Высокопрочная хладостойкая arc-сталь

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой высокопрочной стали с улучшенной свариваемостью для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности. Сталь содержит компоненты в следующем соотношении, % мас: углерод 0,08-0,11, кремний 0,20-0,40, марганец 0,65-0,85, хром 0,75-0,95, никель 2,10-2,30, медь 0,60-0,80, молибден 0,25-0,30, ниобий 0,02-0,05, алюминий 0,01-0,05, кальций 0,005-0,050, сера 0,001-0,005, фосфор 0,001-0,010, железо - остальное. Величина коэффициента трещиностойкости при сварке Рем не превышает 0,30%. Техническим результатом изобретения является разработка конструкционной хладостойкой стали высокой прочности для судостроения с нормируемой величиной предела текучести 690 МПа, обеспечивающей гарантированные характеристики сопротивляемости хрупким разрушениям и температуру нулевой пластичности. 2 табл., 1 пр.

 

Изобретение относится к металлургии и может быть использовано при производстве толстолистового проката из хладостойкой arc-стали высокой прочности, улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности.

Для проектирования и строительства таких объектов морской техники, как плавучие и самоподъемные буровые разведочные и добычные платформы, суда категорий arc4-arc9 для эксплуатации в ледовых условиях арктических морей, плавучие краны большой грузоподъемности, ледостойкие терминалы требуются высокопрочные хладостойкие свариваемые arc-стали с гарантированным пределом текучести 690 МПа, способные обеспечить надежную эксплуатацию сварных конструкций в экстремальных условиях воздействия низких окружающих температур (до минус 50°С) и высоких нагрузок в соответствии с требованиями «Правил…» Российского морского регистра судоходства [1, 2]. При этом сталь должна отличаться пониженным уровнем легирования для снижения трудоемкости сварочных работ.

Для изготовления ответственных сварных конструкций используется низкоуглеродистая хладостойкая сталь, содержащая компоненты в следующем соотношении, мас.%: углерод 0,08-0,12; кремний 0,2-0,4; марганец 0,45-0,75; хром 1,05-1,30; медь 0,35-0,65; никель 1,05-2,20; молибден 0,10-0,18; алюминий 0,01-0,06; ванадий 0,04-0,06; ниобий 0,02-0,05; кальций 0,005-0,050; сера 0,001-0,005; железо - остальное, причем величина коэффициента трещиностойкости при сварке Рсм, рассчитываемого по формуле

P c м = C + S i 30 + M n + C r + C u 20 + N i 60 + M o 15 + V 10 + 5  В  мас .% ,

должна быть не более 0,28% [3].

В листовом прокате толщиной до 70 мм сталь обеспечивает гарантированный предел текучести 500 МПа, обеспечивает высокие требования по хладостойкости до минус 80°С, улучшенную свариваемость (по величине коэффициента трещиностойкости), высокую трещиностойкость по критерию CTOD в зоне термического влияния сварного шва.

Для изготовления корпусов кораблей и морских технических сооружений используется низкоуглеродистая хромоникельмолибденовая сталь, принятая за прототип, содержащая компоненты в следующем соотношении, мас.% [4]:

Углерод 0,07-0,11
Кремний 0,17-0,37
Марганец 0,30-0,60
Хром 0,30-0,70
Никель 1,80-2,30
Медь 0,40-0,70
Молибден 0,25-0,35
Ванадий 0,02-0,05
Алюминий 0,005-0,04
Элемент из группы,
содержащей кальций, барий 0,005-0,05
Сера 0,003-0,015
Фосфор 0,003-0,015
Железо остальное

при условии, что сумма (никель + медь) не менее 2,4 мас.%; сумма (сера + фосфор) не более 0,025 мас.%.

В листовом прокате толщиной до 30 мм сталь обеспечивает высокую прочность при сохранении высокой пластичности, сопротивляемости хрупким и коррозионно-механическим разрушениям, хорошей свариваемости, изотропности свойств и сопротивления слоистому разрыву, однако высокие показатели ударной вязкости гарантируются при температурах не ниже минус 40°С. Основными недостатками указанной стали являются высокая температура нулевой пластичности NDT и недостаточная сопротивляемость хрупкому разрушению, оцениваемая по критерию вязкохрупкого перехода Ткб.

Техническим результатом изобретения является разработка конструкционной хладостойкой arc-стали высокой прочности с гарантированной величиной предела текучести 690 МПа для судостроения, обладающей гарантированными характеристиками работоспособности в соответствии с требованиями «Правил…» Российского морского регистра судоходства [2]: значения температур вязкохрупкого перехода для оценки способности материала тормозить распространение хрупкого разрушения должны быть не выше минус 30°С для температуры Ткб, а температура нулевой пластичности NDT должна быть не выше минус 60°С.

