Способ контроля средних параметров волокон в волоконной массе


 


Владельцы патента RU 2506584:

Костюков Анатолий Федорович (RU)

Использование: для контроля средних параметров волокон в волоконной массе. Сущность: заключается в том, что массу волокон, принятых за эталон, прочесывают с выходом на барабан с акустически прозрачной, например, сетчатой поверхностью, под поверхностью и над поверхностью сетчатой стенки барабана соосно, нормально к поверхности стенки, устанавливают излучающий и воспринимающий датчики акустических колебаний и обкладки воздушного конденсатора, после каждого полного оборота барабана фиксируют величину акустического сигнала и величину емкости воздушного конденсатора, отбирая от навоя образцы, стандартными методами определяют поверхностную плотность навоя и количество волокон в направлении прозвучивания, строят зависимости поверхностной плотности навоя от емкости воздушного конденсатора и величины акустического сигнала от количества волокон в направлении прозвучивания, устанавливают на зависимостях эталонное значение требуемого количества волокон, прочесывают контролируемое волокно с выходом на барабан, непрерывно регистрируя при каждом обороте барабана количество волокон в направлении прозвучивания до установленного эталонного значения, по достижении которого навой прекращают, а о среднем параметре волокон судят по величине поверхностной плотности полученного навоя. Технический результат: повышение точности, объективности и оперативности контроля. 1 ил.

 

Изобретение относится к неразрушающим методам производственного контроля и может найти применение при анализе различных материалов в промышленности.

Известен динамометрический способ контроля параметров волокон, по которому отбирают пробу волокон, прочесывают ее, пересчитывают количество волокон в пробе, формируют волокна в штапелек, разрывают штапелек на динамометрической машине, а о средней разрывной прочности волокон судят по отношению разрывной нагрузки к количеству волокон в штапельке (ГОСТ 3274.1-72).

Способ длителен, кропотлив и принципиально не может быть применен к оценке свойств волокон больших объемов, а также к оперативному контролю в процессе технологической переработки больших масс волокон.

Известен способ определения параметров волокон (А.с. СССР №792127), по которому множество волокон прочесывают, из прочеса выделяют заданное количество образцов установленной массы и конфигурации, накладывая образцы друг на друга, создают пакет заданной конфигурации, размера и массы, пакет помещают между излучающим и принимающим датчиками акустических колебаний плоскостью пакета нормально к направлению распространения колебаний, а о параметрах волокон судят по величине прошедшего акустического сигнала.

Способ относительно длителен, требует дополнительных операций по подготовке образцов для контроля, не исключает влияния субъективных факторов на результаты контроля.

Наиболее близким к изобретению по технической сущности является способ контроля параметров волокон (Патент РФ №2418297), по которому волоконную массу прочесывают, прочес помещают между акустически прозрачными, например сетчатыми, обкладками воздушного конденсатора, постепенно наращивая пакет и определяя его массу, находят значения акустического сигнала и импеданс конденсатора на заданной частоте в соответствии с его массой, строят зависимости импеданса конденсатора от массы пакета между обкладками конденсатора и значения акустического сигнала от количества волокон в направлении прозвучивания.

Способ обладает относительно малой оперативностью, не позволяющей встраивать его в технологический процесс на ранней стадии переработки волокна, до получения ленты и возможной корректировки состава волоконной массы.

Технической сущностью настоящего изобретения является повышение точности, объективности и оперативности контроля.

