Способ очистки диффузионного сока


 


Владельцы патента RU 2507270:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") (RU)

Изобретение относится к пищевой промышленности. Способ очистки диффузионного сока предусматривает его нагревание, смешивание с адсорбентом, взятым в количестве 0,2-0,5% к массе сока, перемешивание, предварительную и основную дефекацию, I сатурацию, фильтрование, II сатурацию и фильтрование. При этом в качестве адсорбента используют пищевые волокна из сахарной свеклы. Диффузионный сок нагревают до температуры 55-60оС, добавляют пищевые волокна и перемешивают при этой температуре в течение 5-6 мин. Сок фильтруют и направляют на предварительную дефекацию. Предложенный способ позволяет повысить эффект очистки диффузионного сока и снизить расход извести. 1 табл., 4 пр.

 

Изобретение относится к сахарной промышленности, а именно к способам очистки диффузионного сока.

Известен способ очистки диффузионного сока, предусматривающий его нагревание, смешивание с адсорбентом, предварительную и основную дефекацию, I сатурацию, фильтрование, II сатурацию и фильтрование (а.с. №413193, МПК C13d 3/12. Способ очистки диффузионного сока. Липец А.А., Михалюк Р.В., Костенко А.С. №1631977/28-13. Заявл. 16.03.1971; Опубл. 30.01.1974: Бюл. №4).

Недостатки данного способа: низкий эффект очистки диффузионного сока и высокий расход извести.

Техническая задача изобретения заключается в повышении эффективности очистки диффузионного сока, снижении расхода извести.

Техническая задача изобретения достигается тем, что в способе очистки диффузионного сока, предусматривающем его нагревание, смешивание с адсорбентом, взятым в количестве 0,2-0,5% к массе сока, перемешивание, предварительную и основную дефекацию, I сатурацию, фильтрование, II сатурацию и фильтрование, новым является то, что в качестве адсорбента используют пищевые волокна из сахарной свеклы, диффузионный сок нагревают до температуры 55-60°C, добавляют пищевые волокна в количестве 0,2-0,5% к массе сока, перемешивают при этой температуре в течение 5-6 мин, после чего сок фильтруют и направляют на предварительную дефекацию, которую осуществляют также при температуре 55-60°C.

Технический результат изобретения заключается в повышении эффективности очистки диффузионного сока, снижении расхода извести.

Способ осуществляют следующим образом.

Диффузионный сок нагревают до температуры 55-60°C, добавляют пищевые волокна сахарной свеклы в количестве 0,2-0,5% к массе сока, перемешивают в смесителе 5-6 мин для адсорбции, затем фильтруют. Отфильтрованный сок направляют на предварительную дефекацию, основную дефекацию, I сатурацию, фильтрование и II сатурацию с получением очищенного сока.

Основной задачей очистки диффузионного сока является удаление, прежде всего, высокомолекулярных соединений (ВМС) и веществ коллоидной дисперсности (ВКД). Поскольку в диффузионном соке, поступающем на очистку, присутствуют катионы, коллоидные вещества характеризуются положительным зарядом. Удаление коллоидных примесей, молекулярно растворимых меланоидинов и полифенольных соединений возможно, прежде всего, посредством адсорбционной очистки.

Доступным адсорбентом, характеризующимся наличием сродства к красящим веществам и другим примесям сахарного производства, являются пищевые волокна (ПВ). ПВ, полученные из обессахаренной свекловичной стружки, - это полисахаридный комплекс целлюлозы, гемицеллюлозы, пектиновых веществ, лигнина.

Целлюлоза, обладая значительным количеством функциональных групп на поверхности (прежде всего гидроксильных, карбонильных и карбоксильных), является адсорбентом смешанного типа. Наряду с удалением полярных примесей, она может эффективно удалять неполярные примеси, которые также способны активно встраиваться в кристаллическую решетку сахарозы при ее кристаллизации.

Сорбционные свойства гемицеллюлоз (ГМЦ) во многом обусловлены присутствием глюкуроновой кислоты и арабинозы, которые несут карбоксильные (R-COOH) группы. Полисахариды ГМЦ способны связывать ионы металлов, органические вещества, включающие амино- и другие основные группировки.

Лигнин не является полисахаридом и представляет собой полимер фенилпропана. Полимеры лигнина отличаются высокой сорбционной способностью благодаря наличию свободных функциональных групп - гидроксильных (R-OH), метоксильных (R-O-CH3), карбоксильных (R-COOH) - на поверхности.