Технический результат достигается тем, что сталь, содержащая углерод, кремний, марганец, хром, никель, медь, молибден, алюминий, кальций, серу, фосфор и железо, дополнительно содержит ниобий при следующем соотношении компонентов, мас.%:

Углерод 0,08-0,11
Кремний 0,20-0,40
Марганец 0,65-0,85
Хром 0,75-0,95
Никель 2,10-2,30
Медь 0,60-0,80
Молибден 0,25-0,30
Ниобий 0,02-0,05
Алюминий 0,01-0,05
Кальций 0,005-0,050
Сера 0,001-0,005
Фосфор 0,001-0,010
Железо остальное

причем величина коэффициента трещиностойкости при сварке Рсм, рассчитываемого в соответствии с [1] (ч.XII, п.4.2.2) по формуле:

P c м = C + S i 30 + M n + C r + C u 20 + N i 60 + M o 15 + V 10 + 5  В  мас .% ,

не должна быть выше 0,30%.

Температура растворения карбидов ниобия в аустените на 50-100°С выше температуры растворения карбидов ванадия, в результате чего карбиды ниобия эффективно ограничивают рост аустенитного зерна, способствуя таким образом повышению дисперсности конечной структуры стали, что является наиболее эффективным путем одновременного повышения прочности, низкотемпературной вязкости и пластичности стали.

Введение в сталь марганца и хрома в выбранных пределах способствуют увеличению прочности стали за счет твердорастворного упрочнения, увеличению прокаливаемости, а также одновременному повышению сопротивляемости хрупким разрушениям за счет исключения образования в процессе закалки листового проката толщиной до 50 мм структурно-свободного феррита.

Содержание углерода в указанных пределах в сочетании с мелкозернистой структурой способствует обеспечению высокой прочности стали. Превышение указанных пределов нецелесообразно вследствие существенного снижения пластичности, вязкости, хладостойкости, а также повышения закаливаемости и увеличения склонности стали к образованию горячих и холодных трещин при сварке.

Выбранные пределы содержания марганца, меди и никеля обеспечивают необходимую прочность стали и ее вязкость при отрицательных температурах посредством твердорастворного упрочнения, а также прокаливаемость за счет повышения стабильности аустенита в ферритной области при γ-α-превращении и образования преимущественно бейнитно-мартенситных структур при закалке проката в толщинах до 50 мм.

Молибден предотвращает формирование феррита и развитие отпускной хрупкости стали. При содержании свыше 0,3% молибден понижает вязкость стали.

Фосфор обуславливает повышенную склонность к хрупким разрушениям при понижении температуры испытаний и отпускной хрупкости за счет обогащения межзеренных границ. Ограничение содержания фосфора в указанных пределах в сочетании с введением молибдена в выбранных пределах позволяет исключить отпускную хрупкость.

Пример

Сталь была выплавлена в дуговой электропечи и после внепечного рафинирования и вакуумирования разлита в слитки. Химический состав приведен в таблице 1.

Слитки нагревали до температуры 1200±20°С в камерной печи и прокатывали на стане «5000» на листы толщиной 10-50 мм, которые подвергали прямой закалке в воду после завершения горячей пластической деформации и последующему отпуску в интервале температур 620÷680°С.

Механические свойства определяли на образцах, вырезанных поперек направления прокатки. Испытание на растяжение выполняли по ГОСТ 1497 на цилиндрических образцах типа III №6 (для листов толщиной 10 мм), цилиндрических образцах типа III №4 (для листов толщиной 35 и 50 мм). Испытания на ударный изгиб выполняли по ГОСТ 9454 на образцах с V-образным надрезом тип II при температурах минус 60°C и минус 80°С.

Сопротивление хрупкому разрушению листового проката оценивали:

- по критической температуре вязко-хрупкого перехода Ткб по методике, приведенной в [1] (часть XII, п.2.4.2), соответствующей минимальной температуре, при которой в изломе технологической пробы полной толщины, испытанной на статический изгиб, наблюдается 70% волокнистой составляющей;

- по температуре нулевой пластичности NDT, определяемой по результатам динамических испытаний образцов с хрупкой наплавкой по методике, приведенной в [1] (часть XII, п.2.3.2). Эта температура характеризует условия, при которых материал не способен затормозить трещину при ударном нагружении со скоростью порядка 5 м/с, и достижения в нем напряжений предела текучести.

Свариваемость оценивали по результатам расчета параметра трещиностойкости при сварке Рсм по вышеприведенной формуле.

