Способ управления гибкими стенками сопла аэродинамической трубы



Способ управления гибкими стенками сопла аэродинамической трубы
Способ управления гибкими стенками сопла аэродинамической трубы

 


Владельцы патента RU 2506554:

Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") (RU)

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Способ заключается в том, что управление гибкими стенками сопла осуществляют автоматическими приводными механизмами по заданной программе. Задание на изменение контура сопла в виде заданного числа М трансформируется в конечное положение ведущего ряда, а управление ведомыми рядами ведется синхронно в функции заданного на текущий момент времени положения ведущего ряда. Технический результат заключается в повышении точности установки гибких стенок сопла аэродинамической трубы, снижении потребной мощности приводов, снижении напряжений в гибкий стенках и упрощении эксплуатации сопла. 2 ил.

 

Изобретение относится к области аэродинамики, в частности к автоматическим системам управления воздушным потоком в аэродинамических трубах.

При применении в аэродинамических трубах регулируемых сопл при проведении экспериментальных исследований в потоке значительную трудность представляет задание их контуров с высокой точностью для получения заданных чисел Маха (М) и требуемой равномерности рабочего потока. В случае, когда контур задается с помощью нескольких приводных рядов управления гибких стенок сопла, установка требуемого профиля сопла в функции числа М становится особенно сложной. Рассогласование ординат приводных рядов ведет к срыву эксперимента и, как следствие, к дополнительным временным и энергетическим затратам, удорожая эксперимент.

За прототип принят способ автоматического управления контуром сопла, основанный на расчете ординат приводных рядов сопла в функции числа М и синхронного перемещения приводов при изменении заданного на эксперимент числа М (Авторское свидетельство СССР №587448, МПК G01М 9/00, 1978). Реализацию способа осуществляют с помощью командного устройства, в котором на одном валу закреплены кулачки, профилированные в функции числа М. Вращаясь, вал через кулачки передает команды на перемещение приводных рядов, формирующих контур сопла.

Этот способ управления имеет недостатки, влияющие на качество контура сопла. Так при заданной точности установки каждого из приводов сопла по числу М погрешность установки соседних рядов суммируется, что ведет к дополнительной деформации гибкой стенки сопла и, как следствие, дополнительным нагрузкам на приводные механизмы и искажению рабочего потока. Кроме того, нелинейность функций ординат приводных рядов от числа М (фигура 1) ограничивает скорость их перемещения на пологих участках если максимум скорости привода выбран по наиболее крутому участку. Так, например, выбор скорости привода V(M) [ед.М/с] дает наибольшее изменение ординат приводных точек сопла V(Y) [мм/с] на отрезке М=[1.5-2.0], наименьшее на отрезке М=[3.5-4.0]. Исправление недостатков способа требует дополнительных методов коррекции.

Задачей и техническим результатом изобретения является разработка способа управления гибкими стенками сопла аэродинамической трубы, позволяющего увеличить точность установки гибких стенок сопла в функции числа М без последующей коррекции и, как следствие, снизить напряжения в гибких стенках и потребную мощность приводов, а также обеспечить надежность и простоту эксплуатации сопла.

Решение поставленной задачи и технический результат достигаются тем, что в способе управления гибкими стенками сопла аэродинамической трубы, основанный на расчете ординат приводных рядов сопла, управление приводами гибких стенок осуществляют автоматические приводные механизмы по заданному числу М, отличающийся тем, что выбирают один, ведущий приводной ряд, определяющий критическое сечение сопла, причем управление ведущим приводным рядом гибкой стенки сопла ведут с постоянной скоростью от текущего положения до конечного, вычисленного в функции заданного числа М, задания на перемещения ведущего ряда гибкой стенки сопла ведущего ряда выдают квантами в равные промежутки времени, а управление ведомыми приводными рядами осуществляют в функции заданного на данный момент времени положения ведущего ряда.

На фиг.1 приведен график зависимости ординат приводных рядов сопла от числа М;

На фиг.2 приведен график зависимости ординат ведомых рядов сопла от ординаты ведущего ряда.