Настоящая техническая сущность достигается тем, что в способе контроля средних параметров волокон в волоконной массе, по которому волоконную массу заданного веса прочесывают, получают многослойный навой волокна, полученный многослойный навой прозвучивают акустическими колебаниями, одновременно определяя емкость воздушного конденсатора в месте контроля, а о средних параметрах волокон в массе судят по величине прошедшего через волоконную массу сигнала и импедансу воздушного конденсатора, массу волокон, принятых за эталон, прочесывают с выходом на барабан с акустически прозрачной, например, сетчатой поверхностью, под поверхностью и над поверхностью сетчатой стенки барабана соосно, нормально к поверхности стенки, устанавливают излучающий и воспринимающий датчики акустических колебаний и обкладки воздушного конденсатора, после каждого полного оборота барабана фиксируют величину акустического сигнала и величину емкости воздушного конденсатора, отбирая от навоя образцы, стандартными методами определяют поверхностную плотность навоя и количество волокон в направлении прозвучивания, строят зависимости поверхностной плотности навоя от емкости воздушного конденсатора и величины акустического сигнала от количества волокон в направлении прозвучивания, устанавливают на зависимостях эталонное значение требуемого количества волокон, прочесывают контролируемое волокно с выходом на барабан, непрерывно регистрируя при каждом обороте барабана количество волокон в направлении прозвучивания до установленного эталонного значения, по достижении которого навой прекращают, а о среднем параметре волокон судят по величине поверхностной плотности полученного навоя.

Способ реализуется следующим образом (фиг.1).

Массу волокон, принятых за эталон, прочесывают поз.2 с выходом на барабан поз.1 с акустически прозрачной, например, сетчатой поверхностью, под поверхностью и над поверхностью сетчатой стенки барабана соосно, нормально к поверхности стенки, устанавливают излучающий поз.3 и воспринимающий поз.4 датчики акустических колебаний и обкладки воздушного конденсатора поз.5, после каждого полного оборота барабана фиксируют величину акустического сигнала и величину емкости воздушного конденсатора, отбирая от навоя образцы, стандартными методами определяют поверхностную плотность навоя и количество волокон в направлении прозвучивания, строят зависимости поверхностной плотности навоя от емкости воздушного конденсатора и величины акустического сигнала от количества волокон в направлении прозвучивания, устанавливают на зависимостях эталонное значение требуемого количества волокон, прочесывают контролируемое волокно с выходом на барабан, непрерывно регистрируя при каждом обороте барабана количество волокон в направлении прозвучивания до установленного эталонного значения, по достижении которого навой прекращают, а о среднем параметре волокон судят по величине поверхностной плотности полученного навоя.

Способ контроля средних параметров волокон в волоконной массе, по которому волоконную массу заданного веса прочесывают, получают многослойный навой волокна, полученный многослойный навой прозвучивают акустическими колебаниями, одновременно определяя емкость воздушного конденсатора в месте контроля, а о средних параметрах волокон в массе судят по величине прошедшего через волоконную массу сигнала и импедансу воздушного конденсатора, отличающийся тем, что, с целью повышения оперативности и статистической достоверности, массу волокон, принятых за эталон, прочесывают с выходом на барабан с акустически прозрачной, например, сетчатой поверхностью, под поверхностью и над поверхностью сетчатой стенки барабана соосно, нормально к поверхности стенки, устанавливают излучающий и воспринимающий датчики акустических колебаний и обкладки воздушного конденсатора, после каждого полного оборота барабана фиксируют величину акустического сигнала и величину емкости воздушного конденсатора, отбирая от навоя образцы, стандартными методами определяют поверхностную плотность навоя и количество волокон в направлении прозвучивания, строят зависимости поверхностной плотности навоя от емкости воздушного конденсатора и величины акустического сигнала от количества волокон в направлении прозвучивания, устанавливают на зависимостях эталонное значение требуемого количества волокон, прочесывают контролируемое волокно с выходом на барабан, непрерывно регистрируя при каждом обороте барабана количество волокон в направлении прозвучивания до установленного эталонного значения, по достижении которого навой прекращают, а о среднем параметре волокон судят по величине поверхностной плотности полученного навоя.



 

Похожие патенты:

Использование: для эхо-локации. Сущность заключается в том, что устройство для излучения и приема ультразвуковых волн содержит источник напряжения, к которому подключены последовательно в указанной очередности первый резистор, конденсатор и второй резистор, пьезоэлектрический преобразователь, одним своим выводом соединенный с «землей» источника напряжения, электронный ключ, подключенный одним выводом к точке соединения первого резистора с конденсатором, а вторым выводом к первому выводу третьего резистора, второй вывод которого соединен с «землей» источника напряжения, схему управления, выход которой подключен к управляющему входу электронного ключа, два встречно-параллельных диода, включенных параллельно третьему резистору, и приемно-усилительный тракт, вход которого подключен к первому выводу третьего резистора, при этом оно выполнено с возможностью создания на пьезоэлектрическом преобразователе перепада напряжения, превышающего напряжение источника питания, для генерации ультразвуковой волны за счет включения индуктивности, один из выводов которой подключен к точке соединения конденсатора и второго резистора, а второй вывод - к свободному выводу пьезоэлектрического преобразователя.

