Цифровой измеритель скорости изменения температуры



Цифровой измеритель скорости изменения температуры

 


Владельцы патента RU 2506548:

Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области температурных измерений и может быть использовано для измерения скорости изменения температуры в автоматизированных системах управления нагревом изделий, а также колодцев и печей в металлургической промышленности. Заявлен цифровой измеритель скорости изменения температуры, содержащий последовательно соединенные термопреобразователь и частотно-импульсный преобразователь температуры, реверсивный счетчик импульсов, генератор опорной частоты, первый, а также второй делитель частоты и цифровой индикатор. Устройство дополнительно содержит последовательно соединенные блок сложения-вычитания и блок вычитания частотных сигналов, а также двоичный умножитель частоты, двухвходовую логическую схему "ИЛИ". Переход от дискретной обработки информации к непрерывной позволяет повысить быстродействие выполнения операции дифференцирования. Технический результат: повышение быстродействия работы устройства. 1 ил.

 

Изобретение относится к области температурных измерений, а именно к устройствам для измерения скорости изменения температуры в автоматизированных системах управления нагревом изделий, а также колодцев и печей в металлургической промышленности.

Известны измерители скорости изменения температуры, в которых происходит измерение разности двух непрерывных сигналов, снимаемых с термопары в различные моменты времени (А.С. СССР №378732, кл. G01K 7/02, 03.05.71, А.С. СССР №528459, кл. G01K 7/02, 03.01.75).

Недостатком этих устройств является низкая точность измерения.

Наиболее близким по технической сущности к предполагаемому изобретению является цифровой измеритель скорости изменения температуры, содержащий термопреобразователь, подключенный к входу частотного преобразователя, генератор импульсов, соединенный с формирователем временных интервалов, два счетчика, один из которых соединен с цифровым индикатором, генератор одиночных импульсов, два делителя частоты, два коммутатора, дешифратор и блок выбора предела измерения, вход которого соединен с частотным преобразователем, а выход через генератор одиночных импульсов соединен со счетным входом первого счетчика, выход которого через дешифратор соединен с управляющими входами коммутаторов, причем выход частотного преобразователя соединен с информационным входом первого коммутатора, выход которого через первый делитель соединен со счетным входом второго счетчика, соединенного с цифровым индикатором, а выходы формирователя временных интервалов через второй коммутатор и второй делитель соединены с управляющими входами второго счетчика (А.С. СССР №767563, кл. G01K 7/00, Бюл. №36 от 30.09.80).

Недостатком данного цифрового измерителя температуры, принятого за прототип, является низкое быстродействие работы.

Это вызвано тем, что используется дискретный принцип работы измерителя, т.е. осуществляется интегрирование (счет импульсов) на одном временном интервале с последующим вычитанием интеграла на другом временном интервале.

Техническая сущность предполагаемого изобретения состоит в непрерывно-дискретном характере обработки информации, представленной в частотной форме.

Технический результат достигается тем, что цифровой измеритель скорости изменения температуры, содержащий последовательно соединенные термопреобразователь и частотно-импульсный преобразователь температуры, реверсивный счетчик импульсов, генератор опорной частоты, первый, а также второй делитель частоты и цифровой индикатор дополнительно содержит последовательно соединенные блок сложения-вычитания и блок вычитания частотных сигналов, а также двоичный умножитель частоты, двух-входовая логическая схема "ИЛИ", при этом первый суммирующий вход блока сложения-вычитания соединен с выходом частотно-импульсного преобразователя температуры, второй вход - с выходом второго делителя частоты, а выход блока сложения-вычитания подключен к первому входу блока вычитания частотных сигналов и суммирующему входу реверсивного счетчика, первая и вторая группа входов двоичного умножителя частоты соединены с выходами реверсивного счетчика и первого делителя частоты соответственно, а выход - со входом второго делителя частоты, генератора опорной частоты соединен с вычитающим входом реверсивного счетчика и со вторым входом блока вычитания частотных сигналов блоком вычитания частотных сигналов, выходы которого соединены с двумя входами логической схемы "ИЛИ", подключенной выходом к входу цифрового индикатора.