Способ заключается в следующем. Выбирают один, ведущий приводной ряд, определяющий критическое сечение сопла. Задание на изменение профиля сопла поступает в виде заданного на эксперимент числа М. По заданному числу М определяют конечную ординату ведущего ряда (фигура 1). Управляют ведущим рядом с постоянной скоростью, выдавая равные порции (кванты) задания на изменение его ординаты в равные промежутки времени (такты) квантования. Остальными, ведомыми рядами управляют в функции заданного на каждый такт положения ведущего ряда (фигура 2). Управление ведут синхронно всеми приводными рядами сопла до тех пор, пока значения их ординат не достигнут заданных конечных с заданной точностью. Контроль рассогласования текущих значений ординат приводных рядов от заданных ведется на каждом такте управления. В случае, когда рассогласование хотя бы одного ряда превышает допустимое значение, в следующем такте управления задание на перемещение ведущего ряда не меняется, давая отстающему ряду «догнать» остальные.

Таким образом, изменяя ординаты приводных рядов от начального числа Мн до заданного конечного Мк сопло проходит всю линейку профилей отрезка [Мн, Мк].

Положительные результаты использования способа подтверждены математическим моделированием.

Способ управления гибкими стенками сопла аэродинамической трубы, основанный на расчете ординат приводных рядов сопла, при этом управление приводами гибких стенок осуществляют автоматические приводные механизмы по заданному числу М, отличающийся тем, что выбирают один ведущий приводной ряд, определяющий критическое сечение сопла, причем управление ведущим приводным рядом гибкой стенки сопла ведут с постоянной скоростью от текущего положения до конечного, вычисленного в функции заданного числа М, задания на перемещения ведущего ряда гибкой стенки сопла выдают квантами в равные промежутки времени, а управление ведомыми приводными рядами осуществляют в функции заданного на данный момент времени положения ведущего ряда.



 

Похожие патенты:

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к области машиностроения и может быть использовано в авиационной промышленности при проведении наземных испытаний объектов авиационной техники, подвергающихся обледенению в естественных условиях эксплуатации.

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах. .

Изобретение относится к испытательной технике. .

Изобретение относится к экспериментальной аэродинамике и может быть использовано в отраслях промышленности, занимающихся проектированием и созданием транспортных средств различного назначения.

Изобретение относится к аэродинамике и может быть использовано в конструкциях аэродинамических установок. .

Изобретение относится к экспериментальной аэродинамике и может быть использовано в конструкциях подвесных устройств. .

Изобретение относится к средствам физического моделирования, в частности к устройствам для моделирования направляющего пути наземного транспорта в аэродинамических трубных экспериментах.

Изобретение относится к области аэродинамических испытаний и предназначено для использования моделей в аэродинамических трубах. .

Изобретение касается систем управления в экспериментальной аэродинамике, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство содержит контроллер управления приводами ведомых рядов гибких стенок сопла, приводы управления гибкими стенками сопла, цифровые датчики обратной связи, а также командное устройство, цифровой блок вычисления заданного положения ведомых рядов в функции измеренного положения ведущего ряда, а также цифровой датчик положения ведущего ряда и переключатель режима работы. При этом цифровой блок вычисления заданного положения ведомых рядов в функции измеренного положения ведущего ряда последовательно соединен с датчиком положения ведущего ряда и с контроллером управления приводами ведомых рядов гибких стенок сопла через переключатель режима работы. Технический результат заключается в создании устройства, обеспечивающего восстановление сопла аэродинамической трубы в автоматическом режиме и повышении точности установки сопла. 1 ил.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство состоит из силового механизма, изменяющего его контур по заданной программе, и командного устройства, управляющего этой программой. В контур управления введены последовательно включенные блок определения конечного положения ведущего ряда в функции заданного числа М, блок задания интенсивности движения ведущего ряда в функции времени управления и блок задания ординат ведомых рядов в функции заданной ординаты ведущего ряда, что позволяет с высокой точностью и скоростью изменять контур сопла. Технический результат заключается в повышении точности установки гибких стенок сопла аэродинамической трубы, а также надежности и простоты эксплуатации сопла. 1 ил.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры. Токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым. Технический результат - расширение температурного диапазона воспроизведения теплового поля на наружной поверхности обтекателей из неметаллических материалов при наземной отработке конструкции. 1 ил.

