Радионавигационная система для измерения пеленга подвижного объекта

Изобретение относится к радионавигации и может использоваться в радионавигационных системах для измерения угловых координат подвижных объектов как в азимутальной, так и в угломестной плоскостях относительно задаваемого наземным радиомаяком направления. Сущность изобретения заключается в том, что радиомаяк одновременно из двух пространственно разнесенных в плоскости измерений точек с известными координатами излучает ортогонально линейно поляризованные электромагнитные волны. На подвижном объекте принимаются электромагнитные волны в линейном поляризационном базисе, составляющем угол 45° с плоскостью измерений. По принятым сигналам на выходе линейного поляризационного разделителя формируются суммарный и разностные сигналы и измеряется разность фаз между ними, после чего рассчитывается угловая координата подвижного объекта. Достигаемый технический результат - предлагаемая угломерная система обеспечивает более высокое быстродействие и точность измерений при наличии жестких ограничений на габариты приемной антенны подвижного объекта, где масса и габариты антенны приобретают первостепенное значение. 2 ил.

 

Изобретение относится к радионавигации и может использоваться в навигационных системах для определения угловых координат подвижных объектов как в азимутальной, так и в угломестной плоскостях.

Известна радионавигационная система [1, 2], в которой пеленг подвижного объекта определяется на основе измерения разности фаз сигналов на выходе двух разнесенных в пространстве приемных антенн. Эта система содержит источник электромагнитных волн, расположенный в точке с известными координатами и расположенные на подвижном объекте две разнесенные в пространстве приемные антенны, каждая из которых последовательно соединена с соответствующим приемником, фазометр и счетно-решающее устройство, причем, выходы приемников подключены к соответствующим двум входам фазометра, а его выход подключен к входу счетно-решающего устройства. Фазометр измеряет разность фаз напряжений на выходе приемников, а счетно-решающее устройство по измеренной разности фаз определяет пеленг подвижного объекта.

Недостатком этой радионавигационной системы является низкая точность измерений пеленга подвижного объекта при наличии жестких ограничений на габариты приемных антенн.

Этот недостаток обусловлен тем, что точность измерений пеленга подвижного объекта определяется пространственным разносом приемных антенн. Чем больше расстояние между антеннами, тем выше точность измерений и, наоборот, при уменьшении пространственного разноса приемных антенн точность измерений пеленга подвижного объекта снижается.

Известна радионавигационная система для измерения пеленга подвижного объекта [3, 4]. Эта система содержит радиомаяк, расположенный в точке с известными координатами и приемо-индикатор, расположенный на подвижном объекте. Радиомаяк содержит передатчик с подключенными к нему, через синхронный переключатель, трех передающих антенн, расположенных в вершинах равностороннего треугольника. Разность фаз сигналов, приходящих от любой из пар антенн, определяется угловым положением подвижного объекта. Приемо-индикатор содержит приемную антенну, выход которой соединен с выходом приемника, а его выход через синхронный переключатель подключен к трем приемным каналам и фазометр, два входа которого с помощью переключателя подключены к выходам любой из пар приемных каналов. Работа системы основана на поочередном, во времени, излучении электромагнитных волн из двух точек с известными координатами, расположенных в плоскости измерений на расстоянии d друг от друга. Причем длины и амплитуды излучаемых электромагнитных волн равны и начальные фазы совпадают. На подвижном объекте последовательно во времени принимаются электромагнитные волны от любой из пар передающих антенн и измеряется их разность фаз, после чего рассчитывается пеленг подвижного объекта.

Недостатком этой радионавигационной системы является низкое быстродействие измерений пеленга подвижного объекта, обусловленное временным разделением передаваемых и, соответственно, принимаемых сигналов.

Известна радионавигационная система для измерения пеленга подвижного объекта (А.с. №1355955, М кл.4, G01S 3/02, приоритет от 9.12.1985 [5]), в которой пеленг подвижного объекта определяется на основе измерения разности фаз Δφ между ортогонально линейно поляризованными электромагнитными волнами, одновременно излучаемыми с равными амплитудами, фазами и длинами волн из двух точек с известными координатами расположенных в плоскости измерений на расстоянии d друг от друга. При этом пеленг α подвижного объекта определяется относительно равносигнального направления, совпадающего с нормалью к середине линии, соединяющей точки излучений ортогонально линейно поляризованных электромагнитных волн по формуле:

α = arcsin ( λ 2 π d Δ ϕ )                                                   (1)

где λ - длина волны.

Навигационная система содержит передатчик с подключенными к нему двумя передающими антеннами с ортогональными линейными собственными поляризациями. На подвижном объекте навигационная система содержит приемную всеполяризованную антенну, секцию круглого волновода с встроенной четвертьволновой фазовой пластиной, линейный поляризационный разделитель, амплитудный дискриминатор и вычислитель. Причем четвертьволновая фазовая пластина ориентирована под углом 45° к одной из стенок прямоугольного волновода линейного поляризационного разделителя.

