Способ получения полиэлементоорганоспироциклосилоксанов

Изобретение относится к области элементоорганических спироциклических полимеров. Предлагается способ получения полиэлементоорганоспироциклосилоксанов согидролизом элементоорганических сомономеров: соединения формулы Z(OY)4, где Z=Si, Ti; Y=алкил CnH2n+1(n=1÷5), и диорганодиалкоксисилана или диоргано-алкоксисилоксана общей формулы RO[SiRR'O]xR (R является Me или Et, R' - Н, или Me, или Vin, или Ph; x=1÷4) в молярном соотношении 1:(2÷4) стехиометрическим количеством воды 1-2 моля к общему количеству мономеров без органического растворителя в присутствии кислотного катализатора. Технический результат - сокращение расхода сырьевых компонентов, экологическая эффективность процесса, отсутствие ионных примесей в целевом продукте и увеличение его времени хранения. 2 з.п. ф-лы, 8 пр.

 

Изобретение относится к области элементоорганических спироциклических полимеров, которые используют для получения современных термоморозоустойчивых композиционных материалов: специальной керамики, вакуумплотных, оптически прозрачных клеев, компаундов для электро- и радиотехнической, авиационной, космической и многих других областей использования.

В сравнении с традиционными полиорганосилоксанами линейного и разветвленного строения полиспироциклосилоксаны (далее ПСС) способны отверждаться в изделии без изменения объема и выделения побочных продуктов. Клеи, компаунды и пропиточные материалы на основе ПСС характеризуются повышенной эластичностью и одновременно механической прочностью, пониженным внутренним напряжением и стойкостью к трещинообразованию. Благодаря этим качествам композиционные материалы на основе ПСС предназначены для эксплуатации в экстремальных условиях.

Известен способ (US 5376595 A1, 27.12.1994) получения ППС согидролизом тетрахлорида кремния с диорганодихлорсиланами при молярном соотношении, причем целевой продукт получен в присутствии высокой концентрации ионов хлора, примеси которых невозможно удалить простой экстракцией водным раствором соды. Продукт также содержит примеси ионов натрия. Поэтому получаемый органоспиросилоксан скорее всего плохо хранится, снижаются его диэлектрические свойства. К существенным недостаткам данного способа относятся неэкологичность (большой расход воды и растворителей в процессе, наличие кислых стоков) и неэкономичность (применение низких температур и большое число технологических стадий (без стадии синтеза) - 2 стадии промывки, 1 стадия сушки от воды, 1 стадия фильтрации и 1 стадия выпарки, всего 5 стадий).

Наиболее близким к заявляемому изобретению является способ (прототип, Andrianov, Sipyagina US 3817917 A1, 18.06.1974) получения метилфенилциклосилоксана со спироатомами кремния и титана взаимодействием дифункционального органосилоксана Q(SiRR'O)×SiRR'Q (RR'=СН3, C6H5, Q=ОН, ОМ, где М - щелочной металл) с четырехфункциональным мономером ZY4 (где Z=Si, Ti и Y=Cl, OC2H2n+1) при соотношении 2:1. Недостатками способа является труднодоступность и лабильность исходных органосилоксанов общей формулы Q(SiRR'O)×SiRR'Q, таких как, MePhSi(OH)2 или NaO(SiCH3C6H5O)3Na; неэкологичность способа из-за необходимости использования значительного количества органических растворителей и акцепторов хлористого водорода, таких как пиридин; низкая производительность способа, в частности из-за потери части продукта на осадке солянокислого пиридина или хлорида металла; а так же желирование целевого продукта во время хранения из-за остаточного содержания солянокислого пиридина в продукте.

Цель изобретения: разработка экологически эффективного способа получения полиэлементоорганоспироциклосилоксанов, позволяющего увеличить выход продукта до 90-98%.

Предлагается способ получения полиэлементоорганоспироциклосилоксанов путем согидролиза элементоорганических сомономеров, отличающийся тем, что в качестве исходных сомономеров используют в качестве первого сомономера соединение формулы Z(OY)4, где Z=Si, Ti, Y=алкил CnH2n+1(n=1÷5) и в качестве второго сомономера - диорганодиалкоксисилан или диорганоалкоксисилоксан общей формулы RO[SiRR'O]xR (R является Me или Et, R' - Н, или Me, или Vin, или Ph; x=1÷4) в молярном соотношении 1:(2÷4), а согидролиз проводят стехиометрическим количеством воды 1-2 моля к общему количеству мономеров без органического растворителя в присутствии кислотного катализатора.