Свекловичный пектин с большим числом свободных карбоксильных групп является природным сорбентом, превосходящим по адсорбционному действию активированный уголь: по сорбции ионов свинца - в 7 раз, нитратов, фенольных соединений и формальдегида - в 1,2 раза.

В предлагаемом способе очистки диффузионного сока предусматривается фильтрование сока перед преддефекацией. Преимуществом данного способа по отношению к прототипу является то, что все адсорбированные ВМС и ВКД на пищевых волокнах отфильтровываются прежде, чем они попадут на преддефекацию, где их сложнее удалить.

Нагревание сока осуществляют до температуры 55-60°C. При этой же температуре проводят процесс преддефекации. По известному способу сок нагревают до 85-90°C. Снижение температуры нагрева позволяет уменьшить нежелательные процессы термического разложения сахарозы, что облегчает процесс очистки диффузионного сока и позволяет получить очищенный сок более высокого качества.

Способ поясняется следующими примерами.

Пример 1 (прототип)

1000 г диффузионного сока с чистотой 87,80% нагревают до температуры 90°C, добавляют 5,0 г бентонита (0,5% к массе сока) и перемешивают в течение 5 мин. Далее проводят теплую предварительную дефекацию при температуре 60°C, основную дефекацию, I сатурацию, фильтрование и II сатурацию с получением очищенного сока с чистотой 91,40%. Таким образом, эффект очистки составляет 32,28%. Расход извести на очистку 3,00%.

Пример 2

1000 г диффузионного сока с чистотой 87,80% нагревают до температуры 55°C, добавляют 2,0 г пищевых волокон (0,2% к массе сока), перемешивают в течение 6 мин, фильтруют. Далее проводят теплую предварительную дефекацию при температуре 60°C, основную дефекацию, I сатурацию, фильтрование и II сатурацию с получением очищенного сока с чистотой 91,82%. Таким образом, эффект очистки составляет 35,89%. Расход извести на очистку 2,55%. Данные анализа представлены в таблице 1.

Пример 3

Способ очистки осуществляют аналогично примеру 2, но количество пищевых волокон 0,35% к массе сока, температура при адсорбции 58°C. Данные анализа представлены в таблице 1.

Пример 4

Способ очистки осуществляют аналогично примеру 2, но количество пищевых волокон 0,50% к массе сока, температура при адсорбции 60°C. Данные анализа представлены в таблице 1.

Таблица 1
Сок Чистота, % Расход адсорбента, % к массе сока Температура сока при адсорбции, °C Расход извести на очистку, % Эффект очистки, %
Диффузионный 87,80 - - - -
Сок, очищенный по известному способу 90,10 0,3 85 2,80 20,92
90,96 0,4 87 2,85 28,48
91,40 0,5 90 3,00 32,28
Сок, очищенный по предлагаемому способу 91,82 0,2 55 2,55 35,89
92,21 0,35 58 2,50 39,20
91,84 0,5 60 2,52 36,06

Как видно из приведенных примеров, предлагаемый способ очистки диффузионного сока с пищевыми волокнами, взятыми в количестве 0,2-0,5% к массе сока, обеспечивает повышение эффекта очистки на 3,61-4,78% по сравнению с известным способом. Расход извести сокращается на 15-17%.

Нагревание сока до температуры ниже 55°C или выше 60°C приводит к ухудшению эффекта очистки. Если количество адсорбента брать меньше 0,2% или больше 0,5%, то эффект очистки также резко снижается.

Предлагаемый способ очистки позволяет повысить эффект очистки диффузионного сока, снизить расход извести и снизить себестоимость сахара.

Способ очистки диффузионного сока, предусматривающий его нагревание, смешивание с адсорбентом, взятым в количестве 0,2-0,5% к массе сока, перемешивание, предварительную и основную дефекацию, I сатурацию, фильтрование, II сатурацию и фильтрование, отличающийся тем, что в качестве адсорбента используют пищевые волокна сахарной свеклы, диффузионный сок нагревают до температуры 55-60°C, добавляют пищевые волокна в количестве 0,2-0,5% к массе сока, перемешивают при этой температуре в течение 5-6 мин, после чего сок фильтруют и направляют на предварительную дефекацию, которую осуществляют также при температуре 55-60°C.



