Способ переработки нефтесодержащих шламов



Способ переработки нефтесодержащих шламов
Способ переработки нефтесодержащих шламов
Способ переработки нефтесодержащих шламов

 


Владельцы патента RU 2506303:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет (RU)

Изобретение относится к способу переработки отходов - нефтесодержащих шламов. Способ переработки твердых нефтяных шламов осуществляют путем раздельного отбора из накопительного амбара верхнего слоя нефтешлама и донного слоя нефтешлама, от донного слоя нефтешлама отделяют замазученный грунт, который отправляют на полигон для биоразложения или используют в качестве изоляционного материала на полигонах размещения бытовых и промышленных отходов, донный слой нефтешлама объединяют с верхним слоем нефтешлама или модифицируют путем разбавления фракцией светлых нефтепродуктов, подготовленный таким образом нефтешлам, направляют в теплообменник, перегреватель и под давлением в душ, при выходе из которого он распыляется, противотоком к нефтешламу снизу вверх движутся дымовые газы, при этом нагрев шлама осуществляют от температуры 120-140°С и со скоростью нагрева от 143±15 град/сек, далее нагрев осуществляют в соответствии с фиг.2, и на конечном этапе нагрева 340-350°С со скоростью нагрева 10±2 град/сек, при этом выделение нефтяных фракций осуществляют на конечном этапе нагрева, в результате выделения нефтяных фракций получают гудрон для дорожного битума, фракцию светлых нефтепродуктов, которую используют в качестве печного топлива или как добавку к сырью гидроочистки на нефтеперерабатывающих заводах. Технический результат - сокращение времени испарения воды, увеличение выхода светлых нефтепродуктов, полное полезное использование отхода. 3 табл., 2 ил., 1 пр.

 

Изобретение относится к переработке нефтяных шламов и может быть применено в нефтеперерабатывающей промышленности для получения разнообразных композиционных материалов.

Известен способ переработки и утилизации нефтяных шламов, в котором путем сбора с поверхности накопителя верхнего (нефтяного), среднего (водного) слоев и донных отложений получают объединенную жидкую фазу, которую подают в реактор-разделитель кавитационного типа совместно с реагентом, способствующим разделению в данной фазе эмульсии. При этом получают нефтепродукт, соответствующий легкому котельному топливу и твердый осадок подлежащий обезвреживанию на полигоне путем биоразложения (см. патент RU №2182921, МПК С10С 3/00, C10G 31/00, 2002).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе не проводят выделение нефтяных фракций, таким образом, отсутствует глубокая переработка углеводородсодержащей части нефтяного шлама и в известном способе применяются реагенты (деэмульгаторы, флотоагенты) на стадии подготовки, что существенно увеличивает стоимость переработки нефтяного шлама.

Известен способ переработки нефтесодержащих шламов, в котором путем очистки нефтешлама в гидроциклоне и гидродинамической обработки в пульсационном насосе с деэмульгатором получают углеводородную эмульсию (см. патент RU №2411260, МПК C08J 11/00, B01D 21/00, 2011).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе получаемый нефтесодержащий товарный продукт применяют только в качестве топлива, что экономически неэффективно и экологически малоприемлемо, т.к. материальные затраты на переработку превосходят ожидаемый экономический эффект от реализации низкосортного топлива, а сжигание нефтешлама ведет к загрязнению атмосферного воздуха.