В качестве кислотного катализатора предлагается использование серной кислоты или ионообменных смол - сульфокатионитов, например КУ-23, К-2-8 или импортных аналогов.

Преимуществом заявляемого способа является увеличение выхода продукта до 90-98%, упрощение технологии процесса за счет использования бесхлорных мономеров, исключения избыточного количества воды и исключение из синтеза органического растворителя. По указанным причинам процесс характеризуется резким сокращением расхода сырьевых компонентов, экологической эффективностью, отсутствием ионных примесей в целевом продукте, увеличением времени хранения.

Пример 1:

В круглодонную роторную колбу емкостью 1 л загружают расчетное количество метилфенилдиметоксисилана (МФДМС) (115,00 г) 0,631 м, тетраэтоксисилана (ТЭС) (63,35 г) 0,314 м, сульфокатионит марки КУ-23 (5 г), воды дистиллированной (25,44 г) 1,41 м. На роторном испарителе при температуре бани 60°С и вакууме 300 мбар через 4-7 мин отбирают фракцию спиртов. Отгонка продолжается 3 часа с постепенным уменьшением давления. За 30 мин до окончания отгонки температуру бани увеличивают до 80°С, давление снижают до 5 мбар. После отгона фракции спиртов горячую реакционную массу фильтруют от катионита. Выход полиметилфенилспироциклосилоксана составляет 95%. ИК-спектроскопия и функциональный анализ показывает низкое содержание остаточных гидроксильных групп - менее 1%. Средневесовая и среднечисловая молекулярные массы составляют соответственно Mn=1700, Mw=2800.

Пример 2:

В круглодонную роторную колбу емкостью 1 л загружают расчетное количество МФДМС (114,37 г) 0,627 м, ТЭС (32,69 г) 0,157 м, сульфокатионит марки КУ-2-8 (10 г), воды дистиллированной (16,96 г) 0,941 м. На роторном испарителе при температуре бани 60°С и давлении 300 мбар через 4-7 мин отбирают фракцию спиртов. Отгонка продолжается 3 часа с постепенным уменьшением давления. За 30 мин до окончания отгонки температуру бани увеличивают до 80°С, давление снижают до 10 мбар. После отгона фракции спиртов горячую реакционную массу фильтруют от катионита. Выход полиметилфенилспироциклосилоксана составляет 96%. ИК-спектроскопия и функциональный анализ показывает низкое содержание остаточных гидроксильных групп - менее 0.5%. Среднечисловая и средневесовая молекулярные массы составляют соответственно Mn=900, Mw=1800.

Пример 3:

В круглодонную роторную колбу емкостью 1 л загружают расчетное количество метилвинилдиэтоксисилана (100,57 г) 0,627 моля, ТЭС (65,35 г) 0,314 моля, КУ-23 (10 г), воды дистиллированной (20,35 г) 1,129 моля. На роторном испарителе при температуре бани 50°С и давлении 400 мбар через 4-7 мин отбирают фракцию спиртов. Отгонка продолжается 3 часа с постепенным уменьшением давления. За 30 мин до окончания отгонки температуру бани увеличивают до 80°С, давление снижают до 10 мбар. После отгона фракции спиртов густую, вязкую реакционную массу охлаждают, разбавляют ацетоном (100 мл). Затем реакционную смесь фильтруют и сушат над сульфатом натрия. Сульфат натрия фильтруют под вакуумом. Выход продукта составляет 90-93%. ИК-спектроскопия и функциональный анализ показывает низкое содержание остаточных гидроксильных групп - менее 0.5%. Среднечисловая и средневесовая молекулярные массы составляют соответственно Mn=1950, Mw=4100.