 

Похожие патенты:

Изобретение относится к пищевой промышленности. Способ предусматривает экстрагирование сахарозы из свекловичной стружки противоточной диффузией с последующим прессованием обессахаренной свекловичной стружки и возвратом получаемой от прессования воды на диффузию.
Изобретение относится к сахарной промышленности. Способ предусматривает сгущение сиропа, заводку кристаллов, их наращивание, отбор части утфеля и уваривание остального утфеля до полной готовности.
Изобретение относится к сахарной промышленности. Способ предусматривает приготовление клеровок сахара второй и третьей кристаллизации, их сгущение в вакуум-аппарате, заводку кристаллов, их наращивание в две ступени, на первой из которых в вакуум-аппарат подкачивают сироп с выпарной установки в смеси с клеровкой сахара второй кристаллизации, а на второй ступени кристаллы наращивают путем подкачки клеровки сахара третьей кристаллизации с добавлением моноглицерида дистиллированного, и окончательное сгущение утфеля после заполнения объема вакуум-аппарата утфелем.
Изобретение относится к пищевой промышленности. Способ предусматривает проведение прогрессивной предварительной дефекации, теплой основной дефекации, горячей основной дефекации, первой сатурации, фильтрации, дефекации перед второй сатурацией, второй сатурации и фильтрации.

Изобретение относится к пищевой промышленности. .
Изобретение относится к сахарному производству и может быть использовано при переработке сахарной свеклы. .
Изобретение относится к сахарному производству и может быть использовано при переработке сахарной свеклы. .
Изобретение относится к сахарному производству и может быть использовано при переработке сахарной свеклы. .

Изобретение относится к перерабатывающей отрасли пищевой промышленности, а именно к способу переработки свеклы, хранению продуктов переработки и получению на основе такой переработки кормового продукта для животных, питательной ферментационной среды и сахара.

Изобретение относится к перерабатывающей отрасли пищевой промышленности, а именно к способу переработки свеклы, хранению продуктов переработки и получению на основе такой переработки кормового продукта для животных, питательной ферментационной среды и сахара.
Изобретение относится к пищевой промышленности. Способ предусматривает набор сиропа в вакуум-аппарат, его сгущение, введение в вакуум-аппарат ПАВ, заводку кристаллов, их наращивание, уваривание утфеля и центрифугирование с разделением на кристаллический белый сахар, первый и второй оттеки. Сироп вводят в вакуум-аппарат в смеси с клеровкой сахара II кристаллизации, которую получают растворением сахара II кристаллизации сиропом температурой 80-90°С до содержания 65-70% сухих веществ в центрифугах, сгущают до состояния насыщения. Заводку центров кристаллизации проводят с использованием кристаллов сахара размером 0,150-0,180 мм. ПАВ вводят в два этапа, сначала с центрами кристаллизации, а затем с клеровкой сахара III кристаллизации по завершении подкачек сиропа с клеровкой сахара II кристаллизации. В качестве ПАВ применяют моноглицерид дистиллированный. По завершении набора клеровки сахара III кристаллизации в утфель перед его окончательным сгущением до 92,5-93,0% сухих вещсетв вводят второй оттек утфеля I кристаллизации. Способ обеспечивает увеличение выхода кристаллического белого сахара, улучшение его качественных показателей и ускорение процесса уваривания утфеля в вакуум-аппарате. 1 пр.

