Способ обнаружения айсбергов

Изобретение относится к области дистанционного зондирования ледяного покрова и может быть использовано для обнаружения айсбергов. Сущность: получают спутниковые радиолокационные снимки. Выделяют зоны аномального значения радиолокационного сигнала, сравнивая его с эталонным значением. Одновременно на изображении, полученном в оптическом диапазоне длин волн, определяют положение теней. В случае совпадения аномалий на радиолокационном снимке с соответствующими тенями на изображении, полученном в оптическом диапазоне длин волн, аномалии идентифицируют как айсберги. Через некоторое время повторяют описанные процедуры и прогнозируют траекторию движения айсберга, например, путем экстраполяции его положения на время, равное приему информации из следующего сеанса. После этого сравнивают наблюдаемое положение айсберга с прогнозируемым. При совпадении прогнозируемой траектории движения и отмеченной по данным наблюдений принимают окончательное решение о наличии айсберга. Технический результат: повышение достоверности определения айсбергов. 1 з.п.ф-лы.

 

Изобретение относится к определению параметров ледяного покрова, а более конкретно к способу обнаружения айсбергов на фоне ледяного покрова посредством дистанционного зондирования, и может быть использовано как в исследовательских целях, так и при мониторинге ледового покрова.

Известен способ определения параметров подстилающей поверхности, заключающийся в построении фотоизображений подстилающей поверхности, соответствующих результатам зондирования с аэрокосмических носителей, осуществляемом радиолокатором, установленным на борту космического аппарата, в котором характеристики подстилающей поверхности определяют путем визуального анализа полученных фотоизображений (Иоханнессен О.М., Александров В.Ю., Фролов И.Е. и др. Научные исследования в Арктике. Том 3. Дистанционное зондирование морских льдов на северном морском пути: изучение и применение.- СПб.: Наука, 2007, с.68-71). Указанный подход реализуется в цифровом режиме путем сравнения сигнала изображения с опорным уровнем, равным среднему значению яркости льда, и выделению области изображения, превышающей этот уровень. Указанную область считают айсбергом.

Недостатком данного способа является низкая достоверность оперативного определения характеристик из-за невозможности (в ряде случаев) однозначно отличить сигнал, отраженный айсбергом, от сигнала, отраженного многолетним и всторошенным льдом.

Наряду с этим известен способ, осуществляющий определение параметров морского льда с помощью электромагнитных волн разных диапазонов частот, в котором технический результат состоит в получении спутниковых радиолокационных снимков и снимков в оптическом диапазоне длин волн (Бухаров М.В., Никитин П.А. и Спиридонов Ю.Г. Способ определения состояния ледяного покрова. А.С. №1788487//Открытия и изобретения, №2,1993).

Недостатком способа является низкая вероятность обнаружения айсбергов.

Известен также способ обнаружения айсбергов, взятый авторами за прототип, путем совместного использования спутниковых радиолокационных данных и данных видимого спектрального диапазона высокого пространственного разрешения. Способ включает получение спутниковых радиолокационных снимков и изображений в оптическом диапазоне длин волн, анализ и интерпретацию яркости элементов изображений, интерактивное выделение аномалий сигнала радиолокационного изображения, причем интерпретация заключается в сравнении изображений, выделении по радиолокационным изображениям элементов с аномалией (максимальной яркостью сигнала или изображения) и уточнения места нахождения айсберга путем определении наличия тени по изображению в видимом диапазоне, а также контраста между освещенной стороной айсберга и окружающей ледовой или водной поверхностью (Александров В.Ю., Волков В.А., Сандвен С., Бабикер М., Клостер К. Обнаружение арктических айсбергов по спутниковым изображениям РСА и видимого диапазона высокого разрешения //Исследование земли из космоса, №3, 2008, с.44-55).

Недостатком указанного способа, наряду с недостатками радиолокации, является наличие существенных ограничений на использование изображений морского льда, полученных в оптическом диапазоне, связанных с условиями полярной ночи и наличием облачности, повторяемость которой над некоторыми районами акватории Северного ледовитого океана достигает 60-70%, что препятствует выполнению съемки морской поверхности в видимом спектральном диапазоне.

Технический результат заключается в повышении достоверности определения айсбергов.