Использование: для ультразвукового контроля изделий. Сущность: способ, заключающийся в том, что выполняют ввод ультразвуковых колебаний в изделие, теневое прозвучивание изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде приемным преобразователем, отличается тем, что ультразвуковой контроль изделия проводят не одним, а двумя ультразвуковыми приборами или двумя блоками одного прибора, из которых один используют для излучения и ввода ультразвуковых колебаний в изделие, а другой - для приема прошедших свод изделия ультразвуковых колебаний и отображения их на экране прибора, при этом работу блоков каждого из приборов не синхронизируют друг с другом, в частности, частоту следования импульсов ультразвуковых колебаний на излучающем блоке прибора устанавливают не равной, а более высокой по сравнению с частотой следования импульсов, синхронизирующих работу блоков приемного прибора, в том числе блока развертки, обеспечивающего отображение принятых ультразвуковых колебаний на экране прибора, и не кратной частоте следования синхроимпульсов, а о качестве изделия судят по наличию и амплитуде движущихся в соответствии с определенным соотношением на экране прибора импульсов.

Использование: для контроля средних параметров волокон в волоконной массе. Сущность: заключается в том, что подготавливают три пакета прочеса волокна: два пакета волокна, принятого за эталон, и один - контролируемого волокна, причем один пакет из эталонного волокна должен иметь количество слоев, обеспечивающий максимальное, а второй - обеспечивающий минимальное изменение акустического сигнала в диапазоне контроля, из пакетов эталонного и контролируемого волокна вырезают требуемое количество образцов заданного размера и конфигурации, все полученные образцы выдерживают необходимое время в одинаковых климатических условиях, закладывают в кассету с двумя ячейками, первая из которых служит для закладки эталонного образца, а вторая, имеющая акустически прозрачные крышки-обкладки воздушного конденсатора, для закладки контролируемого образца, закладывают в первую ячейку эталонный образец с максимальным количеством слоев, во вторую закладывают эталонный образец с минимальным количеством слоев, прозвучивают последовательно первую и вторую ячейки, калибруют диапазон контроля акустического сигнала, затем эталонное волокно из второй ячейки заменяют на контролируемое, прозвучивают, по показаниям импеданса и известной характеристике импеданса воздушного конденсатора от веса, полученный акустический сигнал нормируют по весу до нормативного, а результат находят как отношение сигналов через максимальный эталонный образец к сигналу через контрольный образец.
Использование: для контроля средних параметров волокон в волоконной массе. Сущность заключается в том, что волоконную массу заданного веса прочесывают, формируют в ленту, пропускают через фильеру, снабженную акустическими датчиками, и последовательно расположенные по направлению движения ленты, пластины воздушного конденсатора, отличающийся тем, что, с целью повышения точности, объективности и оперативности контроля датчики акустических колебаний и пластины воздушного конденсатора располагают взаимно перпендикулярно друг другу в плоскости, нормальной к направлению движения ленты, воздушный конденсатор включают в колебательный контур генератора акустических колебаний, подстройкой индуктивности в LC-контуре или резистора в RC-контуре добиваются требуемой опорной частоты генерируемых акустических колебаний на эталонном образце волоконной массы, пропускают через указанную систему акустических датчиков и конденсатора контролируемую волоконную массу в виде ленты, а о средних параметрах волокон судят по среднему акустическому сигналу и среднему отклонению частоты излучаемых колебаний от опорной по всей длине контролируемой ленты.