Результаты механических испытаний (средние значения по результатам двух испытаний на растяжение и трех на ударный изгиб) и характеристик работоспособности приведены в таблице 2.

Результаты испытаний показывают, что предлагаемая сталь обеспечивает требуемый уровень прочности, более высокую сопротивляемость хрупким разрушениям и низкотемпературную пластичность, удовлетворяющие требованиям «Правил…» Российского морского регистра судоходства [2], чем известная.

Источники информации, использованные при составлении описания изобретения:

1. Правила классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ. Российский Морской Регистр судоходства, 2012 г.

2. Правила классификации и постройки морских судов. Российский Морской Регистр судоходства, 2012 г.

3. Патент Российской Федерации №2269588, МПК С22С 38/48, 2006 г.

4. Патент Российской Федерации №1676276, МПК С22С 38/46, 1996 г. - прототип.

5. BS 7448. Fracture Mechanics Toughness Test. Part 1. Method for determination of Klc, critical CTOD and critical J - values of metallic materials, 1991. Part 2. Method for determination of critical CTOD and critical J values of welds in metallic materials, 1997.

Таблица 1
Химический состав стали, мас.%
№ состава С Si Mn Cr Ni Cu Мо Nb V Al Ca S Р Fe Рсм, мас.%
1 0,09 0,4 0,85 0,75 2,10 0,80 0,25 0,03 - 0,01 0,030 0,001 0,005 остальное 0,275
2 0,11 0,2 0,65 0,80 2,30 0,60 0,27 0,02 - 0,02 0,050 0,005 0,001 остальное 0,275
3 0,08 0,3 0,75 0,95 2,20 0,70 0,30 0,05 - 0,05 0,005 0,002 0,010 остальное 0,267
Прототип
4 0,11 0,37 0,60 0,70 2,30 0,70 0,35 - 0,04 0,04 0,05 (Ba) 0,015 0,010 остальное 0,288

Хладостойкая высокопрочная сталь, содержащая углерод, кремний, марганец, хром, никель, медь, молибден, алюминий, кальций, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит ниобий при следующем соотношении компонентов, % мас.:

углерод 0,08-0,11
кремний 0,20-0,40
марганец 0,65-0,85
хром 0,75-0,95
никель 2,10-2,30
медь 0,60-0,80
молибден 0,25-0,30
ниобий 0,02-0,05
алюминий 0,01-0,05
кальций 0,005-0,050
сера 0,001-0,005
фосфор 0,001-0,010
железо остальное,

причем величина коэффициента трещиностойкости при сварке Рсм не превышает 0,30%.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к ролику для поддержки и транспортировки горячего материала, в частности полученной непрерывной разливкой стальной заготовки на рольганге или в установке непрерывной разливки.

Изобретение относится к области металлургии. .
Изобретение относится к области металлургии, а именно к производству трубных заготовок. .

Изобретение относится к области металлургии, в частности стальному листу для производства магистральной трубы и способу изготовления стального листа. .

Изобретение относится к области металлургии, конкретнее к прокатному производству низколегированных сталей различных классов прочности, и может быть использовано для производства готовых листов, используемых в качестве исходной заготовки для прямошовных электросварных труб большого диаметра.

Изобретение относится к области металлургии, а именно к получению нефтегазопромысловой бесшовной трубы из мартенситной нержавеющей стали, обладающей прочностью с пределом текучести YS на уровне 95 кфунт/кв.дюйм (665-758 МПа) и повышенной низкотемпературной ударной прочностью.

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из стали класса прочности К56 для изготовления электросварных прямошовных труб сейсмостойкого исполнения С2 для магистральных нефтепроводов.

Изобретение относится к области черной металлургии, а именно к получению листового проката из броневой стали, применяемой для противопульной защиты легкобронированных машин.

Изобретение относится к области металлургии и может быть использовано при производстве толстолистового проката из стали высокой прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности.

Изобретение относится к области металлургии, а именно к высокопрочным сплавам, используемым при производстве систем нагревателей подземных углеводородсодержащих пластов.

