Упругодемпферная опора газотурбинного двигателя



Упругодемпферная опора газотурбинного двигателя
Упругодемпферная опора газотурбинного двигателя
Упругодемпферная опора газотурбинного двигателя
Упругодемпферная опора газотурбинного двигателя

 


Владельцы патента RU 2507405:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (МИНПРОМТОРГ РОССИИ) (RU)

Изобретение относится к упругодемпферным опорам газотурбинных двигателей авиационного и наземного применения. Упругодемпферная опора газотурбинного двигателя содержит расположенные внутри корпуса шарикоподшипник с упругим элементом, имеющим прорези, и роликоподшипник. Роликоподшипник снабжен зигзагообразным упругим элементом с прорезями. Длина прорезей, выполненных на зигзагообразном упругом элементе роликоподшипника, меньше в 1,5…5 раз длины прорезей, выполненных на упругом элементе шарикоподшипника. Изобретение позволяет повысить надежность опоры газотурбинного двигателя. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к упругодемпферным опорам газотурбинных двигателей авиационного и наземного применения.

Известна упругодемпферная опора двигателей семейства CF34 - 10Е, в которой наружное кольцо роликоподшипника закреплено без упругого элемента сзади, а наружное кольцо шарикоподшипника закреплено в упругом элементе спереди («Иностранные авиационные двигатели», выпуск 14, Москва, ЦИАМ, 2005 год, стр.75-79).

Недостатком известной конструкции является отсутствие упругого и масляного демпфирования роликоподшипника.

Наиболее близкой к заявляемой является упругодемпферная опора газотурбинных двигателей семейства GP 7200, которая содержит расположенные внутри корпуса шарикоподшипник с упругим элементом, имеющим прорези, и роликоподшипник. При этом наружное кольцо роликоподшипника закреплено с масляным демпфированием без упругого элемента спереди, а наружное кольцо шарикоподшипника выполнено заодно с упругим элементом и закреплено сзади («Иностранные авиационные двигатели», выпуск 14, Москва, ЦИАМ, 2005 г., стр.176-192).

Недостатком известной конструкции, принятой за прототип, является отсутствие у роликоподшипника упругого элемента при наличии масляного демпфирования, а также неравномерный зазор масляного демпфера по окружности из-за неудовлетворительного центрирования в упругом элементе.

Технический результат заявленного изобретения заключается в повышении надежности опоры газотурбинного двигателя за счет упругого демпфирования в роликоподшипнике и равномерного радиального зазора в масляном демпфере.

Технический результат достигается тем, что упругодемпферная опора газотурбинного двигателя содержит расположенные внутри корпуса шарикоподшипник с упругим элементом, имеющим прорези, и роликоподшипник, который снабжен зигзагообразным упругим элементом с прорезями, при этом длина прорезей, выполненных на зигзагообразном упругом элементе роликоподшипника, меньше в 1,5…5 раз длины прорезей, выполненных на упругом элементе шарикоподшипника.

При этом зигзагообразный упругий элемент может быть выполнен заодно с наружной обоймой роликоподшипника.

Упругий элемент выполнен заодно с наружной обоймой шарикоподшипника.

Наличие у роликоподшипника зигзагообразного упругого элемента с прорезями обеспечивает дополнительное демпфирование ротора и центрирование с обеспечением равномерной масляной пленки. Кроме того, уменьшается радиальное перемещение ротора при приемистости и сбросе режимов, что уменьшает рабочие радиальные зазоры по лопаткам турбокомпрессора.

Выполнение длины L прорезей на зигзагообразном упругом элементе роликоподшипника меньше в 1,5…5 раз длины L1 прорезей на упругом элементе шарикоподшипника обеспечивает превышение жесткости зигзагообразного упругого элемента роликоподшипника по отношению к жесткости упругого элемента шарикоподшипника, что повышает надежность опоры газотурбинного двигателя.

Выполнение зигзагообразного упругого элемента заодно с наружной обоймой роликоподшипника и выполнение упругого элемента заодно с наружной обоймой шарикоподшипника также повышает надежность опоры за счет отсутствия гаек.

На фиг.1 изображен продольный разрез упругодемпферной опоры газотурбинного двигателя.

На фиг.2 показан поперечный разрез упругодемпферной опоры по зигзагообразному упругому элементу роликоподшипника.