Известен способ утилизации нефтяного шлама, в котором путем смешения нефтешлама с низкомолекулярным углеводородным растворителем парафинового ряда, фильтрации и последующего отстаивания обеспечивают флокуляцию и оседание из нефтяного раствора асфальтенов совместно с механическими примесями, а полученный нефтяной раствор утилизируют как нефть товарную I группы качества (см. патент RU №2172764, МПК C10G 31/09, 2001).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе применяют значительное количество реагентов и дополнительных растворителей, что экономически нецелесообразно, т.к. стоимость низкомолекулярных углеводородных растворителей значительно превосходит стоимость получаемых при переработке товарных продуктов.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ переработки твердых нефтяных шламов, в котором путем перевода его в вязкотекучее состояние, нагрева и модифицирования, выделяют соответствующие нефтяные фракции, (см. патент РФ №2193578, МПК C08J 11/04, C10G 7/00, C10G 31/06, 2002) принят за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе нагрев нефтешлама ведут поэтапно от температуры окружающей среды до 700°С со скоростью 1,25-20,0 град/мин, причем, нагрев в интервале 120-240°С проводят со скоростью не более 2,5 град/мин, а в интервале 240-450°С со скоростью не более 20 град/мин, что существенно увеличивает время процесса обработки шлама и энергозатраты на поддержание необходимого температурного режима. Кроме того, в известном способе создают атмосферу инертного газа, азота или ограничивают доступ воздуха в процессе термообработки и модифицирования нефтешлама, что ведет к повышению эксплуатационных требований и эксплуатационных расходов; модифицируют нефтешлам путем изготовления топливных брикетов, сжигание которых приводит к выбросам в атмосферу значительного количества вредных продуктов; не перерабатывают замазученные грунты в изоляционный материал для полигонов размещения отходов, что свидетельствует о неполной переработке исходного шлама.

Сущность изобретения заключается в следующем. Проблема при переработке нефтесодержащих шламов состоит в том, что возникла необходимость снижения затрат на переработку нефтесодержащих шламов, сокращения времени полного испарения воды и светлых нефтепродуктов из нефтешлама, увеличения выхода светлых нефтепродуктов и выделения замазученного грунта для получения изоляционного материала применяемого на полигонах размещения бытовых и промышленных отходов.

Технический результат - сокращение времени испарения воды и светлых нефтепродуктов из нефтешлама, увеличение выхода светлых нефтепродуктов вследствие повышения скорости нагрева нефтешлама при распылении его в среду дымовых газов и предотвращения окисления и осмоления компонентов шлама.

Указанный технический результат при осуществлении изобретения достигается тем, что в способ переработки твердых нефтяных шламов, осуществляют путем раздельного отбора из накопительного амбара верхнего слоя нефтешлама и донного слоя нефтешлама, от донного слоя нефтешлама отделяют замазученный грунт, который отправляют на полигон для биоразложения или используют в качестве изоляционного материала на полигонах размещения бытовых и промышленных отходов, донный слой нефтешлама объединяют с верхним слоем нефтешлама или модифицируют путем разбавления фракцией светлых нефтепродуктов, подготовленный таким образом нефтешлам, направляют в теплообменник, перегреватель и под давлением в душ, при выходе из которого он распыляется, противотоком к нефтешламу снизу вверх движутся дымовые газы, при этом нагрев шлама осуществляют от температуры 120-140°С и со скоростью нагрева от 143±15 град/сек, далее нагрев осуществляют в соответствии с фиг.2, и на конечном этапе нагрева 340-350°С со скоростью нагрева 10±2 град/сек, при этом выделение нефтяных фракций осуществляют на конечном этапе нагрева, в результате выделения нефтяных фракций получают гудрон для дорожного битума, фракцию светлых нефтепродуктов, которую используют в качестве печного топлива или как добавку к сырью гидроочистки на нефтеперерабатывающих заводах.

Описание изобретения содержит чертежи фиг.1, фиг.2.

Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата, получены в ходе апробации способа переработки нефтесодержащих отходов на образцах нефтешламов из накопительных амбаров, состав которых совместно с результатами экспериментов приведены в табл.1.