Схема цифрового измерителя скорости изменения температуры представлена на фигуре 1 и содержит термопреобразователь 1, соединенный через последовательно включенный частотно-импульсный преобразователь 2 с первым входом сумматора блока 3 сложения-вычитания, выход которого соединен с первым входом блока вычитания частотных сигналов 4 и с суммирующим входом реверсивного счетчика 5. Реверсивный счетчик 5 соединен выходами с первой группой входов двоичного умножителя 6. С выхода опорного генератора 7 сигнал опорной частоты F0 поступает на вход первого делителя 8 частоты и одновременно на второй вход блока вычитания частотных сигналов 4 и вычитающий вход реверсивного счетчика 5. Выходы первого делителя 8 частоты подключены ко второй группе входов двоичного умножителя 6, выход которого через второй делитель 9 частоты соединен со вторым входом узла вычитания блока сложения-вычитания 3, первый вход узла вычитания которого связан с выходом сумматора блока 3, а выход узла вычитания соединен со вторым входом сумматора блока сложения-вычитания 3. Выходы блока вычитания 4 (выходы положительного и отрицательного изменения скорости температуры) соединены с логической схемой 10 «ИЛИ», подключенной к входу цифрового индикатора 11, который является выходом устройства. Назначение функциональных элементов схемы следует из их названия.

Цифровой измеритель скорости изменения температуры работает следующим образом.

Сигнал с термопреобразователя 1 преобразуется частотно-импульсным преобразователем температуры 2 в поток прямоугольных импульсов, частота следования которых FT(t) пропорциональна измеряемой температуре T(t).

В исходном состоянии реверсивный счетчик 5 обнулен. Частота FT(t) поступает на первый вход сумматорам блока 3 сложения-вычитания, содержащего узлы сложения и вычитания частот. Частота F2(t) на выходе блока 3 определяется по формуле с:

где F1(p) - выходная частота второго делителя 9;

p - оператор преобразования Лапласа;

где N(p) - код в реверсивном счетчике 5;

Nm - коэффициент пересчета реверсивного счетчика 5;

K - емкость второго делителя 9 частоты.

Текущее значение кода в реверсивном счетчике 5 определяется соотношением

Следовательно, на основании (1), (2) и (3) можно записать

FT(p)=F1(p),

или

.

Частота на выходах блока вычитания 4 формируется как разность частот F2 и F0, поэтому на выходах блока вычитания 4:

т.е. прямопропорциональна производной по времени от частотно-импульсного сигнала FT(t)

Изменением емкости второго делителя 9 частоты можно регулировать в широких пределах чувствительность цифрового измерителя скорости изменения температуры. Знак разности в (4) регистрируется на выходах блока вычитания частотных сигналов 4 и характеризует положительное или отрицательное изменение скорости температуры.

Импульсы с частотой ΔF(t) через схему 10 "ИЛИ" поступают на цифровой индикатор 11 (например, частотомер), являющийся выходом устройства.

Таким образом, переход от дискретного характера обработки информации к непрерывной значительно повышает быстродействие выполнения операции дифференцирования. Применение в качестве цифрового индикатора частотомера позволяет непрерывно получать цифровые отсчеты, не делая пауз между отсчетами и последующего определения разности между этими отсчетами, как в прототипе, для определения производной [Карпов Р.Г. Техника частотно-импульсного моделирования. - М.: Машиностроение, 1969, 248 с.].

Цифровой измеритель скорости изменения температуры может быть реализован на известной элементной базе.

Цифровой измеритель скорости изменения температуры, содержащий последовательно соединенные термопреобразователь и частотно-импульсный преобразователь температуры, реверсивный счетчик импульсов, генератор опорной частоты, первый, а также второй делитель частоты и цифровой индикатор, отличающийся тем, что дополнительно введены последовательно соединенные блок сложения-вычитания и блок вычитания частотных сигналов, а также двоичный умножитель частоты, двухвходовая логическая схема "ИЛИ", при этом первый суммирующий вход блока сложения-вычитания соединен с выходом частотно-импульсного преобразователя температуры, второй вход - с выходом второго делителя частоты, а выход блока сложения-вычитания подключен к первому входу блока вычитания частотных сигналов и суммирующему входу реверсивного счетчика, первая и вторая группа входов двоичного умножителя частоты соединены с выходами реверсивного счетчика и первого делителя частоты соответственно, а выход - со входом второго делителя частоты, генератор опорной частоты соединен с вычитающим входом реверсивного счетчика и со вторым входом блока вычитания частотных сигналов, блоком вычитания частотных сигналов, выходы которого соединены с двумя входами логической схемы "ИЛИ", подключенной выходом к входу цифрового индикатора.