Использование: для выявления внутренних расслоений стенок труб. Сущность заключается в том, что осуществляют подготовку поверхности трубы к ультразвуковому контролю, сканирование ее ультразвуковым преобразователем, подключенным к прибору, и выявление мест расслоений по показаниям прибора, при этом на контролируемую поверхность наносят координатную сетку, выполняют измерения толщины стенки трубы в каждой ячейке координатной сетки последовательно двумя преобразователями с разными рабочими частотами, определяют наличие внутреннего расслоения на основании разности значений толщины стенки, регистрируемых в каждой ячейке координатной сетки двумя преобразователями, и изменения количества ячеек со значениями толщины, составляющими 20…80% от номинального значения толщины стенки трубы.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что щуп (2) расположен внутри отверстия (26) и проходит в аксиальном направлении (L).

Использование: для измерения остаточных напряжений в ободьях цельнокатаных железнодорожных колес. Сущность: заключается в том, что излучают в боковую стенку обода ультразвуковыми датчиками две акустические волны поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измеряют время их распространения между боковыми стенками обода с последующим расчетом остаточных напряжений, при этом дополнительно из колеса той же партии, к которой относится исследуемое колесо, вырезают образец в виде секторной части обода и излучают в его боковую стенку две акустические волны поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измеряют времена их распространения между боковыми гранями сектора обода и рассчитывают остаточные напряжения по соответствующему математическому выражению.

Изобретение относится к способу и системе для обнаружения дефектов в стенке трубы, содержащим ультразвуковой преобразователь, приспособленный для излучения через выходное отверстие ультразвуковых сигналов из внутренней части трубы в направлении ее стенки и для приема через входное отверстие сигналов обратного рассеяния от ее стенки.

Изобретение относится к области неразрушающего контроля и может быть использовано для неразрушающего контроля труднодоступных элементов конструкции из немагнитных материалов, например: из полимерных композиционных материалов (угле-, стекло-, органопластиков и других) в авиационной, судостроительной и других отраслях машиностроения.

Использование: для контроля качества акустического контакта при ультразвуковой дефектоскопии. Сущность: заключается в том, что в призму пьезопреобразователя излучают пучок ультразвуковых колебаний, измеряют амплитуду трансформированных поперечных колебаний и по ее величине судят о наличии или отсутствии акустического контакта, при этом трансформированную волну, отраженную от рабочей поверхности призмы, принимают специальной пьезопластиной для приема поперечных колебаний или упомянутую трансформированную волну, отраженную от рабочей поверхности призмы, далее трансформируют с использованием дополнительной плоскости призмы пьезопреобразователя из поперечной в продольную и регистрируют колебания обычной пьезопластиной, причем угол падения поперечной волны на дополнительную плоскость выбирают исходя из максимального коэффициента преобразования в продольные колебания. Технический результат: увеличение достоверности контроля качества акустического контакта при ультразвуковом контроле различных изделий. 2 ил.

Использование: для оценки поврежденности материала конструкций. Сущность: заключается в том, что оценка поврежденности материала (на стадии накопления рассеянных микроповреждений) эксплуатируемых элементов основана на определении критерия степени поврежденности металла элементов и определении по нему временной зависимости от момента контроля до вероятного разрушения элемента оборудования. При этом замеряют задержку поверхностной, сдвиговой и продольной волн ультразвуковых колебаний на поверхности металла нового элемента, в зоне аварийного разрушения металла элемента и на поверхности металла в контролируемой зоне элемента, находящегося в процессе эксплуатации. Технический результат: повышение достоверности контроля материала конструкций. 2 табл.

Использование: для акустической дефектоскопии неисправностей рельсового пути. Сущность: заключается в том, что в рельсы передают акустический сигнал, принимают отраженный сигнал, а по времени распространения акустических сигналов к месту неисправности и обратно определяют его координату, отраженный сигнал принимают пьезоэлектрическими преобразователями, установленными на подшипниках скольжения, расположенными на валу колесной пары, передачу и прием акустических сигналов осуществляют попеременно, при этом в качестве источника мощности акустических сигналов используют удары колесных пар на стыках межрельсового пути, стабилизируют импульсы постоянным весом локомотива в рабочем диапазоне его скоростей под углом наката α=0,001÷0,002°, регистрируют одновременно частоту следования сформированных ударных импульсов, фоновую интенсивность и частотный спектр акустического шума в интервале между первым и вторым ударными импульсами и отраженными сигналами от не менее 2-х колесных пар, преобразуя сформированные ударные импульсы в импульсы прямоугольной формы, определяют их длительность между временами заднего фронта и переднего фронта, разлагая прямоугольные импульсы с правой и левой колеи в ряд Фурье и выделяют основную гармонику правой и левой колеи, после чего проводят дальнейшую обработку полученных данных, определяя неисправности рельсового пути. Технический результат: обеспечение возможности выявления сложных дефектов в рельсовом пути. 4 ил.