На фиг.3 приведен поперечный разрез упругодемпферной опоры по упругому элементу шарикоподшипника.

На фиг.4 показано выполнение наружных обойм шарикоподшипника и роликоподшипника заодно, соответственно, с упругим элементом и зигзагообразным упругим элементом.

Упругодемпферная опора газотурбинного двигателя состоит из корпуса 1, в котором установлены упругие элементы 2 и 3, при этом упругий элемент 2 выполнен зигзагообразной формы. Упругие элементы 2 и 3 посредством гаек 4 и 5 зафиксированы, соответственно, с наружной обоймой 6 роликоподшипника 7 и наружной обоймой 8 шарикоподшипника 9. Роликоподшипник 7 выполнен с роликами 10, а шарикоподшипник 9 - с шариками 11. Упругие элементы 2 и 3 установлены, соответственно, над роликоподшипником 7 и шарикоподшипником 9. Между корпусом 1 и зигзагообразным упругим элементом 2 роликоподшипника 7 выполнена кольцевая масляная полость 12, в которую через отверстия 13 поступает масло, которое служит для демпфирования колебаний ротора 14. Уплотнительные кольца 15 на наружной поверхности зигзагообразного упругого элемента 2 ограничивают и уплотняют масляную полость 12. Зигзагообразный элемент 2 роликоподшипника 7 выполнен с прорезями 16, а упругий элемент 3 шарикоподшипника 9 выполнен с прорезями 17. Длина L прорезей 16 на зигзагообразном упругом элементе 2 роликоподшипника 7 выполнена в 1,5-5 раз меньше, чем длина L1 прорезей 17 на упругом элементе 2 шарикоподшипника 9.

Выбор указанного соотношения длин L прорезей 16 и L1 прорезей 17 обусловлен тем, что только данное соотношение обеспечивает превышение жесткости зигзагообразного упругого элемента 2 роликоподшипника 7 по отношению к жесткости упругого элемента 3 шарикоподшипника 9. Выполнение соотношений длин L и L1 менее 1,5 не позволяет получить превышение жесткости упругого элемента 2 над упругим элементом 3 для передачи большей части радиального усилия от ротора через опору роликоподшипника 7, а выполнение соотношений длин L и L1 более 5 увеличивает жесткость опоры роликоподшипника 7 до величины, когда перестает работать масляный демпфер.

Для повышения надежности опоры зигзагообразный упругий элемент 2 может быть выполнен заодно с наружной обоймой 6 роликоподшипника 7, а упругий элемент 3 - заодно с наружной обоймой 8 шарикоподшипника 9, Такое выполнение позволяет исключить использование гаек 4 и 5 в конструкции опоры.

Упругодемпферная опора газотурбинного двигателя работает следующим образом.

При работе двигателя и при колебаниях вала ротор 14, находящийся в опоре роликоподшипника 7, гарантированно центрируется при помощи упругого элемента 2, имеющего большую жесткость, передающего в основном радиальное усилие, и масляной пленки кольцевой полости 12, в которой обеспечивается равномерный зазор. Шарикоподшипник 8 воспринимает в основном осевую нагрузку. При демпфировании энергия колебаний ротора 14 расходуется на перекачку масла по окружности. Кроме масляного демпфирования колебаний ротора 14 в опоре роликоподшипника 7 происходит дополнительное демпфирование в упругих элементах 2 и 3, соответственно, роликоподшипника 7 и шарикоподшипника 9, что позволяет также уменьшить выработку по лопаткам и лабиринтам.

1. Упругодемпферная опора газотурбинного двигателя, содержащая расположенные внутри корпуса шарикоподшипник с упругим элементом, имеющим прорези, и роликоподшипник, отличающаяся тем, что роликоподшипник снабжен зигзагообразным упругим элементом с прорезями, при этом длина прорезей, выполненных на зигзагообразном упругом элементе роликоподшипника, меньше в 1,5…5 раз длины прорезей, выполненных на упругом элементе шарикоподшипника.

2. Упругодемпферная опора по п.1, отличающаяся тем, что зигзагообразный упругий элемент выполнен заодно с наружной обоймой роликоподшипника.