Способ переработки твердых нефтяных шламов, включающий перевод его в вязкотекучее состояние осуществляют (см. фиг.1) путем раздельного отбора из накопительного амбара 1 верхнего слоя нефтешлама 2 и донного слоя нефтешлама 3, затем от донного слоя нефтешлама отделяют замазученный грунт 4, который отправляют на полигон для биоразложения или используют в качестве изоляционного материала на полигонах размещения бытовых и промышленных отходов. Донный слой нефтешлама 3 перекачивают в гомогенизатор 5, где его объединяют с верхним слоем нефтешлама 2 или модифицируют путем разбавления фракцией светлых нефтепродуктов. Подготовленный в гомогенизаторе 5 нефтешлам, направляют в промежуточную емкость 6, откуда поэтапно перекачивают его насосом 7 в теплообменник 8, где его нагревают гудроном 9, поступающим из реактора 10 в сборник гудрона 11, и в перегреватель 12, где его нагревают до 120-140°С дымовыми газами 13, которые выводят в атмосферу через вывод дымовых газов 14. Затем перегретый в перегревателе 12 нефтешлам, с содержанием воды не менее 5% по массе, поступает под давлением в 1,5-2 атмосферы в душ 15, при выходе из которого распыляется за счет резкого перехода эмульгированной воды из жидкого состояния в газообразное. Противотоком к нефтешламу, снизу вверх по вертикальному реактору 10, движутся дымовые газы 13 с температурой 420-600°С. При этом нагрев шлама осуществляют со скоростью нагрева от 143±15 град/сек и температурным режимом от температуры 120-140°С на начальном этапе нагрева, далее нагрев осуществляют в соответствии с фиг.2, до скорости 10±2 град/сек и температуры 340-350°С на конечном этапе нагрева. Дымовые газы 13 получают в тепловом агрегате 16 (регулируемом генераторе дымовых газов) путем сжигания топлива 17 (мазута, черного соляра, печного топлива и т.п.) при нагнетании воздуха компрессором 18. Излишек дымовых газов отводят через выход 19. Дымовые газы 13 поступают в реактор 10 через узел подачи дымовых газов 20 и интенсифицируют испарение воды и светлых нефтепродуктов с поверхности капель нефтешлама. При этом выделение нефтяных фракций осуществляют на конечном этапе нагрева, по достижении скорости нагрева 10±2 град/сек и температуры нагрева 340-350°С. Паро-дымовую смесь 21 подают в холодильник 22, где охлаждают водой 23, выводимой через вывод 24, и конденсируют. Затем конденсат подают в сепаратор-отстойник 25, где разделяют на газовые сдувки 26, фракцию светлых нефтепродуктов 27 и воду 28.

Пример. Переработка нефтешламов проводилась в июле-августе 2010-2011 годов. Состав исследованных нефтешламов из шламонакопительных амбаров и выход светлых нефтепродуктов в зависимости от способа обработки приведены в таблице 1. Подготовку образцов для эксперимента осуществляли путем смешения верхнего и донного слоев нефтешлама в соотношении 1:1 по массе [см. М.С.Кузнецова, Н.А. Уварова, А.А. Пименов, В.В. Ермаков, В.А. Бурлака. Дифференциация нефтешламонакопителей на основании их ресурсного потенциала // Экология и промышленность России. 2011. Декабрь. №12. С.30; Е.А. Кисельников, А.А. Пименов, Н.Г. Гладышев, П.А. Никульшин, В.В. Коновалов, А.А. Пимерзин, Д.Е. Быков. Малоотходная утилизация жидких нефтесодержащих отходов // Экология и промышленность России. 2011. Март. №3. С.32.] Таким образом, показано, что предлагаемый способ переработки нефтесодержащих шламов позволяет существенно повысить выход светлых нефтепродуктов по сравнению с известным способом переработки.