Заявленный технический результат достигается путем проведения дополнительной процедуры расчета траектории движения ледяного образования, соответствующего выявленной на спутниковых изображениях аномалии сигнала.

Предлагаемый способ обнаружения айсбергов реализуется следующим образом.

Производят прием сигнала, поступающего с радиолокатора, установленного на борту космического аппарата. Одновременно с этим производят прием информации от датчика дистанционного зондирования видимого диапазона, установленного на этом же КА, либо на другом, но производящим съемку этого же района. Из радиолокационного сигнала выделяют максимальное его значение, например, методом сравнения с эталонным сигналом (имеющим постоянное значение) и места на изображении, превышающие эталонный, относят к айсбергам. Одновременно с этим на изображении этого же района, полученном когда это возможно в видимом диапазоне в местах, совпадающих с выделенными по РЛ изображению, определяют положение теней (если они наблюдаются). В случае совпадения указанных признаков, аномалию идентифицируют как айсберг.

Затем через некоторое время, например в следующий сеанс приема информации. производят прием сигнала, повторяют описанные процедуры и строят прогноз траектории движения айсбергов, например, путем экстраполяции их положения на время, равное приему информации из следующего сеанса, после которого сравнивают положение айсбергов с прогнозируемым. При совпадении экстраполированной траектории движения аномалии и отмеченной по данным наблюдений путем расчета движения айсберга делается вывод, что контролируемый объект с аномальным РЛ сигналом и тенями принадлежит айсбергу.

1. Способ обнаружения айсбергов, включающий получение сигнала спутниковых изображений радиолокационных снимков и изображений в оптическом диапазоне длин волн, выполнение анализа яркости элементов радиолокационных изображений, выделение зон аномального значения сигнала радиолокационного изображения путем его сравнения с эталонным, уточнение места нахождения айсберга и принятие решения о наличии айсбергов, отличающийся тем, что осуществляется прогноз перемещения аномальной зоны между сеансами приема информации и сравнение наблюдаемого положения с прогнозируемым.

2. Способ обнаружения айсбергов по п.1, отличающийся тем, что принятие решения о наличии айсберга осуществляется при совпадении траектории движения зоны аномалии сигнала с прогнозируемой траекторией движения айсберга.



 

Похожие патенты:

Изобретение относится к области метеорологии и может быть использовано для диагностики конвективных опасных метеорологических явлений (гроза, град, шквал, ливень).
Изобретение относится к области метеорологии, а именно к получению водорода, предназначенного для наполнения оболочек для проведения радиозондовых измерений различных параметров атмосферы.
Изобретение относится к области экологических исследований и может быть использовано при мониторинге окружающей среды. .
Изобретение относится к области экологии и может быть использовано при проведении мониторинга окружающей среды. .

Изобретение относится к области авиационной гидрометеорологии и может быть использовано для разведки ледовой обстановки. .

Изобретение относится к способам исследований ледяного покрова акваторий и может быть использовано для определения ширины трещин с открытой водой. .

Изобретение относится к способу коррекции результатов измерений влажности радиозондом относительно погрешностей, являющихся следствием радиационного теплообмена.

Изобретение относится к измерительной технике и может быть использовано для измерения направления и скорости потока газа или жидкости. .

Изобретение относится к области метеорологии и мониторингу окружающей среды и может быть использовано для исследования и контроля параметров атмосферы, земной поверхности и океана.