 

Похожие патенты:

Изобретение относится к авиационной технике, в частности к газотурбинному двигателю со свободной турбиной. Газосборник газотурбинного двигателя содержит корпус с двумя внешними кольцевыми фланцами, соединенными между собой продольными и радиальными ребрами, цилиндрической оболочкой, конической мембраной с поддерживающими ребрами и криволинейной оболочкой, образующими контур отвода горячих газов, и корпус подшипников турбины, размещенный во внутренней части корпуса газосборника с магистралью маслоподачи на форсунки охлаждения и смазки подшипников турбины, магистралью маслоудаления, полостью подачи холодного воздуха от компрессора для охлаждения стенок корпуса подшипников турбины, масла в магистралях маслоподачи и маслоудаления, для подачи холодного воздуха к лабиринтным уплотнениям подшипников турбины и штуцерами магистралей маслоподачи и маслоудаления, при этом корпус газосборника снабжен внутренним фланцем, корпус подшипников турбины выполнен в виде ступенчатой втулки с упорным и цилиндрическим фланцами, втулка запрессована в газосборник по двум разнесенным цилиндрическим поясам, с упором по фланцам, между ступенями втулки установлена дополнительная цилиндрическая оболочка, герметизирующая полость подачи холодного воздуха, а магистраль маслоподачи выполнена в виде каналов, образованных в теле втулки.

Турбомашина включает статор, ротор, вращающийся в одном заданном направлении, и узел подшипника. Узел подшипника содержит первую часть, присоединенную к статору турбомашины при помощи набора болтов и гаек, вторую часть, присоединенную к ротору, и подшипник качения, расположенный между первой и второй частями узла подшипника.

Коренная шейка содержит средство удержания уплотнительной втулки (200), охватывающей упомянутый вал. Средство удержания содержит сплошной радиальный кольцевой фланец, выполненный с входной стороны на аксиальной цилиндрической части шейки, и средства тангенциального блокирования.

Изобретение относится к способу и к системе смазки, имеющей в своем составе по меньшей мере три различные камеры, каждая из которых заключает в себе по меньшей мере один подшипник качения.

Турбинная установка, содержащая, по меньшей мере, одно первое и одно второе рабочие колеса, вал и систему подшипников. Задние поверхности рабочих колес обращены друг к другу.

Устройство разъединения опоры (7) подшипника в газотурбинном двигателе. Опора (7) подшипника содержит переднюю часть (1) и заднюю часть (2), содержащие соответственно множество передних отверстий (10) и задних отверстий (20), через которые проходят предохранительные винты (3).

Изобретение относится к турбомашинам, а именно к смазочным устройствам подшипников опор роторов турбин газотурбинных двигателей. .

Изобретение относится к опоре роторов турбин высокого и низкого давления высокотемпературного газотурбинного двигателя, интегрированной с сопловым аппаратом турбины низкого давления.

Изобретение относится к смазке подшипников скольжения и, в частности, к распределению холодной смазки на опорной поверхности подшипника скольжения и отводу горячей смазки от опорной поверхности и может быть использовано в компрессорах, турбинах, насосах и других устройствах с вращающимися валами.

Газотурбинная установка содержит газотурбинный двигатель с компрессором, устройство воздухоподготовки газотурбинного двигателя, топливную систему с камерами сгорания, устройством подачи и регулирования топлива, масляную систему узлов трения газотурбинного двигателя и исполнительных агрегатов с теплообменником охлаждения масла, нагнетающим насосом, теплообменником подогрева топлива, выполненными в отдельном регулируемом циркуляционном контуре. Газотурбинная установка дополнительно снабжена тепловым насосом, содержащим последовательно соединенные, по меньшей мере, один испарительный теплообменник, одно устройство повышения давления, один конденсаторный теплообменник, одно устройство понижения давления. Вход испарительного теплообменника подключен к выходу устройства воздухоподготовки газотурбинного двигателя. Выход испарительного теплообменника соединен с входом компрессора. Вход конденсаторного теплообменника соединен с устройством подачи топлива, а выход - с теплообменником подогрева топлива. Изобретение направлено на повышение экономичности газотурбинной установки с различными газовыми и жидкими топливами, на снижение влияния параметров атмосферного воздуха на параметры ее работы, а также на повышение безопасности системы подогрева топлива газотурбинной установки. 1 ил.