 

Похожие патенты:

Изобретение относится к винодельческой промышленности и может быть использовано, в частности, при производстве шампанских вин. Регулирование распределения температуры в цилиндрическом резервуаре с виноматериалом, имеющем снаружи "рубашку" с циркулирующим в ней хладоносителем по замкнутому контуру, включающем вентиль, управляемый электроприводом, компрессор и соединяющие их и "рубашку" трубопроводы, осуществляют путем измерения в центре резервуара температуры виноматериала.

Изобретение относится к винодельческой промышленности и может быть использовано, в частности, при производстве шампанских вин. Регулирование распределения температуры в цилиндрическом резервуаре с виноматериалом, имеющем снаружи "рубашку" с циркулирующим в ней хладоносителем по замкнутому контуру, включающем вентиль, управляемый электроприводом, компрессор и соединяющие их и "рубашку" трубопроводы, осуществляют путем задания требуемой температуры хладоносителя в «рубашке» резервуара, для чего измеряют в центре резервуара температуру виноматериала.

Изобретение относится к устройствам контроля температуры сыпучих материалов при их длительном хранении и может быть использовано в устройствах, контролирующих температурный режим в складах силосного типа.

Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе.

Изобретение относится к области приборостроения и может быть использовано в медицинских целях для измерения температуры тела пациентов. Заявлен электронный термометр, в котором состояние контакта с человеческим телом может подтверждаться с помощью простой, удобной для сборки конфигурации.

Изобретение относится к измерительной технике и может быть использовано при производстве графитированных углеродных конструкционных материалов и графитированных электродов для электрометаллургических печей.

Изобретение относится к области термометрии и может быть использовано в нефтяной, газовой, химической, пищевой промышленности, а также в других областях техники. .

Изобретение относится к электромашиностроению и может быть использовано в системах контроля температуры и влажности тяговых электрических машин в процессе эксплуатации.

Изобретение относится к области термометрии и может быть использовано при измерении температуры тела человека. .

Изобретение относится к измерительной технике, а именно к электронному термометру. .

Изобретение относится к области машиностроения и касается обеспечения контроля температуры подшипников скольжения с самоустанавливающимися колодками или цельной втулкой различного динамического оборудования, например центробежных компрессоров. Беспроводная система измерения температуры опорных и упорных подшипников содержит, по меньшей мере, одно устройство (1) измерения температуры, встроенное в несущий элемент подшипника скольжения (опорная колодка (2) и/или упорная колодка (3)), и соединенное с, по меньшей мере, одним устройством (5) передачи измеренных значений, а также устройство (6) приема сигналов и передачи их в систему автоматического управления и источник электропитания перечисленных устройств. По меньшей мере, одно устройство (5) также встроено в несущий элемент подшипника скольжения. Каждое устройство (1) измерения температуры вместе с соответствующим устройством (5) передачи измеренных значений имеют контур питания. Устройство (6) приема сигналов и передачи их в систему автоматического управления и источник электропитания, снабженный излучателем (9) электромагнитных волн, установлены на удалении от указанного несущего элемента подшипника скольжения с возможностью приема сигналов от устройства (5) и с возможностью передачи электромагнитного излучения для возбуждения ЭДС в катушке питания устройства (1) и устройства (5). Технический результат: обеспечение процесса измерения температуры и передачи данных в систему автоматического управления без взаимного механического воздействия друг на друга деталей подшипника и элементов системы измерения температуры, что повышает надежность работы системы. 5 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к измерителям уровня путем измерения емкости конденсаторов, и предназначено для измерения температуры и уровня продукта, заполняющего хранилище. Устройство содержит измерительный шлейф с диэлектрической оболочкой, армированной двумя электропроводящими тросами, которые используются в качестве датчиков емкостного уровнемера. Внутри диэлектрической оболочки размещены датчики температуры и емкостные сенсоры, каждый из которых состоит из чувствительного элемента и модуля измерения емкости. Электропроводящие тросы, датчики температуры и выходы емкостных сенсоров соединены с блоком обработки, содержащим модули обработки сигналов датчиков температуры, емкостных сенсоров и датчиков емкостного уровнемера. В устройстве периодически выполняется автоматическая калибровка устройства с учетом диэлектрической проницаемости и температур продукта, окружающего измерительный шлейф в зонах размещения емкостных сенсоров. Технический результат - уменьшение погрешности измерения уровня заполнения хранилища. 2 з.п. ф-лы, 4 ил.