Изобретение относится к измерительным океанографическим приборам, предназначенным для определения характеристик окружающей среды, преимущественно - пограничного слоя атмосферы и океана. Технический результат - повышение точности определения параметров заданного пограничного слоя приводной среды. Сущность: радиозонд-буй содержит: газонаполненную оболочку 1, к которой посредством стропа 2 прикреплен приборный блок, который включает в себя электрически соединенные верхний приборный блок (контейнер) 3, закрепленный вверху стропа 2, преимущественно вблизи оболочки 1, и нижний приборный блок (контейнер) 4, прикрепленный к нижнему концу стропа 2. Зонд содержит крыло 5, закрепленное на стропе, преимущественно, в верхней его части, под верхним приборным блоком 3. Крыло 5 установлено так, что его положение зафиксировано относительно оси натянутого стропа 2 - строп проходит сквозь крыло, крыло снизу и сверху зафиксировано растяжками 6. Крыло 5 может быть выполнено в виде одной аэродинамической поверхности заданной формы, или в виде нескольких аэродинамических поверхностей, закрепленных друг под другом. Нижний приборный блок 4 может содержать один конструктивный элемент - например, может быть выполнен в виде одного плавучего приборного контейнера обтекаемой формы, или может содержать несколько конструктивных элементов, соединенных гибкой связью, - например, может быть выполнен в виде погруженной в воду приборной "косы" (гирлянды измерителей) или в виде соединенных кабель-тросом нескольких плавучих приборных контейнеров обтекаемой формы. Зонд-буй обеспечивает очень важное в океанографии свойство - автоматическое ограничение по высоте его свободного дрейфа, а также увеличение скорости дрейфа; максимальное приближение скорости дрейфа к скорости ветра, что дает возможность проводить исследования параметров среды с высокой точностью, особенно - в случае применения лагранжевой методики измерений. Он способен передавать информацию из районов ураганов, где нахождение судов нежелательно, но в которых исследование турбулентного пограничного слоя океан/атмосфера представляет большой научный интерес. 4 ил.

Устройство для обнаружения аэрозолей содержит летательный аппарат, имеющий диэлектрический элемент, такой как окно (10), размещенный в его корпусе (12), так что поверхность диэлектрического элемента образует часть наружной поверхности летательного аппарата. Средство обнаружения (16), такое как устройство для контроля статического электричества, расположено внутри летательного аппарата и предназначено для обнаружения электрического поля, возникающего в результате поляризации диэлектрического элемента внутри летательного аппарата. Выходные данные устройства для контроля статического электричества или их скорость изменения характеризуются тесным соотношением с концентрацией частиц, когда летательный аппарат пролетает через аэрозоль, например облако вулканического пепла. Технический результат заключается в упрощении конструкции устройства, а также в том, что может использоваться любой летательный аппарат общего назначения. Аэрозольные частицы можно обнаружить и наносить на карту при помощи устройства в соответствии с настоящим изобретением более простым и быстрым способом, чем посредством таких устройств, как оптические спектрометры, установленные на специальных исследовательских летательных аппаратах, или устройства для контроля статического электричества, установленные снаружи летательного аппарата. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к области метеорологии и может быть использовано для указания параметров ветра при посадке летательного аппарата. Сущность: устройство развертывается вдоль воздушной траектории по направлению к поверхности земли, например, после сброса с летательного аппарата в полете. Устройство включает в себя анемометр, высотомер, компас, процессор и передатчик. Анемометр получает измерения локальной скорости ветра и локального направления ветра вдоль траектории. Высотомер получает измерения высоты вдоль траектории. Компас получает измерения направления вдоль траектории. Процессор определяет значения скорости и направления ветра, ассоциированные с предопределенной высотой устройства. Передатчик передает определенное значение скорости ветра и значение направления ветра к удаленно расположенному приемнику. Технический результат: измерение параметров ветра. 3 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к области метеорологии и может быть использовано для измерения пространственных распределений параметров атмосферы. Сущность: система включает летательный аппарат (2) с измерительной аппаратурой (4) на борту, устройство (1) для транспортировки летательного аппарата в виде шара-зонда или аэростата, а также устройство управления полетом летательного аппарата. Измерительная аппаратура (4), установленная на борту летательного аппарата (2), соединена при помощи линии связи с наземной станцией (3). Скорость снижения летательного аппарата, при которой обеспечивается оптимальный режим измерения параметров атмосферы, рассчитывают с учетом плотности воздуха и характеристик летательного аппарата. Технический результат: возможность проведения измерений на высотах до 30 км и более, повышение сохранности измерительной аппаратуры. 4 з.п. ф-лы, 6 ил., 4 табл.
Изобретение относится к метеорологии, а именно к способам обнаружения штормовой погоды в океане. Согласно способу обнаружения шторма в океане со спутника облучают поверхность океана оптическим излучением и принимают отраженный сигнал. При этом площадь наличия шторма определяют по соотношению мощности всего отраженного спектра «белого» излучения и узкополосных участков ближней инфракрасной области с длиной волны 0,72; 0,82; 0,93; 1,13 микрометров. Технический результат - упрощение определения штормовых зон в океане.
Изобретение относится к области приборостроения, в частности к метеорологии, и может найти применение для определения усредненных значений вертикальных и горизонтальных составляющих скорости ветра и его направления. Технический результат – расширение функциональных возможностей. Для этого осуществляют запуск беспилотного летательного аппарата (БПЛА) мультироторного типа в заранее выбранную точку с заданными географическими координатами и на нужную высоту. Переводят БПЛА в режим удержания горизонтального положения, нулевой плавучести, равномерного вращения вокруг вертикальной оси, и через время, необходимое для уравнивания скорости БПЛА относительно ветра, следят за движением БПЛА с помощью системы спутниковой навигации, определяя по ее показаниям направление и скорость ветра в течение времени, кратного полному обороту аппарата вокруг вертикальной оси, при этом полный оборот и направление БПЛА определяют с помощью электронного магнитного компаса.