Изобретение относится к технике испытаний и измерений, а именно к способу определения жесткости легкодеформируемых композитных, преимущественно кожевенных и текстильных, материалов и других волокнистых систем, и может быть использовано в легкой промышленности. Сущность: в качестве информативного параметра используют значение резонансной секундной частоты измеряемого образца, которую определяют путем возбуждения в образце вынужденных поперечных колебаний с частотой 0.1-20 Гц. Регистрируют квазирезонансный спектр собственных частот образца с его передачей в память процессора. Параметр жесткости материала с помощью процессора рассчитывают по формуле и сохраняют полученные результаты в виде базы данных на электронном носителе информации. Технический результат: расширение технологических возможностей способа, повышение его точности и обеспечение возможности формирования электронной базы данных, содержащей параметры жесткости для различных материалов, одновременно с определением жесткости. 1 ил.

Использование: для контроля соединений металлических деталей с пластмассами на предмет наличия пустот с помощью ультразвука. Сущность изобретения заключается в том, что с помощью ультразвукового искателя дефектоскопа в пластмассу с металлической стороны детали направляются ультразвуковые сигналы определенной частоты и длины импульса и в котором ультразвуковые сигналы, отраженные от находящихся в пластмассе дефектов, регистрируются тем же или другим ультразвуковым искателем дефектоскопа и преобразуются в обрабатываемы электрические сигналы и анализируются в плане пороговых значений. При этом частота контроля ультразвуковых сигналов устанавливается в диапазоне между 1 и 10 МГц таким образом, чтобы глушение звука после прохода пластмассовой пленки было минимально. Технический результат: обеспечение возможности надежно обнаруживать пустоты в слое клеящего вещества или в материале покрытия. 4 з.п. ф-лы, 3 ил.

Использование: для неразрушающего контроля металлических изделий и конструкций. Сущностьзаключается в том, что комплекс для ультразвукового контроля изделий содержит сканирующую X-образную систему электромагнитно-акустических антенных решеток, состоящую из четырех линейных приемно-излучающих антенных решеток, расположенных в плане таким образом, что центры элементов антенных решеток лежат на двух пересекающихся прямых линиях, причем каждая антенная решетка расположена по одну сторону от точки их пересечения и снабжена соответствующим блоком импульсного подмагничивания, соединенным своим входом с одним из четырех выходов синхронизатора, пятый выход которого подключен ко входу генератора импульсов возбуждения, каждый из четырех выходов которого подключен ко входу соответствующей антенной решетки, выходы антенных решеток подключены к соответствующим входам многоканального приемного тракта, оптическое измерительное устройство, выходом подключенное к первому входу вычислительного блока, который также имеет связь через соответствующие шины обмена данных с синхронизатором, многоканальным приемным трактом и блоком отображения результатов контроля, по меньшей мере, все антенные решетки, блоки импульсного подмагничивания и оптическое измерительное устройство установлены на подвижной платформе, оснащенной датчиком пути и блоком управления движением платформы, при этом выход датчика пути подключен ко второму входу вычислительного блока, выход которого соединен со входом блока управления движением платформы. Технический результат: расширение функциональных возможностей системы неразрушающего контроля с одновременным улучшением ее дефектоскопических и эксплуатационных характеристик. 2 н.и 5 з.п. ф-лы, 6 ил.