Группа изобретений относится к измерительной технике и в частности к термоизмерительным преобразователям. Термопреобразователь сопротивления содержит многослойную трубку, состоящую из внешнего металлического слоя, внутреннего диэлектрического слоя, на который намотана катушка чувствительного элемента из изолированного провода. Трубка также содержит электроизолирующий слой, нанесенный поверх катушки чувствительного элемента и внутреннего диэлектрического слоя. Диэлектрическая трубка выполнена из полимера и имеет наружный диаметр, равный или больший внутреннего диаметра металлической трубки, образующей внешний слой термопреобразователя. Способ изготовления термопреобразователя сопротивления предполагает намотку катушки провода на диэлектрическую трубку. При этом перед намоткой катушки диэлектрическую трубку удлиняют путем вытягивания вдоль продольной оси до диаметра, меньшего внутреннего диаметра металлической трубки. После намотки производят защиту провода катушки электроизолирующим слоем, диэлектрическую трубку помещают внутрь металлической трубки и производят нагрев всей конструкции до момента сжатия диэлектрической трубки до образования единого многослойного элемента. Технический результат - повышение точности измерений и надежности измерителя. 3 н.п. ф-лы, 2 ил.

Изобретение относится к полупроводниковой электронике, а именно к методам измерения эксплуатационных параметров полупроводниковых источников света, и может быть использовано в их производстве, как для отбраковки потенциально ненадежных источников света, так и для контроля соблюдения режимов выполнения сборочных операций. Для обеспечения конкурентоспособности с люминесцентными источниками света полупроводниковые источники света должны иметь высокую долговечность, не менее 100000 часов. Это достигается за счет совершенствования конструкции и обеспечения оптимального теплового режима кристалла и люминофорного покрытия. Поэтому важной становится задача определения не только средней температуры кристалла, но и неравномерности распределения температуры в конструкции. Для этой цели предлагается способ бесконтактного определения неравномерности температурного поля в полупроводниковых источниках света, заключающийся в измерении температуры в контролируемых точках конструкции источника, причем функции датчиков температуры выполняют сами элементы конструкции источника: p-n-переход кристалла и люминофорное покрытие, а в качестве термочувствительного параметра используюется ширина спектра излучения на уровне 0,5 от их максимального значения. 1 табл., 1 ил.

Изобретение относится к области измерительной техники, в частности к термометрии. Устройство содержит термопреобразователь 1, выход которого соединен с индикатором 2 температуры и через последовательно соединенные первый вход первого блока вычитания 3, усилитель 4, масштабирующий элемент 5, первый вход второго блока вычитания 6 с входами индикатора 7 скорости изменения температуры и сигнализатором 8 опасного нарастания температуры. Устройство снабжено также апериодическим фильтром 9, вход которого связан с выходом усилителя 4, а выход подключен ко вторым входам блоков вычитания 3 и 6. Технический результат - повышение быстродействия и помехозащищенности устройства. 1 ил.

Изобретение относится к области температурных измерений и может быть использовано в качестве датчика температуры биологических и физических объектов. Цифровой измеритель температуры содержит датчик температуры, терморезистор и цифровой индикатор температуры. В устройство введена мостовая измерительная схема, в плечи которой включены датчик температуры и терморезистор, охваченная петлей отрицательной обратной связи, своим входом связанной с измерительной диагональю моста, а выходом - с диагональю питания моста и состоящей из последовательно соединенных усилителя и генератора управляемой частоты. Вход цифрового индикатора температуры соединен с выходом генератора управляемой частоты. Введение в схему цифрового измерителя температуры отрицательной обратной связи позволяет повысить быстродействие и точность его работы. Технический результат - повышение быстродействия работы цифрового измерителя температуры. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения температуры среды в различных областях техники. Преобразователь (100) температуры включает корпус (112) с двумя отделениями и электронный модуль (120) преобразователя температуры с установкой на головке. Корпус (112) с двумя отделениями имеет первое отделение (114) и второе отделение (110). Первое отделение (114) выполнено с возможностью приема внешней проводки в клеммном блоке по одной трубке. Первое (114) и второе отделения (116) разделены, за исключением прохода электропроводки между ними. Электронный модуль (120) преобразователя температуры с установкой на головке расположен во втором отделении (116) и функционально соединен с клеммным блоком в первом отделении (114). Технический результат - повышение точности получаемых данных. 2 н. и 11 з.п. ф-лы, 10 ил.
Наверх