Изобретение относится к пищевой промышленности. Способ включает смешение и кавитацию на кавитационном устройстве смеси, состоящей из мелассы свекловичной обедненной и нефтяных жидких топлив. В результате смешивания и кавитации получают жидкое котельное биотопливо, которое сжигают в топках энергетических котлов на предприятиях сахарной промышленности. Предложенный способ обеспечивает получение экологически чистого топлива. 11 ил., 3 табл.
Изобретение относится к сахарной промышленности. Способ предусматривает разделение утфеля первой кристаллизации, предусматривающий загрузку утфеля в ротор фильтрующей центрифуги периодического действия до достижения толщины слоя 150 мм, отделение первого оттека от кристаллов сахара, промывание их с отделением второго оттека и подсушивание кристаллов сахара перед выгрузкой из ротора до 0,8-1,5% к его массе. Загружаемый утфель предварительно раскачивают сиропом, содержащим перекись водорода в количестве 0,003-0,009% к массе сахара, до содержания в нем 91,7-92,5% сухих веществ и выдерживают при этом температуру 68-72°С для обеспечения его минимальной вязкости. Промывание кристаллов начинают после отделения из них 95-98% первого оттека, причем эту операцию проводят в две ступени - сначала сахарсодержащим раствором концентрацией 60-75% сухих веществ и температурой 70-80°С в количестве 2,0-3,5% к массе утфеля, а затем промывной водой температурой 80-95°С в количестве 0,5-1,5% к массе утфеля. Изобретение обеспечивает увеличение выхода сахара из центрифуги и улучшение его качественных показателей.
Изобретение относится к пищевой промышленности. Способ предусматривает перемешивание кристаллической массы сахара с раствором подслащивающего вещества, введение по меньшей мере одной пищевой добавки и высушивание готового продукта. В качестве кристаллической массы используют предварительно отсеянный сахар с кристаллическим размером 0,25-0,35 мм. В качестве подслащивающего вещества используют натуральный подсластитель - стевиозид, который вводят в кристаллическую массу в виде раствора из расчета 0,5-2,0% по массе готового продукта. Массу перемешивают в течение 10-30 минут. В качестве пищевых добавок используют йодказеин из расчета 600-1000 мкг/кг и/или селен в количестве 300-500 мкг/кг сахарсодержащего продукта. Изобретение обеспечивает улучшение качества сахарсодержащего продукта и его лечебно-профилактических свойств. 3 пр.

Изобретение относится к пищевой промышленности. Способ предусматривает уваривание утфеля I кристаллизации в двух вакуум-аппаратах, спуск готовых утфелей в приемную утфелемешалку и центрифугирование в фильтрующей центрифуге периодического действия с отделением первого оттека, промывание кристаллов сахара с отделением второго оттека и выгрузку кристаллического белого сахара. В качестве центров кристаллизации используют маточный утфель, содержащий 20-30% кристаллов размером 0,120-0,160 мм. При этом в первом вакуум-аппарате наращивают кристаллы сахара до 0,180-0,220 мм. Затем утфель в количестве 35-50% отбирают во второй аппарат с одновременным набором в него сульфитированной смеси сиропа с клеровкой сахаров II и III кристаллизации, содержащей 65-75% сухих веществ. Наращивание кристаллов сахара в первом и втором вакуум-аппаратах проводят на систематических подкачках сульфитированной смеси сиропа с клеровкой. В первом аппарате утфель сгущают до 92,0-92,5%, а во втором - до 93,0-94,0% сухих веществ. Далее утфель раскачивают первым оттеком утфеля из первого аппарата сначала перед спуском, а затем в приемной утфелемешалке до 92,0-92,5% сухих веществ, причем утфель из первого вакуум-аппарата подают на центрифугирование раньше, чем утфель из второго аппарата, и промывание кристаллов сахара проводят в течение времени, соответствующего периоду отделения первого оттека, при расходе промывной воды 0,16-0,26% к массе утфеля в секунду. Изобретение обеспечивает повышение выхода кристаллического белого сахара в процессе уваривания и центрифугирования утфеля I кристаллизации. 1 пр.
Изобретение относится к производству кристаллического белого сахара. Способ предусматривает получение клеровки сахара второй кристаллизации путем растворения сахара сиропом температурой 80-90°С в центрифугах до концентрации 70-76% сухих веществ с последующей обработкой в кавитаторе при скорости пропускания 10-15 м/с. После этого осуществляют заводку кристаллов при уваривании утфеля первой, второй кристаллизации и кристаллической основы утфеля третьей кристаллизации с использованием маточного утфеля. Маточный утфель имеет кристаллы размером 0,120-0,160 мм. При этом маточный утфель для утфеля первой кристаллизации приготавливают на основе клеровки сахара второй кристаллизации и уваривают до 92,5% сухих веществ на смеси сиропа с клеровкой. Маточный утфель для утфеля второй кристаллизации уваривают до 94,0% сухих веществ. Кристаллическую основу утфеля третьей кристаллизации готовят на клеровке сахара третьей кристаллизации и затем уваривают до 94,5% сухих веществ. Далее утфель первой кристаллизации центрифугируют с разделением на кристаллический белый сахар и оттеки. Изобретение позволяет увеличить выход и повысить качество кристаллического белого сахара за счет регулирования чистоты утфелей.
Изобретение относится к производству кристаллического белого сахара и может быть использовано в сахарной промышленности. Способ получения утфеля первой кристаллизации предусматривает набор маточного утфеля в смеси с сиропом и клеровкой сахаров второй и третьей кристаллизации в вакуум-аппарат с циркулятором до полного закрытия поверхности нагрева паровой камеры. В качестве центров кристаллизации используют маточный утфель с размером кристаллов 0,120 - 0,160 мм. Затем ведут наращивание кристаллов при сгущении утфеля до 88,5-90,0% сухих веществ при температуре 72,0-76,0°C при использовании для обогрева паровой камеры греющего пара температурой 105-110°C. Причем по завершению подкачек сиропа с клеровкой в утфель вводят его второй оттек. Окончательное сгущение утфеля ведут при температуре 66,0-72°C до содержания сухих веществ 93,0-93,5% и перед спуском из аппарата раскачивают его первым оттеком до 92,0-92,5% сухих веществ. Изобретение позволяет увеличить выход кристаллического белого сахара и повысить его качественные характеристики.

