Выгораемое сопло комбинированного ракетно-прямоточного двигателя

Изобретение относится к машиностроению, а именно к комбинированным ракетно-прямоточным двигателям. Выгораемое сопло комбинированного ракетно-прямоточного двигателя размещено во внутренней полости сопла маршевого режима и выполнено из двух элементов, соединенных друг с другом с возможностью формирования тракта сопла разгонного режима от дозвуковой до трансзвуковой и от трансзвуковой до сверхзвуковой областей. С внешней стороны элементов сопла выполнены продольные каналы, заглушенные со стороны камеры дожигания и образующие систему пилонов, которые с внешней стороны прикреплены к внутренней поверхности маршевого сопла двигателя. Элементы сопла выполнены из материала, обладающего высокой термоэрозионной стойкостью к продуктам сгорания с восстановительным химическим потенциалом и низкой термоэрозионной стойкостью к продуктам сгорания с окислительным химическим потенциалом. Изобретение позволяет повысить надежность работы выгораемого сопла на разгонном режиме работы двигателя и повысить скорость перехода к геометрическим характеристикам маршевого сопла на прямоточном режиме. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к машиностроению, а именно к комбинированным ракетно-прямоточным двигателям.

В настоящее время на летательных аппаратах (ЛА) находят применение комбинированные ракетно-прямоточные двигатели (КРПД). Существенным недостатком таких двигателей является низкий уровень тяги при нулевой скорости движения. Для быстрого достижения величины скорости движения ЛА, требуемой для эффективной работы прямоточной маршевой ступени КРПД, обычно используется заряд твердого ракетного топлива, который размещается в камере дожигания прямоточной ступени двигателя. Передняя часть камеры дожигания снабжена, по меньшей мере, одним патрубком, к которому пристыковано воздухозаборное устройство (ВЗУ) и через которое, при работе КРПД на прямоточном режиме, в камеру дожигания поступает набегающий воздушный поток. Воздух, являющийся основным рабочим телом, обеспечивает процесс дожигания продуктов газогенерации КРПД. При работе стартовой ступени вход воздуха герметично закрыт.

Оптимальные геометрические характеристики сопла маршевой прямоточной и стартовой разгонной ступеней существенно различаются. Маршевое сопло для использования в режиме разгона непригодно из-за переразмеренности. В начальный период применения КРПД сопло, обеспечивающее оптимальные характеристики интегрированной стартовой ступени, было сбрасываемым. После быстрого выгорания заряда стартового ракетного топлива, когда ЛА приобретал необходимую скорость полета, сопло стартовой ступени выбрасывалось в окружающую среду. Поскольку сопло, как правило, было толстостенным и имело значительную массу, то ее заранее непредсказуемое движение в окружающей среде представляло опасность для других ЛА. В последнее время одним из основных требований, предъявляемых к ряду разрабатываемых КРПД, является отсутствие сбрасываемых элементов.

Таким образом, трудности обеспечения эффективного разгонного режима при наличии требования по отсутствию сбрасываемых элементов являются серьезным недостатком, ограничивающим применение КРПД.

Известно устройство сопла для ракеты с прямоточным воздушно-реактивным двигателем (патент Японии №3143654, МПК F02K 7/18, опубликовано 15.04.1993 г.), где стартовое сопло выгорает под воздействием высокотемпературных продуктов сгорания топлива на маршевом режиме работы прямоточного двигателя. Стойкость стартового сопла на режиме разгона обеспечивается охлаждением его огневой стенки. С этой целью на ЛА содержится система, которая осуществляет подачу хладагента через специальные каналы огневой стенки стартового сопла в начале режима разгона и прекращение подачи хладагента по окончании работы стартовой ступени. Хладагент, нагретый в тракте охлаждения, сбрасывается за борт ЛА. Наличие расходуемого хладагента и системы его подачи существенно ухудшает габаритно-массовые характеристики ЛА. Процесс термического разрушения данной конструкции может сопровождаться выносом крупных фрагментов стартового сопла в окружающее пространство.