Высокотемпературная турбина газотурбинного двигателя, в наружном корпусе которой установлены сопловая лопатка и ниже по потоку газа разрезное секторное кольцо, а также рабочая лопатка и уплотнительные гребешки на верхней полке. Полка образует с внутренней поверхностью разрезного кольца лабиринтное уплотнение. Между корпусом турбины и осевым кольцевым выступом стопорного кольца сопловой лопатки установлена лента с образованием кольцевых замкнутых полостей между лентой и корпусом. Разрезное кольцо выполнено с коническим, направленным к сопловой лопатке ребром с образованием кольцевой воздушной полости. На входе полость соединена с воздушной полостью охлаждения сопловой лопатки, а на выходе - с проточной частью турбины через щелевую кольцевую полость. Кольцевая полость образована верхней полкой сопловой лопатки и коническим ребром. Щелевая полость расположена с внутренней стороны от верхней полки рабочей лопатки. Отношение шага кольцевых микрогребешков на внутренней поверхности разрезного кольца к радиальному зазору между передним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом составляет 1…2. Отношение высоты кольцевых микрогребешков к радиальному зазору 0,8…1,8. Отношение длины торцевой поверхности кольцевого микрогребешка к радиальному зазору 0,3…0,8. Отношение радиального зазора между задним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом к радиальному зазору между передним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом 1,5…2,5. Изобретение позволяет повысить надежность турбины. 2 ил.

Изобретение относится к области авиадвигателестроения, в частности к маслосистеме авиационных газотурбинных двигателей. При экстремальных условиях работы двигателя (например, при фигурных полетах самолета) вследствие роста гидравлического сопротивления в магистралях откачки, увеличения перемешивания масла с воздухом и интенсификации процесса растворения воздуха в масле, на входе откачивающих насосов образуется масловоздушная эмульсия с большим процентным содержанием в ней воздуха, что может привести к снижению напора и падению производительности откачивающего насоса, являющегося наименее надежным звеном маслосистемы. Баланс подачи и откачки масла в масляной полости, обслуживаемой проблемным насосом, нарушается, и она начинает переполняться маслом, которое быстро перегревается. Переполнение масляной полости маслом сопровождается его уходом из маслобака, что грозит потерей масла и появлению на двигателе режима «масляное голодание». Технический результат изобретения - возможность корректировки гидравлического сопротивления магистрали откачки масла проблемного откачивающего насоса, что позволяет восстановить баланс подачи и откачки масла в масляной полости, обслуживаемой этим насосом, и избежать появления дефектов на двигателе. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Особенностью предложенной конструкции является использование для привода во вращение откачивающего насоса размещенного внутри масляной полости опорного подшипника ротора гидромотора, работающего на энергии масла, подающегося на смазку опорного подшипника ротора. Для этого откачивающий насос в масляной полости опорного подшипника ротора выполнен конструктивно двухсекционным. Секции кинематически связаны, а гидравлически разобщены между собой. Одна из секций насоса выполняет функции гидравлического привода другой, для чего ее масляная полость последовательно включена в магистраль подвода масла в коллектор форсунок подачи масла. Как правило, давление подачи масла в несколько раз превышает давление масла в магистрали откачки, что позволяет преобразовать некоторую часть потенциальной энергии давления подачи масла в кинетическую энергию вращения шестерен откачивающего насоса. Такое решение позволит отказаться от использования редуктора, понижающего число оборотов при передаче вращения от ротора турбомашины к откачивающему насосу и упростить конструкцию опоры ротора турбомашины. 1 з.п.ф-лы, 1 ил.

Изобретение относится к области авиационной техники, а именно к процессу запуска газотурбинных двигателей. В начальный момент запуска газотурбинного двигателя обмотка якоря основного генератора и обмотка возбуждения возбудителя через блок управления подключаются к источнику питания, при этом блок управления обеспечивает опережение вектора магнитного потока основного генератора относительно оси полюса ротора и начальная раскрутка газотурбинного двигателя осуществляется реактивным моментом, а с увеличением частоты вращения индуцированная электродвижущая сила в обмотке якоря возбудителя, выпрямленная блоком вращающегося выпрямителя, питает обмотку возбуждения основного генератора, создавая активный вращающий момент и, при достижении заданной частоты вращения, блок управления отключается от обмотки основного генератора, а бесконтактный явнополюсный синхронный генератор с вращающимся выпрямителем переходит в генераторный режим. Технический результат изобретения - снижение балластной полетной массы и упрощение конструкции. 3 ил.