Пример 4:

В круглодонную роторную колбу емкостью 1 л загружают расчетное количество метилдиэтоксисилана (84,23 г) 0,627 моля, ТЭС (65,35 г) 0,314 моля, КУ-23 (10 г), воды дистиллированной (20,35 г) 1,129 моля. На роторном испарителе при температуре бани 50°С и давлении 400 мбар через 4-7 мин отбирают фракцию спиртов. Отгонка продолжается 3 часа с постепенным уменьшением давления. За 30 мин до окончания отгонки температуру бани увеличивают до 80°С, давление снижают до 10 мбар. После отгона фракции спиртов густую, вязкую реакционную массу охлаждают, разбавляют ацетоном (100 мл). Затем реакционную смесь фильтруют и сушат над сульфатом натрия. Сульфат натрия фильтруют под вакуумом. Выход продукта составляет 90%. ИК-спектроскопия и функциональный анализ показывает низкое содержание остаточных гидроксильных групп - менее 0.5%. Среднечисловая и средневесовая молекулярные массы составляют соответственно Mn=1450, Mw=3700.

Пример 5:

В круглодонную роторную колбу емкостью 1 л загружают расчетное количество диметилдиметоксисилана (93,56 г) 0,631 м, тетраэтоксисилана (63,34 г) 0,314 м, катионита КУ-23 (5 г), воды дистиллированной (25,44 г) 1,410 м. На роторном испарителе при температуре бани 60°С и вакууме 300 мбар через 4-7 мин отбирают фракцию спиртов. Отгонка продолжается 3 часа с постепенным уменьшением давления. За 30 мин до окончания отгонки температуру бани увеличивают до 80°С, давление снижают до 5 мбар. После отгона фракции спиртов горячую реакционную массу фильтруют от катионита. Выход полидиметилспироциклосилоксана составляет 89%. ИК-спектроскопия и функциональный анализ показывает низкое содержание остаточных гидроксильных групп 0.8-1.3%. Среднечисловая и средневесовая молекулярные массы составляют соответственно Mn=2600, Mw=3350.

Пример 6:

В 1 л трехгорлую колбу с мешалкой, термометром и капельной воронкой загружают МФДМС (114,37 г) 0,627 м и тетрабутоксититан (ТБТ) (106,76 г) 0,314 м. При интенсивном перемешивании прикалывают из капельной воронки (21,58 г) 1,198 м воды в течение 20 мин, чтобы температура реакционной смеси была не выше 400С. Затем реакционную массу переносят в круглодонную роторную колбу емкостью 0,5 л и загружают КУ-23 (10 г). На роторном испарителе при температуре бани 60°С и давлении 300 мбар через 4-7 мин отбирают фракцию спиртов. Отгонка продолжается 0,5 часа с постепенным уменьшением давления. За 10 мин до окончания отгонки температуру бани увеличивают до 80°С, давление снижают до 10 мбар. После отгона фракции спиртов густую, вязкую реакционную массу охлаждают, разбавляют ацетоном (100 мл). Затем реакционную смесь фильтруют и сушат над сульфатом натрия. Сульфат натрия фильтруют под вакуумом. Выход продукта составляет 93-97%. ИК-спектроскопия и функциональный анализ показывает низкое содержание остаточных гидроксильных групп - 0.2%. Среднечисловая и средневесовая молекулярные массы составляют соответственно Mn=2100, Mw=3900.

Пример 7:

В 1 л трехгорлую колбу с мешалкой, термометром и капельной воронкой загружают МФДМС (114,37 г) 0,627 м и ТБТ (53,40 г) 0,157 м. При интенсивном перемешивании прикалывают из капельной воронки (14,13 г) 0,7843 м воды в течение 20 мин, чтобы температура реакционной смеси была не выше 400С. Затем реакционную массу переносят в круглодонную роторную колбу емкостью 0,5 л и загружают КУ-23 (10 г). На роторном испарителе при температуре бани 60°С и давлении 300 мбар через 4-7 мин отбирают фракцию спиртов. Отгонка продолжается 0,5 часа с постепенным уменьшением давления. За 10 мин до окончания отгонки температуру бани увеличивают до 80°С, давление снижают до 10 мбар. После отгона фракции спиртов густую, вязкую реакционную массу охлаждают, разбавляют ацетоном (100 мл). Затем реакционную смесь фильтруют и сушат над сульфатом натрия. Сульфат натрия фильтруют под вакуумом. Выход продукта составляет 93-97%. ИК-спектроскопия и функциональный анализ показывает низкое содержание остаточных гидроксильных групп - 0.2%. Среднечисловая и средневесовая молекулярные массы составляют соответственно Mn=2100, Mw=3900.