Изобретение относится к сахарному производству. Сатуратор имеет цилиндрический корпус с коническим днищем с технологическими патрубками и размещенными в его нижней части перфорированными перегородками для диспергирования потока сатурационного газа. В верхней части корпуса расположено устройство для отделения капель сока от сатурационного газа. Это устройство представляет собой усеченный конус с продольными винтообразными канавками на внутренней поверхности. Усеченный конус прикреплен большим основанием к стенке цилиндрического корпуса с образованием снаружи полости для сбора выделившихся капель. При этом в корпусе диаметрально расположены, по меньшей мере, четыре гибкие сливные заглушенные на нижнем торце трубки. В стенке каждой трубки по длине выполнены суживающиеся сопла для подвода сока из полости сбора на внутреннюю поверхность корпуса и образования на ней пленки жидкости. В верхней части цилиндрического корпуса выполнен патрубок для сброса парогазового потока. Патрубок соединен со входом проходного канала для теплоносителя термоэлектрического генератора. Генератор выполнен в виде корпуса и комплекта дифференциальных термопар. Причем «горячие» концы дифференциальных термопар расположены внутри проходного канала для теплоносителя, а их «холодные» концы укреплены на поверхности корпуса термоэлектрического генератора. Выход проходного канала для теплоносителя соединен с атмосферой. Изобретение позволяет снизить энергозатраты процесса сатурации за счет выработки электрической энергии термоэлектрическим генератором, использующим теплоту сбрасываемого в атмосферу парогазового потока. 2 ил.

Изобретение относится к пищевой промышленности, в частности к сахарной ее отрасли, и может быть использовано для производства пектина и пищевых волокон. Способ предусматривает нарезку свеклы в стружку, ее обессахаривание, осветление жома на стадии стабилизации цветности, его прессование, сушку и хранение. Осветление жома на стадии стабилизации его цветности осуществляют раствором лимонной кислоты с массовой долей лимонной кислоты 0,08-0,09% в течение 40-45 мин при постоянном перемешивании. Сушку проводят в активных гидродинамических режимах при температурах 85-110°С в течение 11-15,5 мин до достижения относительной влажности жома 11-12%. Перед дальнейшим использованием жом подвергают набуханию. Изобретение позволяет повысить пищевую безопасность за счет стабилизации цветности свекловичного жома раствором лимонной кислоты, получить сушеный жом высокого качества, повысить выход пектина и пищевых волокон за счет внедрения в процесс подготовки свекловичного жома стадии его набухания. 1 ил.
Изобретение относится к сахарной промышленности. Способ производства сахаросодержащего продукта предусматривает введение в кристаллическую массу сахара жидкого растительного СО2-экстракта или смеси жидких растительных СО2-экстрактов в количестве 0,01-2,0 вес.ч. на 100 вес.ч. сахара. Полученную увлажненную массу перемешивают и выдерживают при температуре не более 18-40°C без нагрева в герметичной таре не менее трех суток. Предпочтительно в кристаллическую массу сахара перед смешиванием его с жидким растительным CO2-экстрактом дополнительно вводят подслащивающее вещество. Также возможно разведение жидкого растительного CO2-экстракта перед введением в кристаллическую массу сахара веществом, растворяющим масла, присутствующие в жидком растительном CO2-экстракте. В одном из предпочтительных вариантов жидкий растительный СО2-экстракт разводят рафинированным растительным маслом в количестве 20-70 вес.ч. жидкого растительного CO2-экстракта на 80-30 вес.ч. масла. Изобретение позволяет получить обогащенный сахаросодержащий продукт, насыщенный жидкими растительными СО2-экстрактами. 3 з.п. ф-лы, 3 пр.
Наверх