График, иллюстрирующий эффективность предлагаемого способа переработки нефтешлама, представлен на фиг.2, приведена зависимость скорости нагрева образца нефтешлама в условиях эксперимента по распылению нефтешлама в среду дымовых газов (кривая 1) и расчетная зависимость скорости нагревания в адиабатно-изотермическом режиме, предложенном в известном способе (кривая 2). При распылении нефтешлама в среду дымовых газов получают капли шлама, которые за время процесса нагрева приобретают достаточно высокую температуру для полного испарения растворенной воды и большей части светлых нефтепродуктов. По причине отсутствия кислорода и высокой скорости нагрева не протекают процессы окисления и осмоления компонентов шлама, что увеличивает выход светлых нефтепродуктов. Экспериментальные данные по зависимости скорости нагрева жидкого образца нефтешлама в условиях эксперимента по его распылению в среду дымовых газов приведены в таблице 2.

Результаты анализа гудронов полученных предлагаемым способом (см. табл.3) доказывают соответствие их требованиям, предъявляемым к сырью битумному СБ 20/40 [см. А.Н. Сухоносова, М.С.Кузнецова, Н.Г. Гладышев, В.В. Ермаков, А.А. Пименов. Основные направления квалифицированного использования кубовых остатков выделения дизельных фракций из нефтесодержащих отходов // Экология и промышленность России. 2011. Декабрь. №12. С.10; ГОСТ 11503-74. Битумы нефтяные. Метод определения условной вязкости].

Таблица 2
Экспериментальная зависимость температуры нагрева жидкого образца нефтешлама в условиях эксперимента по его распылению в среду дымовых газов
Температура образца нефтешлама, °С Время, с
1 120 0,00
2 163 0,30
3 213 0,35
4 268 0,70
5 335 2,35
6 351 3,90
Таблица 3
Результаты анализа полученных гудронов на соответствие требованиям, предъявляемым к сырью битумному СБ 20/40
Показатель Образцы нефтешлама Нормативные требования
№1 №2 №3 №4 №5
Вязкость условия при 80°С на вискозиметре с диаметром истечения 5 мм, с 49 73 36 43 66 20-40
Температура вспышки в открытом тигле,°С 267 277 233 245 245 Не менее 190
Плотность при 20°С (после отделения мехпримесей), г/см3 0,992 1,014 0,974 0,986 1,018 0,97-0,99
Температура размягчения по Кольцу и Шару,°С 51 64 35 43 59 Не менее 20
Массовая доля воды, % Менее 0,4 Следы

Способ переработки твердых нефтяных шламов путем раздельного отбора из накопительного амбара верхнего слоя нефтешлама и донного слоя нефтешлама, от донного слоя нефтешлама отделяют замазученный грунт, который отправляют на полигон для биоразложения или используют в качестве изоляционного материала на полигонах размещения бытовых и промышленных отходов, донный слой нефтешлама объединяют с верхним слоем нефтешлама или модифицируют путем разбавления фракцией светлых нефтепродуктов, подготовленный таким образом нефтешлам направляют в теплообменник, перегреватель и под давлением в душ, при выходе из которого он распыляется, противотоком к нефтешламу снизу вверх движутся дымовые газы, при этом нагрев шлама осуществляют от температуры 120-140°С и со скоростью нагрева от 143±15°С/с, далее нагрев осуществляют в соответствии с фиг.2, и на конечном этапе нагрева 340-350°С со скоростью нагрева 10±2°С/с, при этом выделение нефтяных фракций осуществляют на конечном этапе нагрева, в результате выделения нефтяных фракций получают гудрон для дорожного битума, фракцию светлых нефтепродуктов, которую используют в качестве печного топлива или как добавку к сырью гидроочистки на нефтеперерабатывающих заводах.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности. Способ комплексной утилизации нефтесодержащих отходов случайного состава с получением энергоносителей широкого ассортимента включает низкотемпературный пиролиз с источником обогрева, перед пиролизом нефтесодержащие отходы случайного состава сортируют при накоплении, механически смешивают в установленном соотношении и термически гомогенизируют с выпариванием влаги топочными газами при температуре 100-130°С, в процессе пиролиза пиролизный газ направляют в блок конденсации для отделения легких фракций углеводородов от тяжелых, при этом легкие фракции направляются на ректификационную колонну с получением бензина, керосина и дизельного топлива, тяжелые фракции с кубовым остатком из блока конденсации подаются в блок для предварительного активирования методом окислительного крекинга в диапазоне температур 250-350°С продувкой воздухом в соотношении 1:(300-500), после окислительного крекинга активированные тяжелые фракции направляют на каталитический крекинг для дополнительного получения бензина, керосина и дизельного топлива, а также мазута, битума и гудрона, после пиролиза твердый продукт пиролиза перемещают в генератор водяного газа, отходящие горючие газы из конденсационной колонны направляют в генератор водяного газа, при этом отходящие горючие газы обогащают перегретым паром и в среде твердого продукта пиролиза переводят в газообразный энергоноситель - водяной газ.