Наиболее близким техническим решением, выбранным в качестве наиболее близкого аналога, является ракетный двигатель твердого топлива (РДТТ) с выгорающим соплом из топлива с упрочняющими волокнами (патент США №4574700, МПК C06D 5/06, опубл. 1984 г.), где в качестве выгораемого сопла используется часть заряда из твердого топлива с относительно малой скоростью горения. В это топливо при изготовлении вводятся волокна (~9% по массе) марки «Kevlar» диаметром 1…2 мкм и длиной 0,25…0,75 см для увеличения эрозионной стойкости. Технология изготовления такого составного заряда достаточно сложная. Кроме того, значительный разгар сопла происходит с самого начала работы разгонной ступени. Рабочий процесс носит существенно нестационарный характер и является трудно прогнозируемым. Это приводит к существенному снижению термодинамической эффективности. Удельный импульс топлива снижается на 10…20% по отношению к варианту использования оптимального сопла. Баллистические характеристики выгорания топлива существенно зависят и от температуры заряда топлива, которая может меняться в широком диапазоне. Это увеличивает нестабильность характеристик разгонного режима.

Целью заявляемого технического решения является улучшение термодинамической эффективности режима разгона ЛА с КРПД и повышение надежности работы двигателя в момент перехода от стартового к маршевому режиму.

Указанная цель достигается тем, что выгораемое сопло комбинированного ракетно-прямоточного двигателя, размещенное во внутренней полости сопла маршевого режима, выполнено по меньшей мере из двух элементов, соединенных друг с другом с возможностью формирования тракта сопла разгонного режима от дозвуковой до трансзвуковой и от трансзвуковой до сверхзвуковой областей, с внешней стороны элементов сопла выполнены продольные каналы, заглушенные со стороны камеры дожигания и образующие систему пилонов, которые с внешней стороны прикреплены к внутренней поверхностью маршевого сопла двигателя, причем выгораемое сопло выполнено из материала, обладающего высокой термоэрозионной стойкостью к продуктам сгорания с восстановительным химическим потенциалом и низкой термоэрозионной стойкостью продуктам сгорания с окислительным химическим потенциалом.

При этом количество пилонов должно быть не менее трех толщиной 1-10 мм. В качестве материала для изготовления выгораемого сопла использованы углеродные и/или композиционные углерод-углеродные материалы. На выгораемое сопло комбинированного ракетно-прямоточного двигателя с внешней стороны выгораемого сопла со стороны камеры дожигания нанесен высокотемпературный клей, обеспечивающий фиксацию выгораемого сопла в полости сопла маршевого режима КРПД.

На фиг.1 представлен продольный разрез маршевого и выгораемого сопла по пилонам.

На фиг.2 представлен продольный разрез маршевого и выгораемого сопел в области между пилонами.

На фиг.3 представлен поперечный разрез маршевого и выгораемого сопел в трансзвуковой области.

Выгораемое сопло разгонного режима комбинированного ракетно-прямоточного двигателя расположено внутри полости сопла 1 маршевого режима работы и состоит из двух элементов: переднего элемента 2 и заднего элемента 3. Передняя часть - элемент 2 формирует тракт сужения до трансзвуковой области, а задняя часть - элемент 3 формирует тракт расширения от трансзвуковой до сверхзвуковой области.

Контактные поверхности элементов выгораемого сопла герметично соединяются путем склеивания с внутренней поверхностью маршевого сопла 1 и друг с другом. Результирующая газодинамических сил, действующих на внутреннюю поверхность элементов 2 и 3 выгораемого сопла, направлена в сторону маршевого сопла, что способствует их взаимному прижатию. С внешней стороны элементов 2 и 3 выгораемого сопла стартового режима выполнены продольные профилированные пазы, образующие систему пилонов.

К маршевому соплу 1 внешние поверхности пилонов приклеиваются с использованием высокотемпературного клея, количество и профиль пилонов выбирается в зависимости от характеристик материала стартового сопла и действующих на режиме разгона нагрузок. Образующиеся между пилонами каналы со стороны камеры дожигания заглушены. Детали выгораемого сопла выполнены из материала, обладающего высокой термоэрозионной стойкостью и прочностью при воздействии высокотемпературных продуктов сгорания твердого топлива с восстановительным химическим потенциалом и низкой термоэрозионной стойкостью по отношению к высокоэнтальпийным потокам с окислительным химическим потенциалом. Прежде всего, к таким материалам относятся углеродные и композиционные углерод-углеродные материалы. Скорость терморазрушения данных материалов в окислительной среде вырастает на порядок по сравнению с воздействием на них потоков с восстановительным химическим потенциалом. В отличие от металлических и других конструкционных материалов, при сгорании углеродных и композиционных углерод-углеродных материалов процесс плавления отсутствует, а продукты сгорания в среде кислорода воздуха представляют собой газы (окись и двуокись углерода), а не конденсаты окислов, выхлоп которых, в определенном смысле, эквивалентен фрагментарному сбросу стартового сопла.

