и его пространственном местоположении и ориентации относительно оптико-электронного средства поражения (ОЭСП). Согласование полей зрения ОЭК УБП и приемопередающего канала ОЭСП в зависимости от их взаимного местоположения и скорости сближения с учетом ошибок пеленгации и целеуказания осуществляют управлением углом расходимости лазерного излучения. Также формируют относительно ОЭСП три зоны воздействия оптического сигнала на фотоприемник ОЭК УБП: дальняя, средняя и ближняя. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности радиоэлектронного поражения оптико-электронных средств, входящих в состав высокоточного оружия. 3 ил.

Способ определения местоположения огневых точек противника и устройство, его реализующее, основано на том, что выполняют на карте привязку оператора к местности, проводят калибровку размеров изображения на мониторе компьютера с размерами реальных объектов окружающей среды. Далее устанавливают видеокамеру и вертикально два размещенных друг над другом лазерных излучателя, ориентированных по вертикальной оси. Проводят сканирование лазерными излучателями в намеченном секторе с образованием лазерных плоскостей, фиксируют точки пересечения вылетевшего снаряда с лазерными плоскостями, соединяют точки линией, которую экстраполируют до пересечения с поверхностью земли, определяют ее длину, высоту точки пересечения вылетевшего снаряда и вычисляют расстояние до огневой точки. Технический результат - упрощение конструкции устройства, реализующего способ, облегчение его эксплуатации. 2 н.п. ф-лы, 2 ил.

Автогидирующая оптико-механическая система со встречной засветкой оптоволокна содержит оптическое волокно, соединяющее входную и оптическую системы спектрографа и детектор смещения изображения центра звезды с входного торца оптического волокна. При этом вход оптического волокна вклеен по центру одной из граней оптической призмы. Причем перед оптической призмой по ходу луча расположены два компенсирующих оптических элемента, выполненных в виде плоскопараллельных пластин, каждый из которых имеет возможность вращения вокруг своей оси. Оси оптических элементов расположены в ортогональных плоскостях, а их приводы выполнены в виде электродвигателей, управляемых с помощью персонального компьютера посредством специального алгоритма. Технический результат заключается в упрощении конструкции и технологии изготовления автогидирующей оптико-механической системы оптоволоконного спектрографа, основанной на встречной засветке оптоволокна. 1 ил.

Изобретение относится к лазерной дальнометрии. Техническим результатом является увеличение дальности действия лазерного дальномера. Заявленное устройство для измерения расстояния до цели посредством дальномера (1) содержит: лазерный импульсный излучатель (2), приемник (3) лазерных эхосигналов (31), рассеиваемых обратно целью, содержащий устройство (10) пространственного детектирования, которое содержит по меньшей мере один фотодиод, установленный в качестве интегратора и выполненный с возможностью обеспечения так называемого пространственного сигнала, и устройство (11) временного детектирования, которое содержит по меньшей мере один фотодиод, соединенный с трансимпедансной схемой и выполненный с возможностью обеспечения так называемого временного сигнала, средство (4) обработки пространственного сигнала и временного сигнала, содержащее блок (17) вычисления расстояния до цели, при этом временной сигнал имеет форму кадра данных, который является записью данных, детектированных на протяжении заданного времени, отличающееся тем, что средство (4) обработки содержит: средство (16) постинтегрирования временных сигналов, соединенное по выходу с блоком вычисления расстояния до цели, средство (14) выбора временных сигналов, передаваемых к средству постинтегрирования, в зависимости от пространственного сигнала, соединенное с устройством (10) пространственного детектирования и с устройством (11) временного детектирования. 2 н. и 15 з.п. ф-лы, 7 ил.
Наверх