Опора турбины газотурбинного двигателя содержит подшипник (4), вал (6) и лабиринт (11) с фланцем (10) между подшипником (4) и диском (8) турбины. С внешней стороны фланца (10) лабиринта (11) установлен дополнительный фланец (12) с образованием полости продувки (13). Полость (13) на входе соединена с воздушной полостью (14) кожуха вала (15), а на выходе, через наклонные к оси (16) опоры (1) пазы (17) и каналы (18) в лабиринте (11) и (19) в валу (6), с внутренней полостью (20) вала (6). Пазы (17) от входа (21) к выходу (22) направлены по направлению (23) вращения вала (6). С внешней стороны дополнительного фланца (12) установлен дефлектор (25) с байонетным креплением (26) внутреннего хвостовика (27) на дополнительном фланце (12) с образованием щелевой воздушной полости (28). Ближний к диску (8) турбины лабиринт (31) опоры выполнен с уплотнительными микрогребешками (34) на рабочей поверхности (35) обода (33) увеличенной толщины. Отношение высоты h микрогребешка (34) к величине радиального зазора δ в ближнем к диску (8) лабиринте (31) находится в пределах 1,5…2,5. Отношение максимального диаметра D ближнего к диску лабиринта (31) к минимальной толщине Н обода (33) лабиринта (31) находится в пределах 20...40. Путем снижения поступающих в масляную полость опоры тепловых потоков повышается надежность опоры турбины, а также снижаются термические напряжения в ближнем к диску турбины лабиринте опоры. 4 ил.

Изобретение относится к газотурбинным машинам и может быть использовано при монтаже их роторов. При монтаже ротора газотурбинного двигателя его устанавливают в подшипниковых опорах качения. В одной из опор ротора используют роликовый подшипник с овальной беговой дорожкой кольца подшипника, связанного силовыми элементами со статором двигателя. Установку подшипника на опоре осуществляют таким образом, что большая ось овала беговой дорожки кольца совпадает с направлением силы тяжести ротора, при этом жесткость опоры и параметр овала дорожки качения кольца подшипника выбирают из соотношений, защищаемых настоящим изобретением. Изобретение позволяет предотвратить резонанс ротора на критической частоте его вращения. 2 ил.

Изобретение относится к области машиностроения и касается устройства маслосистемы авиационного теплонапряженного газотурбинного двигателя с форсажной камерой, устанавливаемого на сверхзвуковые маневренные самолеты. В маслосистеме для повышения эффективности охлаждения масла в топливомасляном теплообменнике используется хладоресурс топлива, поступающего в форсажную камеру сгорания при работе двигателя на форсажном режиме. Для этого топливомасляный теплообменник выполнен в виде двух секций, в которых топливные полости в теплообменных матрицах выполнены раздельными и подключенными к разным магистралям подвода топлива (в основную или форсажную камеры сгорания), а масляные полости сообщены между собой через управляемый двухпозиционный распределительный клапан. Технический результат изобретения - повышение надежности работы двигателя путем обеспечения стабильного давления в магистрали подачи масла при переключении режимов работы двигателя (с основного на форсажный и обратно), что достигается выравниванием гидравлических характеристик масляных трактов течения масла. 1 ил.

Изобретение относится к области авиадвигателестроения, а именно к устройствам маслосистем авиационных газотурбинных двигателей. Маслосистема авиационного газотурбинного двигателя содержит установленные в магистралях откачки и суфлирования приводные центробежные воздухоотделитель и суфлер. Центробежные воздухоотделитель и суфлер расположены соосно на одном приводном валу и выполнены в едином корпусе. Магистраль отвода воздуха от центробежного воздухоотделителя расположена внутри приводного вала и подведена на вход центробежного суфлера. Технический результат изобретения позволяет упростить конструкцию маслосистемы, а также снизить ее массу за счет сокращения количества конструктивных элементов в составе коробки привода агрегатов и их габаритов. 2 ил.

Изобретение относится к турбореактивным двухконтурным двигателям авиационного применения. Система суфлирования турбореактивного двигателя включает в себя трубопровод суфлирования, соединенный с трубой суфлирования, установленной на сопло. Выходной конец патрубка трубы суфлирования выполнен изогнутой формы с образованием емкости для конденсата масла. Выходное сечение патрубка выполнено перпендикулярным оси трубы. Технический результат изобретения - исключение попадания масла на взлетно-посадочную полосу после выключения двигателя. 3 ил.
Наверх