Микроэлектромеханический датчик микроперемещений с магнитным полем

Изобретение относится к области приборостроения. Оно может быть использовано в датчиках перемещений в системах навигации, автоматического управления и стабилизации подвижных объектов. Технический результат заключается в уменьшении массогабаритных характеристик, а также увеличении разрешающей способности. Технический результат достигается благодаря тому, что микроэлектромеханический датчик микроперемещений с магнитным полем содержит консоль 1, сформированную в кремниевом кристалле 2 с образованием зазора 3, магниточувствительный элемент 4 и постоянный магнит 5. При этом поверхность кристалла 1 покрыта изолирующим слоем 6. На поверхности изолирующего слоя 6, по меньшей мере, на части консоли 1 и, по меньшей мере, на части поверхности кристалла 1, включая край зазора 3, противолежащий концу консоли 1, на изолирующем слое размещен магнитопровод 7 из пленки магнитомягкого материала. Постоянный магнит 5 размещен на магнитопроводе 7. Магниточувствительный элемент 4 размещен в области изменения магнитного поля, формируемого постоянным магнитом 5, при перемещении консоли 1. 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к области приборостроения. Оно может быть использовано в датчиках перемещений в системах навигации, автоматического управления и стабилизации подвижных объектов - самолетов, плавательных аппаратов, автомобилей и других. Контроль микроперемещений различных объектов необходимо проводить при производстве микросхем и в робототехнике.

В патенте США №6717413 (опубл. 06.04.2004 г.) предлагается контролировать движение образцов с помощью ионизационного детектора контактной разности потенциалов.

В патенте США №7152476 (опубл. 23.07.2004 г.) предлагается контролировать движение вращающегося вала с помощью датчика контактной разности потенциалов с емкостной фиксацией.

В патенте США №7282822 (опубл. 16.10.2007 г.) предлагается контролировать движение образцов с разным составом и структурой с помощью магнитострикционного датчика, изменяющего индуктивность связанных катушек.

В патенте РФ №2454644 (МПК G01M 1/22, G01H 11/02, опубл. 27.06.2012 г.) предлагается контролировать пространственные вибрации электроприводов с помощью вибропреобразователей.

В патенте РФ №2207522 (МПК G01H 11/02, опубл. 27.06.2003 г.) предлагается контролировать пространственные вибрации низкооборотных энергетических агрегатов гидроэлектростанций с помощью постоянного магнита и катушки с обмотками электродинамической системы чувствительного элемента.

В патенте РФ №2131591 (МПК G01H 11/02, G01B 7/00, опубл. 10.06.1999 г.) предлагается контролировать линейные перемещения с помощью индукционного датчика, соединенного с LC-генератором.

Аналогом изобретения является патент РФ на изобретение РФ №2086934 (МПК G01H 11/02, опубл. 10.08.1997), в котором предлагается контролировать механические колебания ферромагнитного инерционного элемента, установленного в положение устойчивого равновесия в магнитном поле с помощью изменения напряженности магнитного поля с частотой, большей частоты колебаний объекта, а параметры движения объекта определяют по изменениям амплитуды колебаний инерционного элемента, установленного в магнитную систему, выполненную в виде соленоида.

Приведенные выше примеры патентов реализуют функцию контроля перемещений с помощью систем с объемными элементами. Основная тенденция развития датчиков состоит в переходе к микроминиатюрным датчикам, в которых элементы контроля микроперемещений и преобразователи механических микроперемещений в электрический сигнал располагаются на одном кристалле. Микроперемещения кристалла приводят к перемещению упругих элементов в виде консолей или язычков. Эти элементы чаще всего составляют часть емкостных систем, в которых перемещения приводят к изменению емкости, что фиксируется электрическими методами. Изменение емкости от величины перемещения имеет линейную зависимость.

Наиболее близким по совокупности существенных признаков (прототипом) изобретения является техническое решение датчика микроперемещений, описанное в заявке на изобретение РФ №95103486 (МПК H01L 27/20, опубл. 10.01.1997 г.). Интегральная схема датчика микроперемещений отличается тем, что в корпусе расположен постоянный магнит на расстоянии от полупроводниковой подложки, превышающем величину максимального отклонения чувствительного элемента, а в приповерхностном слое чувствительного элемента расположены электрические элементы первичного преобразователя типа индукции постоянного магнитного поля в электрический сигнал. Признаками, совпадающими с заявляемым изобретением, являются признаки наличия конструктивных элементов: консоли, магниточувствительного элемента и постоянного магнита.