Изобретение относится к области авиации, в частности к технике экспериментов в аэродинамических трубах кратковременного (импульсного) действия с продолжительностью пуска порядка 40 миллисекунд, работающих при высоких давлениях и температурах газа. Пусковой затвор струйного аппарата высокого давления содержит корпус, заслонку с отверстием, связанную с пневматическим приводом заслонки. Заслонка имеет длину, в шесть раз и более превышающую диаметр открываемого канала трубы. Отверстие в заслонке выполнено прямоугольным, при этом его ширина перпендикулярна оси пускового затвора и равна диаметру канала трубы, а длина параллельна оси пускового затвора и в 1.5 раза и более превышает диаметр канала трубы. Пневматический привод заслонки содержит шток, присоединенный к заслонке, поршень, цилиндр с расположенными в его передней части окнами, перекрываемыми поршнем, и цилиндрическим обводным каналом, расположенным в середине цилиндра и соединяющим полости, находящиеся по обе стороны поршня, а также аккумулятор сжатого воздуха, окружающий цилиндр, и гидравлический тормоз, содержащий цилиндрическую камеру, расположенную непосредственно за цилиндром и переходящую в сужающийся конус. 1 ил.
Изобретение относится к области стендовых тепловых испытаний и может быть использовано для диагностики характеристик термопрочности и термостойкости эксплуатируемых металлов. Сущность предложенного изобретения заключается в том, что способ тепловых испытаний материалов и изделий включает размещение и регулировку положения нагревателей относительно поверхностей объекта до их облучения, а в процессе облучения поверхностей объекта по результатам контроля температурными датчиками параметров теплового воздействия осуществляют управление ими. Согласно изобретению нагреватели размещают набором отдельных модулей относительно облучаемых поверхностей объекта до их облучения, а в процессе облучения параметрами теплового воздействия их положение регулируют как индивидуально, так и взаимным расположением отдельных модулей. При этом осуществляют контролируемые и управляемые воздействия силовыми и динамическими нагрузками, а также воздействие окислительной средой на облучаемые поверхности объекта. Технический результат - повышение достоверности результатов диагностики. 3 з.п. ф-лы.

Изобретение относится к области тепловых испытаний и может быть использовано при наземных испытаниях элементов летательных аппаратов. Способ тепловых испытаний керамических обтекателей ракет включает нагрев и контроль температуры обтекателя в зоне узла соединения керамической оболочки со шпангоутом. Нагреву до заданной температуры подвергается металлический шпангоут изнутри обтекателя с одновременным контролем температуры шпангоута. Технический результат - повышение достоверности результатов испытаний. 1 ил.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении испытаний конструкции летательных аппаратов и их узлов (головных обтекателей) из неметаллических материалов на тепловые, а также комплексные термовибрационные и термовакуумные воздействия. Заявленный способ теплового нагружения конструкций летательных аппаратов из неметаллических материалов включает зонный нагрев изделия и измерение температуры. Зонный нагрев изделия осуществляется бесконтактной передачей энергии переменным магнитным полем средней частоты, генерируемым индуктором, в промежуточный нагревательный элемент, выполненный из ферромагнитного материала, расположенный на поверхности изделия. Технический результат - повышение точности выполнения программ испытаний летательных аппаратов. 1 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом шумоглушащие сетки с проницаемостью 5-70% размещены на неомываемой рабочим потоком стороне перфорированных стенок. Технический результат заключается в снижении фонового шума и устранении неблагоприятного влияния сетки на течение газа в рабочем потоке в трубе. 2 н.п. ф-лы, 3 ил.

Изобретение относится к испытаниям реактивных двигателей. Стенд для определения подъемной силы крыла, установленного на корпусе реактивного двигателя, содержит расположенную в аэродинамической трубе опорную стойку с подвижной платформой. Опорная стойка имеет шарнирно соединенные с ней звенья, обеспечивающие платформе с закрепленным на ней корпусом реактивного двигателя возможность вертикального перемещения при воздействии на крыло набегающего воздушного потока. Платформа имеет приспособление для зажима держателя корпуса реактивного двигателя. Система измерений содержит закрепленный на опорной стойке поворотный гидроцилиндр, соединенный штоком с одним из звеньев и шлангами с манометром. Изобретение направлено на повышение точности определения подъемной силы крыльев. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока углекислого газа в высокоэнтальпийных установках кратковременного действия типа импульсных аэродинамических труб с целью газотермодинамических исследований. Согласно способу осуществляют наполнение форкамеры исходным газом с заданными температурой и давлением, состоящим из смеси газов, в которой электродуговым разрядом инициируют экзотермическую реакцию. При этом концентрации оксида углерода и кислорода находятся в стехиометрическом соотношении, а изменением числа молей «n» углекислого газа обеспечивают регулирование температуры и давления образующегося рабочего газа с последующим его истечением из форкамеры после завершения реакции и принудительного вскрытия диафрагмы. Технический результат заключается в уменьшении энергозатрат на нагрев исходного газа, снятии ограничения по удельной энергии, вкладываемой в нагрев исходного газа, и снижении загрязнения полученного рабочего газа. 3 ил.
Наверх