Изобретение относится к способу радиочастотного нагрева нефтеносной породы с использованием набора из одной или более радиочастот. Способ включает следующие шаги: (a) смешивание первого вещества, включающего нефтеносную породу, и второго вещества, включающего воспринимающие частицы в виде дипольных антенн, с образованием смеси из 10-99% по объему первого вещества и 1-50% по объему второго вещества; (b) воздействие на упомянутую смесь радиочастотной энергией с частотой или частотами из упомянутого набора из одной или более радиочастот и мощностью, достаточной для нагрева воспринимающих частиц; и (c) продолжение воздействия радиочастотной энергией на протяжении времени, достаточного для нагревания воспринимающими частицами упомянутой смеси до средней температуры, превышающей приблизительно 100°C (212°F).

Изобретение относится к нефтехимической промышленности и может быть использовано для получения жидких и твердых продуктов совместной термохимической переработкой нефтешлама или кислого гудрона в смесях с твердым природным топливом в реакторах, обогреваемых газовым теплоносителем.

Данное изобретение касается способов преобразования лигноцеллюлозного материала в топливные продукты. Способ получения бионефти из лигноцеллюлозного материала, где способ включает этапы: (a) сольватирования гемицеллюлозы из лигноцеллюлозного материала с использованием растворителя, (b) удаления сольватированной гемицеллюлозы из твердого вещества, оставшегося после этапа (a); и (c) сольватирования лигнина и целлюлозы из твердого вещества, оставшегося после этапа (a) с использованием растворителя, при реакционной температуре от 180°C до 350°C и реакционном давлении от 8 МПа до 26 МПа, где этап (c) сольватирования лигнина и целлюлозы дает бионефть.

Изобретение относится к методам термической деполимеризации природных и вторичных органических ресурсов, например твердых бытовых отходов (ТБО). Способ переработки органических и полимерных отходов включает загрузку сырья с предварительной сепарацией, измельчение с подсушкой, отличается тем, что подсушку осуществляют совместно с катализатором и низкокалорийным природным топливом, затем готовят пасту из измельченного материала и растворителя - дистиллята, получаемого при дистилляции жидких продуктов, при этом предусматривают дальнейшую ступенчатую деполимеризацию реакционной массы с температурой 200-400°C при нормальном атмосферном давлении, осуществляемую в каскаде из двух пар последовательно соединенных реакторов, в которых температура деполимеризации достигает в 1-й паре 200°C, и во 2-й паре - более 200°C и не превышает 310°C, объединяющихся друг с другом рециркулирующими потоками: газообразным, формирующем в реакционной системе восстановительную среду в виде синтез-газа (CO и H2), образующуюся путем паровой каталитической конверсии углеводородных газов, выходящих из реакторов деполимеризации, перемещающуюся посредством газового насоса через подогреватель восстановительных газов из реакционной системы, обеспечивают также вывод синтез-газа для получения моторных топлив - метанола, диметилового эфира или бензина; жидкую же углеводородную фазу отделяют от твердых непрореагировавших компонентов с выходом последних до 40% от общей исходной массы твердых бытовых отходов (ТБО), которые выводят из системы с помощью циркуляционных насосов и направляют для производства нефтяных брикетов и/или горючих капсул, причем жидкую реакционную углеводородную смесь, после отделения от нее твердого остатка, направляют на горячую сепарацию, охлаждение и дистилляцию, кроме того, меньшую часть дистиллята возвращают в мешалку для приготовления пасты на стадию приготовления пасты, а большую часть разделяют на целевые фракции: первую с температурой кипения до 200°C и вторую с температурой кипения выше 200°C, но не более 310°C.