Получению требуемого технического результата препятствуют конструктивное исполнение магнитной системы, а также технические методы сборки всего устройства. Предложенное расположение магнита на расстоянии от полупроводниковой подложки, превышающем величину максимального отклонения чувствительного элемента, и расположение в приповерхностном слое чувствительного элемента электрических элементов первичного преобразователя типа индукции постоянного магнитного поля в электрический сигнал приводит к тому, что перемещение консоли с первичным преобразователем относительно магнита или ограничивается расположением магнита и эффектом залипания, или при значительном удалении магнита от консоли существенно уменьшает эффективность преобразования величины перемещений в полезный электрический сигнал. В интегральной схеме датчика микроперемещений взаимное расположение магнита и консоли с первичным преобразователем определяется точностью приклеивания элементов при сборке.

Задачей изобретения микроэлектромеханического датчика микроперемещений с магнитным полем является создание миниатюрного датчика с высокой эффективностью преобразования микроперемещений в электрический сигнал.

Технический результат заключается в уменьшении массогабаритных характеристик, увеличении разрешающей способности.

Для достижения вышеуказанного технического результата в микроэлектромеханическом датчике микроперемещений с магнитным полем, содержащем консоль, магниточувствительный элемент и постоянный магнит, консоль сформирована в кремниевом кристалле с образованием зазора, поверхность кристалла покрыта изолирующим слоем, на поверхности изолирующего слоя, по меньшей мере, на части консоли и, по меньшей мере, на части поверхности кристалла, включая край зазора, противолежащий концу консоли, размещен магнитопровод из пленки магнитомягкого материала, постоянный магнит размещен на магнитопроводе, магниточувствительный элемент размещен в области изменения магнитного поля, формируемого постоянным магнитом, при перемещении консоли.

В частных случаях выполнения изобретения магниточувствительный элемент выполнен в виде магнитотранзистора, сформированного в кристалле.

В частных случаях выполнения изобретения магниточувствительный элемент выполнен в виде магниторезистивного моста Уитстона, сформированного на кристалле.

Между совокупностью существенных признаков и достигаемым техническим результатом существует причинно-следственная связь.

Снабжение датчика магнитопроводом позволяет использовать магнитную систему для контроля за перемещениями консольных микроэлектромеханических систем. Перемещение части магнитопровода, расположенной на консоли, относительно части магнитопровода, расположенной на остальной части кристалла, изменяет магнитный поток, проходящий через зазор, что может быть зафиксировано магниточувствительными элементами. Магнитный поток около края магнита изменяется пропорционально шестой степени расстояния от края. Высокая степень зависимости определяет высокую чувствительность магнитного потока к перемещениям.

Структура датчика располагается на одном кристалле, что позволяет изготовить его по МЭМС технологии и обеспечить снижение размеров и массы датчика.

Изобретение поясняется чертежами, где

на фиг.1 представлена схема датчика микроперемещений, поперечное сечение;

на фиг.2 представлена схема датчика микроперемещений, вид сверху;

на фиг.3 представлена схема изменения магнитного поля при изменении положения консоли,

на фиг.4 представлена схема включения напряжения на электроды магниточувствительного элемента в виде магнитотранзистора;

на фиг.5 представлена схема включения напряжения на магниторезистивный мост Уитстона:

на фиг.6 представлена зависимость относительной дифференциальной магнитной чувствительности магнитотранзистора по току от величины перемещения конца консоли Н.

Микроэлектромеханический датчик микроперемещений содержит консоль 1, сформированную в кремниевом кристалле 2 с образованием зазора 3, магниточувствительный элемент 4 и постоянный магнит 5 (фиг.1, 2). Поверхность кристалла 1 покрыта изолирующим слоем 6. На поверхности изолирующего слоя 6, по меньшей мере, на части консоли 1 и, по меньшей мере, на части поверхности кристалла 1, включая край зазора 3, противолежащий концу консоли 1, на изолирующем слое размещен магнитопровод 7 из пленки магнитомягкого материала (фиг.1, 2). Постоянный магнит 5 размещен на магнитопроводе 7. Магниточувствительный элемент 4 размещен в области изменения магнитного поля, формируемого постоянным магнитом 5, при перемещении консоли 1. Магниточувствительный элемент по алюминиевой разводке 8 соединен с контактными площадками 9 - контактная площадка Епит - напряжение питания; 10 - контактная площадка Выход 1; 11 - контактная площадка Выход 2; 11 - контактная площадка Земля.