Пример 8:

В круглодонную роторную колбу емкостью 1 л загружают расчетное количество метилфенилдиметоксисилана (115 г) 0,631 моля, тетраэтоксисилана (63,345 г) 0,314 моля, воды дистиллированной (25,44 г) 1,41 моля, концентрированной серной кислоты (0,13 г) 0,0013 моля. На роторном испарителе при температуре бани 40°С и вакууме 550 мбар отбирают фракцию спиртов. Отгонка продолжается 1 час с постепенным уменьшением давления. За 30 мин до окончания отгонки температуру бани увеличивают до 80°С, давление снижают до 15 мбар. После отгона фракции спиртов полученную в кубе густую реакционную массу охлаждают до комнатной температуры, разбавляют метилтретбутиловым эфиром (100 мл). Для удаления катализатора из полученного раствора продукта проводят его промывку дистиллированной водой 2-3 раза в соотношении раствор: вода=2:1 до достижения нейтральной реакции органического слоя. Затем реакционную смесь фильтруют и сушат над сульфатом натрия. Сульфат натрия фильтруют под вакуумом. Отгонку метилтретбутилового эфира от высушенного раствора проводят на роторном испарителе при температуре в кубе 40°С, давлении 400 мбар и при постоянном перемешивании. Для полного удаления растворителя температуру бани увеличивают до 800, давление снижают до 15 мбар. Затем густую вязкую реакционную массу охлаждают до комнатной температуры, разбавляют ацетоном (100 мл) и при атмосферном давлении перемешивают до полного растворения. Выход полиметилфенилспироциклосилоксана составляет 90-93%. ИКспектроскопия и функциональный анализ показывает низкое содержание остаточных гидроксильных групп - 0.05-0.15%. Среднечисловая и средневесовая молекулярные массы составляют соответственно Mn=2550 Mw=3870.

1. Способ получения полиэлементоорганоспироциклосилоксанов путем согидролиза элементоорганических сомономеров, отличающийся тем, что в качестве исходных сомономеров используют в качестве первого сомономера соединение формулы Z(OY)4, где Z=Si, Ti, Y=алкил CnH2n+1 (n=1÷5) и в качестве второго сомономера - диорганодиалкоксисилан или диорганоалкоксисилоксан общей формулы RO[SiRR'O]xR (R является Me или Et, R' - Н или Me или Vin или Ph; x=1÷4) в молярном соотношении 1:(2÷4), а согидролиз проводят стехиометрическим количеством воды 1÷2 моля к общему количеству мономеров без органического растворителя в присутствии кислотного катализатора.

2. Способ по п.1, отличающийся тем, что в качестве катализатора используют ионообменную смолу.

3. Способ по п.1, отличающийся тем, что в качестве катализатора используют серную кислоту.



 

Похожие патенты:

Изобретение относится к области химической технологии, а именно к реакторам каталитической перегруппировки в технологии получения олигоорганосилоксанов. Реактор представляет собой вертикальный емкостный аппарат, снабженный патрубками ввода и вывода жидкой, твердой и газовой фаз, и состоит из двух камер, соединенных через конический переходник: нижней - цилиндрической реакционной камеры, ограниченной снизу днищем, и верхней - сепарационной камеры, ограниченной сверху крышкой, при этом внутри реакционной камеры по оси аппарата с зазором к днищу установлена циркуляционная труба.

Изобретение относится к новым бензоксазинсилоксанам общей формулы где R1 - триметилсилил, диметилсилилпропил-8-метокси-N-R2-1,3-бензоксазин, пентаметисилоксипропил-N-1,3-бензоксазин; R2 - алкил C1-C4, гидроксиэтил, фенил; X - кислород, метилен, изопропил, гексафторпропил; m=0-8, n=0-32; при определенных условиях значений X, R1 и числа звеньев в бензоксазинсилоксанах.

Изобретение относится к полисилоксанам, которые могут быть использованы в качестве термостойких материалов в различных отраслях промышленности. .