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой стали высокой прочности и улучшенной свариваемости для применения в судостроении, мостостроении и других отраслях промышленности. Сталь содержит компоненты в следующем соотношении, % мас: углерод 0,08-0,11, кремний 0,20-0,40, марганец 0,50-0,80, хром 0,40-0,60, никель 1,20-1,50, медь 0,30-0,50, молибден 0,15-0,20, ниобий 0,02-0,05, алюминий 0,01-0,05, кальций 0,005-0,050, сера 0,001-0,005, фосфор 0,001-0,010, железо - остальное. Величина коэффициента трещиностойкости при сварке Рсм не превышает 0,24%. Техническим результатом изобретения является разработка конструкционной хладостойкой стали высокой прочности для судостроения с нормируемой величиной предела текучести 500 МПа, обеспечивающей гарантированные характеристики сопротивляемости хрупким разрушениям и температуру нулевой пластичности. 3 табл., 1 пр.
Изобретение относится к области металлургии, а именно к высокопрочным низкоуглеродистым мартенситным свариваемым сталям, закаливающимся на воздухе, используемым для изготовления термически упрочненных сварных конструкций, крупногабаритных изделий, а также строительных конструкций и деталей нефтяного машиностроения. Сталь содержит, в мас.%: углерод от 0,04 до 0,099, хром до 7,00, марганец от 0,15 до 2,5, никель не более 4, молибден не более 1,0, ванадий не более 0,30, титан не более 0,06 и/или ниобий не более 0,15, азот не более 0,25, медь не более 2,00, редкоземельные элементы или кальций не более 0,15, железо и неизбежные примеси - остальное. Сталь имеет пакетно-реечную структуру мартенсита при выполнении соотношения, мас.%: Сr/С не менее 20. Сталь обладает повышенными значениями характеристик прочности, вязкости и свариваемости. 1 табл.

Изобретение относится к области металлургии, а именно к производству низкоуглеродистых и низколегированных сталей повышенной коррозионной стойкости для изготовления электросварных труб, используемых при строительстве трубопроводов, эксплуатируемых в условиях агрессивных сред, в частности для транспортировки обводненной нефти и высокоминерализированных пластовых вод, содержащих сероводород, ионы хлора, углекислоты, а также механические частицы. Сталь содержит, мас.%: углерод 0,03-0,08, марганец 0,5-1,1, кремний 0,01-0,5, хром 0,6-1,2, никель 0,05-0,3, медь 0,05-0,3, фосфор не более 0,015, сера не более 0,005, алюминий 0,01-0,05, кальций 0,0001-0,006, ниобий 0,01-0,05, железо и неизбежные примеси - остальное. Сталь имеет феррито-перлитную структуру с полосчатостью не выше 2 балла, а максимально допустимое значение плотности коррозионно-активных неметаллических включений в стали NКАНВ определяется в зависимости от содержания ниобия в стали, в соответствии с условием: |NКАНВ| ≤5,6-33·|Nb|,где |NКАНВ| - абсолютная величина плотности коррозионно-активных неметаллических включений, включения/мм2, |Nb| - абсолютная величина содержания ниобия, мас.%. Содержание кальция в стали определяется зависимостью: |Ca|/|Al|≤0,24, где |Ca| - абсолютная величина содержания кальция, мас.%, |Al| - абсолютная величина содержания алюминия, мас.%. Повышаются коррозионная стойкость стали, в том числе к водородному растрескиванию и локальной коррозии, чистота металла по вредным примесям и прочностные характеристики при сохранении свариваемости и высокой технологичности. 2 н. и 2 з.п. ф-лы., 3 табл., 1 пр.

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси. Структура листа включает феррит и вторичную фазу, включающую мартенсит. Доля площади феррита составляет 50% или более, и средний размер кристаллического зерна 18 мкм или менее. Доля площади мартенсита во вторичной фазе составляет от 1 до менее 7%. Обеспечиваются требуемые прочность и формуемость при снижении веса листа. 12 н. и 8 з.п. ф-лы, 6 табл., 1 пр.