Схема изменения магнитного поля при изменении положения инерциального элемента - консоли микроэлектромеханического датчика микроперемещений с магнитным полем представлена на фиг.3, где В1 - вектор магнитной индукции до перемещения консоли; В2 - вектор магнитной индукции после перемещения консоли.

Схема включения напряжения на электроды магнитотранзистора микроэлектромеханического датчика микроперемещений выполнена так, как показано на фиг.4, где Епит - напряжение питания; К1 - вывод от первого коллектора магнитотранзистора является контактной площадкой 10; К2 - вывод от второго коллектора магнитотранзистора является контактной площадкой 11. К - вывод кармана. Б - вывод базы. Э - эмиттер. П - подложка. RБ - сопротивление смещения базы. RК1 сопротивление нагрузки коллектора 1. RК2 - сопротивление нагрузки коллектора 2.

Схема включения напряжения на магниторезистивный мост Уитстона микроэлектромеханического датчика микроперемещений с магнитным полем выполнена так, как показано на фиг.5, где 9 - Eпит - напряжение питания; 10 - Выход 1 с магниторезистивного моста Уитстона; 11 - Выход 2 с магниторезистивного моста Уитстона; 12 - Земля. R1, R2, R3, R4 - магниторезисторы.

Магниточувствительные элементы - магнитотранзисторы и магниторезисторы располагаются в магнитопроводе так, чтобы действующее изменение магнитного поля в месте расположения элемента соответствовало их диапазону чувствительности.

На фиг.6 дана зависимость относительной дифференциальной магнитной чувствительности магнитотранзистора по току от величины перемещения конца консоли Н.

Схема изменения магнитного поля с индукцией В при механическом перемещении консоли микроэлектромеханического датчика микроперемещений с магнитным полем представлена на фиг.3. Перемещение кристалла в пространстве вследствие приложения к нему силы приводит к перемещению относительно своего первоначального положения консоли, играющей роль инерционной массы, причем величина такого перемещения консоли пропорциональна приложенной силе. При этом происходит рассовмещение магнитопровода, расположенного на конце консоли около зазора и магнитопровода, расположенного на кристалле с другой стороны от зазора. Также при этом изменяется фактическая величина зазора в магнитопроводе и уменьшается магнитный поток. Начальное значение магнитной индукции В1 изменяется и принимает значение В2. Магниточувствительный элемент магнитотранзистор или магниторезистивный мост Уитстона фиксирует изменение магнитной индукции в виде разности потенциалов между выходом 1 и выходом 2. Таким образом, механическое перемещение преобразуется в электрический сигнал.

На фиг.6 для конкретного прибора микроэлектромеханического датчика микроперемещений с магнитным полем дана зависимость относительной дифференциальной магнитной чувствительности магнитотранзистора по току от величины перемещения конца консоли Я для микромагнита ЮНКДК25Ф ГОСТ 17809-72 с магнитной индукции В=50 мТл. В зависимости от величины перемещения относительная магнитная чувствительность по току увеличивается при увеличении перемещения до 0,3 мкм и достигает величины .

Конструктивные элементы микроэлектромеханического датчика микроперемещений выполнены по МЭМС технологии следующим образом. Трехколлекторный биполярный магнитотранзистор изготавливался по технологии интегральных схем на поверхности кремниевого кристалла в соответствии со статьей - Козлов А.В., Королев М.А., Шаманаев С.В., Тихонов Р.Д., Черемисинов А.А. Трехколлекторный магнитотранзистор: механизм чувствительности с отклонением двух потоков носителей заряда // Радиопромышленность. - 2012, вып.3. - С.58-66. На поверхности окисла формируется магниторезистивный мост Уитстона в виде четырех полосок магниторезистивной пленки с анизотропным эффектом. Для формирования кремниевой консоли 1 в кремниевом кристалле 2 методами объемной микрообработки анизотропным химическим травлением вытравливается углубление под плоской кремниевой мембраной толщиной порядка 20 мкм, которая служит для создания консоли. На окисленную поверхность (изолирующий слой) кремниевого кристалла напыляется пленка магнитомягкого материала. Используя методы фотолитографии и плазмохимического травления, формируют магнитопровод 7 и консоль 1. Точное расположение магнитопровода и малая величина зазора в магнитопроводе определяются высокой точностью воспроизведения размеров, достигаемой при фотолитографических процессах. Методами изготовления интегральных схем создаются алюминиевая разводка 8 и контактные площадки 9-12. Расположение контактных площадок дает возможность осуществлять разварку выводов с контактных площадок, используя стандартное технологическое оборудование. На кристалл 2 микроэлектромеханического датчика микроперемещений в области широкой части магнитопровода наклеивается микромагнит 5.