Изобретение относится к интегрированному способу получения дизельного топлива или добавок к топливу из биологического материала посредством получения парафинов в реакции Фишера-Тропша, с одной стороны, и посредством каталитической гидродеоксигенации масел и жиров биологического происхождения, с другой стороны.

Изобретение относится к переработке устойчивых нефтяных эмульсий и застарелых нефтешламов в нефтедобывающей и нефтеперерабатывающей промышленности. .

Изобретение относится к области переработки органического сырья, например древесины, торфа сланцев, угля промышленных и бытовых отходов, содержащих органические составляющие, железнодорожных деревянных шпал, отходов растениеводства, животноводства и т.п., и может найти применение в химической, лесо- и нефтеперерабатывающих отраслях, коммунальном, сельском хозяйстве и других отраслях промышленности методом пиролиза.

Изобретение относится к нефтегазовой промышленности. Способ комплексной утилизации нефтесодержащих отходов случайного состава с получением энергоносителей широкого ассортимента включает низкотемпературный пиролиз с источником обогрева, перед пиролизом нефтесодержащие отходы случайного состава сортируют при накоплении, механически смешивают в установленном соотношении и термически гомогенизируют с выпариванием влаги топочными газами при температуре 100-130°С, в процессе пиролиза пиролизный газ направляют в блок конденсации для отделения легких фракций углеводородов от тяжелых, при этом легкие фракции направляются на ректификационную колонну с получением бензина, керосина и дизельного топлива, тяжелые фракции с кубовым остатком из блока конденсации подаются в блок для предварительного активирования методом окислительного крекинга в диапазоне температур 250-350°С продувкой воздухом в соотношении 1:(300-500), после окислительного крекинга активированные тяжелые фракции направляют на каталитический крекинг для дополнительного получения бензина, керосина и дизельного топлива, а также мазута, битума и гудрона, после пиролиза твердый продукт пиролиза перемещают в генератор водяного газа, отходящие горючие газы из конденсационной колонны направляют в генератор водяного газа, при этом отходящие горючие газы обогащают перегретым паром и в среде твердого продукта пиролиза переводят в газообразный энергоноситель - водяной газ.
Изобретение относится к способу получения неорганических гидравлических вяжущих веществ. Согласно предложенному способу материал техногенного или природного происхождения из группы, включающей твердые продукты, получаемые путем сгорания твердых топлив, металлургический шлак, продукты низовых пожаров, продукты сгорания отвалов при добыче ископаемых топлив, отходы производства стекла, отходы производства керамики, отходы строительных кирпичей и бетона, термически активируемые глины, низкокристаллические обломочные изверженные породы, осадочный латерит, боксит, опалолит, аллофанолит, диатомит, известняк, аргиллит и глины, подвергают физической обработке.
Изобретение относится к способу переработки твердых бытовых отходов, включающему плазмохимический пиролиз гомогенизированной смеси, представляющей собой гомогенно диспергированную в сырье трехфазную систему, состоящую из высоко дисперсных частиц катализатора, метановодородной фракции, выделенной на стадии разделения продуктов пиролиза, и жидких продуктов пиролиза, закалку продуктов пиролиза, выделение технического углерода и твердых частиц отработанного катализатора фильтрованием и стадию разделения продуктов пиролиза с получением метановодородной фракции и жидких продуктов пиролиза и с рециклом части метановодородной фракции на стадию плазмохимического пиролиза.