Изобретение относится к новым кремнийорганическим соединениям для применения в термо- и морозостойких материалах. .

Изобретение относится к химии и технологии кремнийорганических соединений, а именно к способам получения органосилсесквиоксанов полиэдрической структуры и дискретных частиц на их основе.

Изобретение относится к композиции для покрытий. .

Изобретение относится к области химической технологии кремнийорганических соединений. .

Изобретение относится к полиаммоний/полисилоксановым сополимерам, к способу их получения и их применению. .

Изобретение относится к области химической технологии кремнийорганических соединений. .

Изобретение относится к оптическим устройствам и способам их изготовления. Предложено оптическое устройство, включающее светоизлучающий или светочувствительный элемент, установленный на подложку, и отвержденный кремнийорганический материал, объединенные в единое изделие в результате герметизации элемента кремнийорганической композицией, отверждаемой с помощью реакции гидросилилирования, причем поверхность отвержденного кремнийорганического материала обработана полиорганосилоксаном, который включает по меньшей мере три атома водорода, связанных с атомами кремния, в одной молекуле. Предложен также способ изготовления указанного оптического устройства. Технический результат - предложенное оптическое устройство устойчиво к налипанию пыли и грязи вследствие уменьшения липкости поверхности отвержденного кремнийорганического материала, который герметизирует светоизлучающий или светочувствительный элемент. 2 н. и 5 з.п. ф-лы, 7 ил., 6 пр.

Изобретение относится к технологии обработки полимеров и композитов, в частности их гидрофобизации. Способ получения защитного гидрофобного покрытия на полимерном материале заключается в обработке поверхности полимерного материала раствором олиго(органо)алкоксисилоксана. После удаления растворителя обработку поверхности осуществляют раствором алкилбромида с последующим удалением растворителя. В качестве олиго(органо)алкоксисилоксана используют дека(аминопропил)додекаэтоксидекасилоксан структурной формулы в количестве 0,3·10-4 - 0,4·10-4 моль на 1 см2 поверхности. В качестве алкилбромида используют либо бутилбромид формулы (C4H9Br), либо октилбромид формулы C8H17Br, либо оксадецилбромид формулы C18H37Br в количестве 0,8·10-4-0,94·10-4 моль на 1 см2 поверхности. Обеспечивается высокая степень гидрофобизации материала, характеризующаяся повышением краевого угла смачивания поверхности не менее чем на 34-78°С. 6 з.п. ф-лы, 6 ил., 6 пр.
Изобретение относится к области синтеза полиорганосилоксанов (ПОС) линейной и циклической структуры. Предложен способ селективного получения циклических и линейных полиорганосилоксанов гидролизом кремнийорганических мономеров общей формулы R1R2SiX2, где R1 и R2 выбирают из атома водорода, алкила CnH2n+1 при n=1-4, CH2=CH-, CF3CH2CH2-, ClCH2-, C6H5 и ClC6H4-; Х=Hal, OR3, OCOR3 (R3=алкил CnH2n+1 с числом атомов углерода 1÷4). Процесс проводят непрерывно одновременным смешением реагентов при скорости потока 0.1÷5 м/с в смесителях и их комбинациях: инжектор или последовательность инжекторов, и/или центробежный экстрактор, и/или ультразвуковое устройство при молярном соотношении воды к мономеру в интервале 0.6÷1.5 с последующим разделением продуктов синтеза известными способами: экстракция, перегонка (ректификация), десорбция, кристаллизация. Технический результат: способ позволяет получать раздельно как циклические, так и линейные продукты с высокой селективностью 90-100%, характеризуется малым временем реакции гидролиза (1÷300 с) и высокой производительностью способа (сотни килограммов в час), ограничивающейся только мощностью химического оборудования и коммерческой целесообразностью. 2 з.п. ф-лы, 1 табл., 19 пр.