Описанный выше микроэлектромеханический датчик микроперемещений работает следующим образом. На выводы прибора подается напряжение: на контакты питания подается положительное напряжение смещения относительно земли. С выводов коллекторов снимается разность напряжений. Прибор имеет симметричную структуру и одинаковые нагрузки, поэтому токи рабочих коллекторов равны и на выходах между двумя коллекторами разница напряжений равна нулю при нулевом магнитном поле. В магнитном поле, задаваемом постоянным микромагнитом 5 через магнитопровод 7 на магнитотранзистор 4 между выводами коллекторов магнитотранзистора, вырабатывается разность потенциалов.

При механическом движении консоли 1 происходит изменение разности напряжений измерительных коллекторов трехколлекторного биполярного магнитотранзистора 4, которая зависит от величины микроперемещения.

Микроэлектромеханический датчик микроперемещений с магнитным полем обладает новым качеством - структура датчика располагается на одном кристалле, что позволяет изготовить его по МЭМС технологии и обеспечить снижение размеров и массы датчика.

1. Микроэлектромеханический датчик микроперемещений с магнитным полем, содержащий консоль, магниточувствительный элемент и постоянный магнит, отличающийся тем, что консоль сформирована в кремниевом кристалле с образованием зазора, поверхность кристалла покрыта изолирующим слоем, на поверхности изолирующего слоя, по меньшей мере, на части консоли и, по меньшей мере, на части поверхности кристалла, включая край зазора, противолежащий концу консоли, размещен магнитопровод из пленки магнитомягкого материала, постоянный магнит размещен на магнитопроводе, магниточувствительный элемент размещен в области изменения магнитного поля, формируемого постоянным магнитом, при перемещении консоли.

2. Микроэлектромеханический датчик микроперемещений с магнитным полем по п.1, отличающийся тем, что магниточувствительный элемент выполнен в виде магнитотранзистора, сформированного в кристалле.

3. Микроэлектромеханический датчик микроперемещений с магнитным полем по п.1, отличающийся тем, что магниточувствительный элемент выполнен в виде магниторезистивного моста Уитстона, сформированного на кристалле.



 

Похожие патенты:

Изобретение относится к измерительной технике. Сущность: приемник содержит основной и дополнительный пьезоэлементы, корпус, выполненный из теплопроводящего материала, например из металла.

Изобретение относится к оптическим проекционным системам; а более конкретно к периодической структуре из М x N тонкопленочных связанных с приводом зеркал для использования в такой системе и способ ее изготовления.

Изобретение относится к области датчиков, в которых используются устройства на полевых транзисторах. .

Изобретение относится к микроэлектронике, а точнее магнитоуправляемым интегральным схемам и может быть применено для создания ячеек памяти и в сенсорных устройствах управления.

Изобретение относится к измерительной технике и может быть использовано для измерения вибрации электроприводов различных приборов. .

Изобретение относится к измерительной технике и может быть использовано для вибродиагностики технического состояния низкооборотных энергетических агрегатов гидроэлектростанций и их базовых конструкций.

Изобретение относится к технике измерения вибраций и может быть использовано для измерения линейных перемещений и вибраций вращающихся роторов и валов различных агрегатов в машиностроении и энергетике, а также перемещений мембран.

Изобретение относится к измерительной технике и имеет целью повышения точности вибродатчика за счет обеспечения регулирования жесткости упругого подвеса инерционного элемента.

Изобретение относится к контрольноизмерительной технике. .

Изобретение относится к измерительной технике и имеет целью упрощение конструкции датчика виброскорости за счет одновременного использования центрирующих пружин в качестве измерительной обмотки.

Изобретение относится к измерительной технике и имеет целью расширение диапазона измерений вибродатчика за счет обеспечения регулирования жесткости магнитного подвеса инерционного элемента.

Изобретение относится к измерительной технике и имеет целью повышение точности вибродатчика за счет обеспечения возможности регулирования жесткости подвеса инерционного элемента.

Изобретение относится к виброметрии и способствует регулированию частотного диапазона работы вибродатчика путем изменения массы его инерционного элемента . .