Использование: для дефектоскопии технологических трубопроводов. Сущность изобретения заключается в том, что комплекс дефектоскопии технологических трубопроводов состоит из: подвижного модуля, бортовой электронной аппаратуры, бортового компьютера; датчиков дефектов; одометров; троса; наземной лебедки с барабаном для троса; бортового источника электропитания; наземного компьютера; при этом в него ведены: первый и второй направляющие конусы, несколько опорно-ходовых манжет, несколько групп ходовых пружинных узлов (ХПУ), несколько групп прижимных пружинных узлов (ППУ), несколько групп ультразвуковых датчиков системы неразрушающего контроля (УДСНК), несколько групп толкателей, несколько ультразвуковых эхолокаторов, несколько контроллеров управления прижимными пружинными узлами, несколько контроллеров управления ходовыми пружинными узлами, первый радиомодем, второй радиомодем, несколько контроллеров управления ультразвуковыми датчиками системы неразрушающего контроля (КУУДСНК). Технический результат: обеспечение возможности создания простого с точки зрения механики комплекса для внутритрубного контроля состояния технологических трубопроводов произвольной ориентации, открытых с одного конца, а также контроля труб-отводов произвольной пространственной ориентации при удаленном расположении отвода от открытого конца основного трубы. 7 ил.

Изобретение относится к способам и средствам неразрушающего контроля материалов и может быть использовано для диагностики рельсов и других протяженных объектов. Способ заключается в том, что магнитным дефектоскопом, установленным на вагоне-дефектоскопе, обследуют участок рельсового пути. Обнаруживают дефекты и конструктивные элементы (болтовые и сварные стыки рельсов, рельсовые металлические подкладки и т.п.), сигналы от которых и их положение сохраняют в диагностической карте. Используют данные о конструктивных элементах рельсового пути для навигации при ультразвуковой (УЗ) дефектоскопии того же участка рельсового пути. Подробно анализируют УЗ дефектоскопом объекты, обнаруженные магнитным дефектоскопом. Корректируют диагностическую карту по результатам дефектоскопии. В результате повышается точность, качество и скорость обнаружения дефектов рельсов. 1 з.п. ф-лы, 5 ил.

Использование: для определения коррозионного состояния подземной части железобетонных опор линий электропередач и контактной сети. Сущность изобретения заключается в том, что через вентиляционное отверстие внутрь опоры помещают прямой ультразвуковой преобразователь с круговым обзором ультразвукового дефектоскопа, работающего по принципу эхо-импульсного метода, с помощью системы управления перемещают его таким образом, чтобы обследовать всю внутреннюю поверхность опоры от поверхности грунта до основания опоры, измеряют и обрабатывают полученные отраженные ультразвуковые сигналы, о коррозионном состоянии подземной части железобетонной опоры судят по амплитуде эхо-сигнала в развертке отраженного от границы раздела «арматура - бетон» ультразвукового сигнала. Технический результат: упрощение способа и повышение достоверности при определении коррозионного состояния подземной части железобетонных опор. 1 з.п. ф-лы, 1 ил.

Использование: для предотвращения чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода. Сущность изобретения заключается в том, что осуществляют возбуждение периодической последовательности виброакустических импульсов в заданном сечении трубы, регистрацию их в двух сечениях продуктопровода, удаленных примерно на одинаковые расстояния по обе стороны от сечения возбуждения, накопление суммы отсчетов интегралов от разностей регистрируемых сигналов, причем число накоплений в цикле определяют расчетным путем по задаваемой вероятности ложных решений для каждого предвестника чрезвычайной ситуации, оценке уровня ожидаемого сигнала в точках регистрации, среднеквадратическому отклонению регистрируемых отсчетов указанных интегралов, а решение о появлении предвестника чрезвычайной ситуации принимают при превышении накопленного за цикл результата одного из установленных эталонных уровней, причем решение о подготовке врезки трансформируется в сигнал тревоги через установленный на контролируемом участке громкоговоритель, а сигналы всех принимаемых решений передаются на мнемосхему в службе безопасности по каналам телемеханики. Технический результат: обеспечение возможности раннего обнаружения формирующейся чрезвычайной ситуации на линейной части подземного магистрального продуктопровода. 2 ил.
Наверх