Изобретение относится к новым силоксановым полимерам - полиметилбензилсилоксанам и способам их получения. Предложен новый арилсодержащий кремнийорганический полимер линейного или разветвленного строения с бензильными и метальными радикалами у атомов кремния. Предложен также способ получения полиметилбензилсилоксана поликонденсацией метилбензилдиалкоксисилана или смеси метилбензилалкоксисиланов в активной среде, представляющей собой карбоновую кислоту или ее смесь с органическим растворителем. Технический результат - предложенные полимеры обладают повышенной химической устойчивостью к концентрированным кислотам, а предложенный способ их получения экологически безопасен и обеспечивает возможность регулирования молекулярной массы, заданного соотношения линейных и разветвленных звеньев и высокие качества образующегося полимера - отсутствие остаточных алкокси-групп и равномерность строения полимера. 2 н. и 14 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к получению новой формы кремнийорганических соединений - наноразмерных органосилоксановых гелей. Предложены кремнийорганические наногели с модифицированной поверхностью структуры (I), где а+b=1, при этом а и b не равны нулю, n имеет значение 10-1000; R′ и R′′ означают СН3- или СН2=СН-. Предложен также способ получения указанных наногелей. Технический результат - в предложенных наногелях внутренняя сфера частиц имеет кремнийорганическую природу, а поверхность образована органическими группами у концевых атомов кремния, что улучшает совместимость наногелей с полимерными матрицами и позволяет эффективно использовать наногели в качестве компонентов полимерных нанокомпозиций. 2 н. и 9 з.п. ф-лы, 4 ил., 4 пр. (I)

Изобретение относится к силиконовым полимерам и гидрогелям из них. Предложен силиконовый полимер, имеющий общий коэффициент пропускания по меньшей мере 90%, полученный из реакционноспособных компонентов, содержащих (i) по меньшей мере один силиконовый компонент, представляющий собой сложный эфир (мет)крилата, и (ii) 2-гидроксиэтил акриламид. Предложен также силиконовый гидрогель, содержащий указанный полимер; контактная линза и офтальмологическое устройство из указанных материалов. Технический результат – предложенный материал позволяет получать офтальмологические устройства при коротких сроках отверждения с достижением высокого уровня светопропускания и хорошей кислородной проницаемости. 7 н. и 16 з.п. ф-лы, 5 табл., 6 пр.
Изобретение относится к способам производства лакокрасочных материалов. Предложен способ получения водно-дисперсионного кремнийорганического лака на основе полиорганосилоксанов, при котором раствор полиорганосилоксанов в органическом растворителе (толуол, ксилол) эмульгируют в воде с добавлением промышленного неионогенного эмульгатора, являющегося продуктом обработки смеси моно- и диалкилфенолов оксидом этилена, после чего осуществляют азеотропную отгонку органического растворителя, причем воду берут в таком количестве, чтобы содержание кремнийорганической основы в конечном водоэмульсионном материале составляло 30-50%, а эмульгатор добавляют в количестве 0,2-5% от массы полимера. Технический результат - получение неогнеопасных при хранении и нетоксичных при применении лаков ввиду отсутствия в их составе органических растворителей. Удаленный органический растворитель может быть использован вторично. 1 пр.

Изобретение относится к силоксановым соединениям и способам их получения. Предложено силоксановое соединение, содержащее множество силоксановых повторяющихся звеньев, причем 10 мол.% или более силоксановых повторяющихся звеньев представляют собой циклотрисилоксановые повторяющиеся звенья, а также соединение содержит дополнительно сегменты, соответствующие определенной структуре. Предложен также способ получения указанных соединений. Технический результат – предложенные силоксановые соединения могут быть отверждены без образования большого количества летучих продуктов реакции и пригодны для использования в герметизирующих материалах с высоким показателем преломления. 2 н. и 17 з.п. ф-лы, 1 ил., 1 табл., 10 пр.

Изобретение относится к силоксановым соединениям, применимым в качестве герметизирующего материала для электронных устройств. Предложено силоксановое соединение, содержащее множество силоксановых повторяющихся звеньев, причем по меньшей мере часть силоксановых повторяющихся звеньев представляют собой циклосилоксановые повторяющиеся звенья определенной структуры. Технический результат – предложенное силоксановое соединение способно сшиваться без выделения значительного количества летучих органических соединений, образуя сшитый полимер с высоким показателем преломления, необходимым для использования в качестве герметика для электронных устройств. 15 з.п. ф-лы, 1 ил., 1 табл., 10 пр.
Наверх