Изобретение относится к измерительной технике, может быть использовано для контроля параметров вибрации и позволяет повысить надежность и помехоустойчивость преобразования. Преобразователь виброскорости включает в себя корпус, немагнитное основание, размещенную в корпусе двухсекционную измерительную обмотку, охваченную втулкой из магнитного материала, полую немагнитную ось с закрепленным в ней ферромагнитным сердечником и жестко установленную в двухступенчатом отверстии основания, обращенном ступенью меньшего диаметра во внутреннюю часть корпуса, установленный соосно с сердечником оси и свободно охватывающий ось кольцевой продольно намагниченный постоянный магнит, выводной кабель, жилы которого электрически соединены с концами обмотки в радиальном отверстии основания. При этом преобразователь снабжен втулкой из немагнитного материала с малым коэффициентом трения, крышкой из немагнитного высокоэлектропроводящего материала, установочным немагнитным винтом и разъемом, при этом втулка из магнитного материала выполнена высотой, не меньшей высоты обмотки, форма полой оси выполнена в виде гвоздя, шляпа которого выполнена правильной цилиндрической формы и диаметром, меньшим диаметра первой ступени отверстия в основании, но большим диаметра второй ступени отверстия в основании, при этом диаметр оси выполнен меньшим диаметра второй ступени основания на величину минимального технологического зазора, крышка выполнена в виде блина с уступом, диаметр которого выполнен меньшим внутреннего диаметра обмотки на величину технологического зазора, с глухим отверстием со стороны уступа, диаметр глухого отверстия выполнен диаметром, обеспечивающим тугую посадку конца оси в отверстии крышки, а диаметр блина выполнен равным внешнему диаметру магнитной втулки, при этом уступ крышки плотно размещен в верхней части обмотки, конец оси размещен в глухом отверстии крышки, магнит расположен свободно между внутренними торцами крышки и основания и жестко закреплен на втулке, которая на скользящей посадке размещена на оси, установочный винт размещен в первой ступени, в которой нарезана резьба, отверстия основания и вкручен до упора со шляпой оси, при этом корпус с основанием соединен с помощью винтов, шляпки которых размещены в потайных отверстиях, изготовленных с нижней стороны основания, радиальное отверстие в основании с припаянными концами обмотки к соответствующим жилам кабеля залито неэлектропроводящим компаундом, кабель центрирован и закреплен в отверстии основания с помощью фиксирующей втулки, а жилы свободного конца кабеля припаиваются к соответствующим контактам разъема. Техническим результатом от реализации изобретения является повышение конструктивной и информационной надежности. 1 ил.

Изобретение относится к измерительной технике, представляет собой вибродатчик в микроэлектромеханическом исполнении и может использоваться для регистрации вибрации, в том числе с субмикронной амплитудой, и измерения параметров вибрации. Датчик включает упругий элемент с магниторезистивными датчиками с двух сторон, выполненный с возможностью колебаний в существенно неоднородном поле магнита с плоскими полюсами. Вызываемое вибрацией колебание упругого элемента приводит к изменению сопротивлений магниторезисторов в противофазе, а внешние поля - к синфазному изменению сопротивлений магниторезисторов, что увеличивает чувствительность вибродатчика и расширяет возможности для выделения полезного сигнала. Техническим результатом является повышение чувствительности при малых амплитудах вибрации и уменьшение влияния внешних электромагнитных полей. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе. Технический результат: повышение надежности и временной стабильности интегрального микромеханического реле. Сущность: способ изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем (7), осуществляется на поверхности кремниевых пластин в едином технологическом цикле при технологии изготовления, совместимой с технологией производства интегральных схем. Для этого формируют на поверхности кремниевой подложки (1) диэлектрический слой (2) из пленки SiO2 методом термического окисления; напыляют токопроводящий слой TiN (3) и формируют неподвижный электрод методом ионно-лучевого напыления и травления с использованием проекционной лазерной фотолитографии. Осаждают слой Si3N4 методом CVD с подготовкой его в качестве жертвенного слоя с последующим плазменным травлением. Напыляют первый токопроводящий слой TiN (4), осаждают диэлектрический слой SiC (5) с высокими упругими свойствами методом магнетронного напыления Напыляют второй токопроводящий слой TiN (6). Осаждают пьезоэлектрический слой ЦТС (7). Напыляют третий токопроводящий слой TiN (8). Затем проводят плазмохимическое травление слоев: третьего токопроводящего слоя TiN (8), пьезоэлектрического слоя ЦТС (7), второго токопроводящего слоя TiN (6), диэлектрического слоя SiC (5) с высокими упругими свойствами, первого токопроводящего слоя TiN (4) с формированием подвижного многослойного электрода и вскрытием жертвенного слоя Si3N4. Травление жертвенного слоя Si3N4 проводят с образованием воздушного зазора между неподвижным и подвижным электродами. 1 ил.
Наверх