Выгораемое сопло разгонного режима комбинированного ракетно-прямоточного двигателя работает следующим образом.

На кратковременном разгонном режиме обеспечивается работа сопла с нормированным, незначительным уносом (0,1…0,3 мм/с) материала под воздействием высокоэнтальпийного потока продуктов сгорания стартового топлива с восстановительным химическим потенциалом.

После завершения разгонного режима начинает работать прямоточная ступень двигателя и детали стартового выгораемого сопла начинают омываться высокотемпературными продуктами с высоким окислительным химическим потенциалом.

Под их воздействием, в первую очередь, перегорают перемычки между пилонами элементов 2 и 3 выгораемого сопла, происходит значительное увеличение проходного сечения сопла и быстрое выгорание пилонов вследствие их обтекания потоком не только по внутренней торцевой, но и по боковым поверхностям. Наличие протока через выходной задний торец элемента 3 обеспечивает опережающее термохимическое разрушение пилонов в трансзвуковой и сверхзвуковой зонах сопла. Глухие каналы элемента 2 способствуют упрощению технологии изготовления заряда стартового топлива.

В результате обеспечивается быстрый переход от геометрических характеристик сопла для разгонного режима к геометрии сопла маршевого режима работы РПД. Скорость такого перехода весьма важна для улучшения эффективности работы КРПД.

Предварительные экспериментальные исследования показали, что положительный эффект достигается при числе пилонов не менее 3 и их толщине 1÷10 мм.

По сравнению с наиболее близким аналогом предлагаемое выгораемое сопло позволяет в максимальной мере реализовать оптимальные энергетические характеристики на разгонном режиме работы комбинированного ракетно-прямоточного двигателя, существенно уменьшить время перехода к номинальным параметрам маршевого режима, снизить зависимость процесса разрушения и уноса материала выгораемого сопла от режимов работы. Выполнение элементов выгораемого сопла из углеродных и композиционных углерод-углеродных материалов позволяет повысить надежность его работы на разгонном режиме и осуществить быстрый переход к геометрическим характеристикам маршевого сопла на прямоточном режиме работы двигателя.

1. Выгораемое сопло комбинированного ракетно-прямоточного двигателя, размещенное во внутренней полости сопла маршевого режима, отличающееся тем, что выгораемое сопло выполнено из двух элементов, соединенных друг с другом с возможностью формирования тракта сопла разгонного режима от дозвуковой до трансзвуковой и от трансзвуковой до сверхзвуковой областей, с внешней стороны элементов сопла выполнены продольные каналы, заглушенные со стороны камеры дожигания и образующие систему пилонов, которые с внешней стороны прикреплены к внутренней поверхности маршевого сопла двигателя, причем элементы сопла выполнены из материала, обладающего высокой термоэрозионной стойкостью к продуктам сгорания с восстановительным химическим потенциалом и низкой термоэрозионной стойкостью к продуктам сгорания с окислительным химическим потенциалом.

2. Выгораемое сопло по п.1, отличающееся тем, что в качестве материала, обладающего высокой термоэрозионной стойкостью к продуктам сгорания с восстановительным химическим потенциалом и низкой термоэрозионной стойкостью к продуктам сгорания с окислительным химическим потенциалом, использованы углеродный и/или композиционный углерод-углеродные материалы.

3. Выгораемое сопло по п.1 или 2, отличающееся тем, что элементы сопла выполнены с количеством пилонов не менее трех толщиной от 1 до 10 мм.

4. Выгораемое сопло по п.3, отличающееся тем, что с внешней стороны выгораемого сопла со стороны камеры дожигания нанесен высокотемпературный клей, обеспечивающий фиксацию выгораемого сопла в полости сопла маршевого режима.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике. .

Изобретение относится к машиностроению, в частности к устройствам, предназначенным для регулирования расхода твердого топлива в реактивной технике, например в регулируемых ракетно-прямоточных двигателях.

Изобретение относится к авиационному двигателестроению, а именно к прямоточным воздушно-реактивным двигателям (ПВРД) на порошкообразном металлическом горючем (ПМГ).