Изобретение относится к измерительной технике и может найти применение для определения усредненного вектора скорости ветра. Технический результат – расширение функциональных возможностей. Для этого осуществляют запуск беспилотного летательного аппарата (БПЛА) мультироторного типа в заранее выбранную точку с заданными географическими координатами. Переводят БПЛА в режим удержания координат, равномерного движения по вертикали и, используя заранее измеренную эмпирическую зависимость, по наклону вектора тяги БПЛА, потребляемой двигателями мощности, атмосферному давлению, температуре и влажности воздуха определяют направление и скорость ветра в выбранной точке либо в вертикальном разрезе. 1 ил.

Изобретение относится к области метеорологии и может быть использовано для определения направления и скорости ветра в вертикальном разрезе. Сущность: в интересующую область пространства запускают беспилотный летательный аппарат (БПЛА), для которого заранее определена калибровочная зависимость между наклоном вектора тяги, вектором скорости ветра, углом поворота корпуса БПЛА, атмосферным давлением, влажностью, температурой и суммарной мощностью, развиваемой двигателями БПЛА. При этом БПЛА, выполненный способным зависать в заданной точке пространства, при достижении нужной точки с заранее выбранными координатами переводят в режим удержания географических координат и равномерного движения по вертикали, а затем запускают режим равномерного вращения вокруг вертикальной оси. Через промежутки времени, кратные полному обороту БПЛА вокруг вертикальной оси, измеряют наклон вектора тяги, потребляемую двигателями мощность, атмосферное давление, температуру и влажность воздуха. При этом полный оборот и направление БПЛА определяют с помощью электронного магнитного компаса. Используя полученную при калибровке зависимость и вновь измеренные характеристики, определяют направление и скорость ветра в вертикальном разрезе. Технический результат: расширение функциональных возможностей, повышение точности позиционирования зонда. 1 ил.

Изобретение относится к области метеорологии и может быть использовано для получения информации о параметрах атмосферы на разных высотах. Сущность: комплекс содержит машину аппаратную, выполненную на колесном шасси (1) с кабиной (2) и кузовом-фургоном (3), радиозонды, антенну (8) приема сигналов радиозонда, антенну (24) радиостанции. Аппаратура комплекса и антенна (8) приема сигналов радиозонда выполнены радионавигационными. Антенна (8) приема сигналов радиозонда имеет круговую диаграмму направленности, оснащена механизмом (9) подъема и установлена на задней части крыши кузова-фургона (3). Между кузовом-фургоном (3) и кабиной (2) образован открытый отсек (15) для оборудования, в котором установлены метеостанция (16) на подъемной мачте, электроагрегат (17) и баллоны (22) с газом. Технический результат: уменьшение трудоемкости и сокращение времени подготовки комплекса к проведению работ с радиозондом. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области метеорологии и может быть использовано для определения изменения давления атмосферы с изменением высоты. Сущность: измеряют параметры полета в дискретных точках траектории и вычисляют по ним координаты и скорость движения объекта, угол наклона вектора скорости к плоскости местного горизонта, ускорение силы притяжения Земли. С учетом значений полученных параметров вычисляют величину изменения давления атмосферы с изменением высоты для каждой пары соседних точек траектории. Технический результат: повышение точности определения изменения давления.
Наверх