Изобретение относится к утилизации строительных отходов. Установка утилизации бетона содержит грохот, электромагнит и систему водоочистки, а также три технологических цепочки.
Настоящее изобретение относится к составу композиционного строительного материала. Технический результат - повышение степени защиты окружающей среды, получение экологически безопасного строительного материала с повышенной прочностью и устойчивостью к ветровой и водяной эрозии, связывающего в своей структуре загрязняющие вещества, исключающего их миграцию в окружающую природную среду и укрепляющего откосы автодорог, песчаные обваловки технологических площадок, например, от размыва во время проливных дождей и паводков, укрепляющего строительные площадки, в том числе и с неоднородным, и неустойчивым составом грунта.

Изобретение относится к области переработки отходов, в частности золошлаковых отходов ТЭЦ. Золу от сжигания углей помещают в реакционную зону, добавляют углеродный сорбент в количестве 10-25 кг на тонну золы.

Предлагаемый способ относится к области утилизации концентрированных органических субстратов, таких как бесподстилочный навоз, помет, осадки и илы сооружений механо-биологической очистки хозяйственно-бытовых и близких к ним по составу производственных сточных вод.

Изобретение относится к области переработки концентрированных органических субстратов - бесподстилочного навоза, помета, осадков локальных очистных сооружений перерабатывающих производств, отходов механобиологической очистки городских сточных вод - в газообразный энергоноситель - биогаз и стабилизированные обеззараженные продукты - биошламы - эффлюент, которые могут быть использованы при приготовлении удобрений.

Изобретение относится к области экологии и охраны окружающей среды. Предложен способ подземного обезвреживания отходов с производством биогаза, согласно которому предварительно подготовленные отходы в виде суспензии pH=6…8, состоящей из твердых бытовых отходов, буровых отходов, бытовых и хозяйственно-фекальных сточных вод, инициирующей добавки, периодически закачивают в существующие, не менее одной, нагнетательные скважины газовых, газоконденсатных или нефтяных месторождений, по которым достигнут конечный коэффициент извлечения пластовых флюидов.

Изобретение относится к устройству для обработки отходов, включающих органические отходы и муниципальные твердые отходы, а также к способу обработки отходов. Устройство содержит удлиненную рабочую камеру с зоной обработки для проведения обработки отходов при повышенной температуре, которая имеет входное отверстие для введения отходов, выходное отверстие для удаления обработанных твердых частиц, первые средства для введения горячих газов в камеру, расположенные в радиально отдаленной области камеры, и экстракционные средства для извлечения газа из центральной области камеры, при этом рабочая камера имеет первую зону для извлечения воздуха и/или влаги из отходов и вторую зону для извлечения синтетического газа, расположенную ниже по ходу первой зоны.
Изобретение относится к области нефтегазодобывающей промышленности и рекультивации. Способ включает смешивание бурового шлама, негашеной извести, торфа, цемента и песка. Дополнительно осуществляют смешивание бурового шлама с углеродом техническим с последующим смешиванием с негашеной известью. После чего осуществляют последовательное смешивание с торфом, цементом и песком. Затем полученную смесь выдерживают в течение 2 или 3 суток при следующем соотношении компонентов, мас.%: буровой шлам - 40-60; углерод технический - 2-5; цемент - 10-15; песок - 10-15; торф - 15-20; негашеная известь - остальное. Способ позволяет повысить степень обезвреживания нефтесодержащих буровых шламов за счет нейтрализации токсичных компонентов буровых шламов и за счет использования нетоксичных компонентов, обеспечивает возможность переработки нефтесодержащих буровых шламов в строительный материал с повышенной прочностью, в экологически безопасный грунт, пригодный для компактного складирования или для использования в качестве мелиоранта для мульчирования рекультивируемого участка с улучшенными экологическими свойствами. 3 пр.
Наверх