Изобретение относится к области воздушных и ракетных реактивных двигателей. .

Изобретение относится к конструкции ракетно-прямоточных двигателей длительного времени работы, в частности, для сверхзвуковых крылатых ракет. .

Изобретение относится к машиностроению, а именно к интегральным ракетно-прямоточным двигателям. .

Изобретение относится к авиационному двигателестроению, а именно к прямоточным воздушно-реактивным двигателям (ПВРД), и может быть использовано в двигательных установках летательных аппаратов (ЛА) больших скоростей полета.

Система снижения шума газотурбинного двигателя содержит глушитель выхлопа, расположенный вблизи выхлопного канала, проход для охлаждающего воздуха и средство создания потока охлаждающего воздуха в проходе.

Изобретение относится к области тепловой защиты струйных сопел с дожиганием в авиационных газотурбинных двигателях. .

Звукопоглощающая выхлопная труба турбомашины содержит перфорированную внутреннюю оболочку, образующую проточный канал выхлопной трубы, сплошную внешнюю оболочку, сердечник и каркас. Внутренняя и внешняя оболочки образуют между собой пространство, закрытое на переднем и заднем концах. Сердечник расположен между внутренней и внешней оболочками, на расстоянии от них, и содержит слой, рассеивающий звуковую энергию, состоящий из полых шариков, которые удерживаются рядом друг с другом. Каркас содержит передний и задний участки, соединенные вместе продольными элементами. Каркас поддерживает сердечник и разделяет его на множество ячеек, заполненных полыми шариками, удерживаемыми между двумя перфорированными структурами. Каркас прикреплен к внешней оболочке и внутренней оболочке посредством, по меньшей мере, одного из переднего и заднего участков каркаса. Изобретение позволяет повысить эффективность звукопоглощения выхлопной трубы без увеличения массы ее конструкции. 9 з.п. ф-лы, 8 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Регулируемое сопло содержит корпус с теплозащитным экраном и шарнирно прикрепленные к корпусу створки. Теплозащитный экран образует с корпусом канал для прохождения охлаждающего воздуха и выполнен в виде секций с боковыми отбортовками. Секции экрана размещены в окружном направлении и снабжены вставками со скобами, жестко прикрепленными к секциям. Скобы размещены внутри вставок на глубине, не меньшей толщины скоб, а жесткое крепление скоб к секциям экрана выполнено посредством сварки или пайки. Боковые отбортовки секций экрана выполнены с уменьшением их ширины в направлении потока охлаждающего воздуха. Изобретение позволяет обеспечить надежное охлаждение сопла, а также повысить ресурс и надежность двигателя. 4 ил.

Изобретение относится к конструкции с сотовым заполнителем для использования в несущей панели гондолы турбореактивного двигателя самолета, являющейся акустической панелью. Конструкция содержит блок с сотовым заполнителем, выполненный с центральной частью, содержащей срединные сотовые ячейки, и с двумя боковыми частями, содержащими каждая множество соединительных сотовых ячеек. Часть соединительных сотовых ячеек имеет одну дополнительную стенку для образования соединения. Блок или блоки соединены между собой одной соединительной зоной, полученной путем пробивания двух наложенных друг на друга дополнительных стенок, которыми снабжены соединительные сотовые ячейки, принадлежащие разным боковым частям. Достигается простота изготовления зоны соединения, надежность. 4 н. и 9 з.п. ф-лы, 7 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Поворотное осесимметричное сопло содержит неподвижный корпус с экраном и подвижный корпус со сферическим экраном, установленным между неподвижным и подвижным корпусами. Щели между экранами и корпусами образуют каналы для прохождения охлаждающего воздуха. Сферический экран подвижного корпуса выполнен в виде секций, размещенных в окружном направлении. На каждой секции в двух поясах попарно закреплены подвески с отверстиями в полках, в которые заведены цилиндрические пальцы, жестко прикрепленные к подвижному корпусу. В одном из поясов на одной подвеске палец установлен в отверстии без зазора, а на смежной подвеске - в овальном отверстии, выполненном в поперечном направлении относительно продольной оси сопла. В другом поясе на одной подвеске палец установлен в овальном отверстии, выполненном в продольном направлении, а на смежной - в цилиндрическом отверстии с равномерным зазором. Изобретение позволяет повысить надежность работы двигателя, а также эффективность охлаждения поворотного осесимметричного сопла. 3 ил.
Наверх