Изобретение относится к области металлургии, а именно к двухслойному листовому прокату толщиной 10-50 мм, состоящему из слоя износостойкой стали и слоя свариваемой стали, для изготовления сварных конструкций, подвергающихся ударно-абразивному износу и работающих при температуре до -40°C. Износостойкая сталь содержит, в мас.%: углерод 0,25-1,2, кремний 0,2-1,8, марганец 0,3-2,0, фосфор не более 0,025, сера не более 0,025, хром 0,3-6,5, никель 0,03-2,0, один или несколько элементов из группы: молибден 0,2-1,5, вольфрам 0,5-1,5, медь 0,05-0,4, ниобий 0,01-0,1 и ванадий 0,02-0,7, железо и неизбежные примеси - остальное. Свариваемая сталь содержит, в мас.%: углерод 0,002-0,3, кремний 0,10-0,6, марганец 0,4-1,8, фосфор не более 0,02, сера не более 0,01, хром 0,01-0,4, никель 0,01-0,5, один или несколько элементов из группы: медь 0,01-0,4, молибден 0,01-0,1, ниобий 0,01-0,1 и ванадий 0,02-0,1, железо и неизбежные примеси - остальное. Углеродный эквивалент свариваемой стали составляет не более 0,45, толщина слоя износостойкой стали составляет 10-40% или 60-90% от общей толщины проката, а прочность сцепления слоев составляет не менее 450 Н/мм2. После термической обработки изделия из проката при оптимальном расходе легирующих элементов обладают высокой износостойкостью, твердостью не менее 500 HBW, высокой прочностью слоя из свариваемой стали с пределом текучести не менее 500 МПа, в сочетании с хорошей свариваемостью и ударной вязкостью на остром надрезе при температуре до -40°C не менее 30 Дж/см2. 2 н.п. ф-лы, 2 табл.
Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например, профилей и труб. Сталь содержит компоненты при следующем соотношении, мас.%: углерод (С) 1,2-1,4, кремний (Si) 0,2-0,5, марганец (Mn) 0,5-0,8, хром (Cr) 1,4-1,7, никель (Ni) 0,6-0,9, молибден (Mo) 0,1-0,3, ванадий (V) и ниобий (Nb), исходя из выражения: V+Nb=C/12, железо остальное. Среднее содержание ванадия в 2-2,5 раза больше, чем содержание ниобия. Изготавливаемые кованые прокатные валки имеют высокую прочность и износостойкость за счет образования оптимального количества карбидов и создания мелкозернистой структуры, что способствует повышению эксплуатационных свойств валков. 1 табл.

Изобретение относится к области металлургии, а именно к присадочному материалу для сварки, который может быть использован при сварке роторов газовых турбин. Присадочный материал содержит, вес.%: C 0,05-0,15, Cr 8-11, Ni 2,8-6, Mo 0,5-1,9, Mn 0,5-1,5, Si 0,15-0,5, V 0,2-0,4, B 0-0,04, Re 1-3, Ta 0,001-0,07, N 0,01-0,06, Pd 0-60 ч./млн, P не более 0,25, S не более 0,02, железо и неизбежные примеси - остальное. Присадочный материал характеризуется хорошей смачиваемостью, повышенным сопротивлением ползучести, высокой вязкостью. 12 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сталям, предназначенным для длительной эксплуатации при температурах до 1100°C. Сталь содержит углерод, кремний, марганец, хром, никель, ниобий, азот, фосфор, серу, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,4-0,5, кремний 1,0-2,0, марганец 4,5-5,5, хром 24,0-26,0, никель 11,0-13,0, ниобий 1,2-1,5, азот 0,2-0,4, фосфор ≤0,02, сера ≤0,02, железо и неизбежные примеси - остальное. Повышаются прочностные свойства и пластические характеристики при высоких температурах при сохранении уровня удельной теплоемкости, температурного коэффициента линейного расширения и экономном легировании по никелю. 4 табл., 1 пр.

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для изготовления подшипников, работающих при температуре до 500°C и используемых в авиационных газотурбинных двигателях (ГТД) и редукторах вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам, ванадий, молибден, никель, ниобий и железо при следующем соотношении компонентов, мас.%: углерод 0,7-0,85, марганец 0,1-0,4, кремний 0,3-0,5, хром 4,5-5,5, вольфрам 1-1,5, ванадий 0,5-1,0, молибден 3-3,5, никель 0,15-0,4, ниобий 0,1-0,3, железо - остальное. Повышается технологичность при горячей пластической деформации, обеспечивается отсутствие дефектов при ковке и прокатке, а также высокая однородность структуры. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката с минимальным пределом текучести 350 МПа из низколегированной стали, предназначенного для изготовления металлоконструкций. Cпособ включает выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг, нанесение цинкового покрытия и правку. Выплавляют сталь, содержащую, в мас.%: углерод 0,16-0,20, кремний 0,15-0,30, марганец 0,30-0,50, алюминий 0,02-0,05, сера не более 0,02, фосфор не более 0,02, хром не более 0,30, никель не более 0,30, медь не более 0,30, ниобий 0,010-0,030, железо и неизбежные примеси - остальное. Горячую прокатку заканчивают при температуре 850-950°С. Смотку полос ведут при температуре 510-650°С. Правку полос на изгибо-растяжной машине производят с удлинением 0,4-0,6% для толщин до 1,5 мм и с удлинением от 0,2% до 0,4% для толщин от 1,5 мм. Правку полос на изгибо-растяжной машине могут проводить с натяжением 8,5-14 т, а перед правкой могут производить дрессировку горячеоцинкованного проката. Техническим результатом изобретения является получение требуемого уровня предела текучести для получения надежного материала для изготовления металлоконструкций. 2 з.п. ф-лы, 2 табл.
Наверх