Навигационная система работает следующим образом.

Передатчик через подключенные к нему двумя передающими антеннами с ортогональными линейными собственными поляризациями излучают линейно ортогонально поляризованные электромагнитные волны с равными амплитудами, фазами и длинами волн.

На подвижном объекте суммарная электромагнитная волна полностью принимается всеполяризованной приемной антенной и поступает на последовательно соединенные секцию круглого волновода со встроенной четвертьволновой фазовой пластиной и линейный поляризационный разделитель. Сочетание секции круглого волновода с встроенной четвертьволновой фазовой пластиной и линейного поляризационного разделителя позволяет осуществить на подвижном объекте прием суммарной электромагнитной волны в круговом поляризационном базисе и, таким образом, разделить поступающую на вход суммарную электромагнитную волну на две ортогонально поляризованные по кругу волны. С выходов плеч линейного поляризационного разделителя сигналы поступают на вход амплитудного дискриминатора, где формируется напряжение, равное отношению амплитуд E1/E2 сигналов в виде [5]

S ( α ) = E 1 E 2 = 1 cos Δ ϕ 1 + cos Δ ϕ = | t g Δ ϕ 2 | .                                             ( 2 )

После чего, выходной сигнал (2) амплитудного дискриминатора поступает на вычислитель, где с учетом (1) и (2), рассчитывается пеленг подвижного объекта по формуле [5]

α = arcsin [ λ 2 π d ( 2 a r c t g E 1 E 2 ± 2 n π ) ] ,                                           ( 3 )

где n=0, 1, 2, ….

Этой радионавигационной системе присущ ряд недостатков. Во-первых, обладает низкой точностью измерений пеленга подвижного объекта на равносигнальном направлении и направлениях, близких к нему, обусловленной низкой крутизной пеленгационной характеристики (2) в указанных направлениях при фиксированном отношении d/λ. Во-вторых, не возможно определить сторону отклонения подвижного объекта от равносигнального направления. Последнее обусловлено тем, что отношение амплитуд сигналов E1/E2 на выходе амплитудного дискриминатора величина всегда положительная, поэтому пеленгационная характеристика (2) имеет симметричный вид относительно равносигнального направления.

Наиболее близким по совокупности признаков к заявляемой радионавигационной системе является устройство для измерения пеленга подвижного объекта (патент СССР №1251003 М. кл.4 G01S, 3/02, приоритет от 29.01.85) [6]. Это устройство содержит передатчик с подключенными к нему двумя передающими антеннами с ортогональными собственными поляризациями и расположенными в точках с известными координатами в плоскости измерений на расстоянии d друг от друга и расположенных на подвижном объекте приемную всеполяризованную антенну, линейный поляризационный разделитель, амплитудно-фазовый дискриминатор и вычислитель, при этом выход приемной всеполяризованной антенны подключен к входу линейного поляризационного разделителя, а два его выхода подключены к двум входам амплитудно-фазового дискриминатора, а его выход подключен к входу вычислителя, причем линейный поляризационный разделитель ориентирован так, что орты его собственной системы координат совпадают с осями плеч прямоугольных волноводов и ориентированы под углом θ=45° к плоскости измерений.

Работа устройства заключается в том, что передатчик через подключенные к нему двумя передающими антеннами одновременно из двух точек излучают ортогонально эллиптически поляризованные электромагнитные волны с равными амплитудами, фазами и длинами волн.

На подвижном объекте суммарная электромагнитная волна, вектор Джонса которой в декартовом поляризационном базисе имеет вид [6]

E ˙ Σ = [ cos ε + j sin ε e j Δ ϕ j sin ε + cos ε e j Δ ϕ ] ,                                                  ( 4 )

где ε - угол эллиптичности излучаемых ортогонально поляризованных электромагнитных волн,

Δ ϕ = 2 π d λ sin α - фазовый сдвиг между ортогонально эллиптически поляризованными электромагнитными волнами в точке приема в направлении α, (λ - длина волны),

полностью принимается всеполяризованной приемной антенной, после чего сигнал поступает на вход линейного поляризационного разделителя, орты собственной системы координат которого совпадают с осями плеч прямоугольных волноводов и ориентированы под углом θ=45° к плоскости измерений. Линейный поляризационный разделитель разделяет поступающую на его вход суммарную электромагнитную волну, на две линейные ортогональные по поляризации электромагнитные волны. В этом случае сигналы на выходах плеч линейного поляризационного разделителя, опуская временную зависимость сигналов, определяются с помощью преобразований [6]

E ˙ 1 = [ 1 0 0 0 ] [ cos θ sin θ sin θ cos θ ] [ cos ε + j sin ε e j Δ ϕ j sin ε + cos ε e j Δ ϕ ] ,

E ˙ 2 = [ 0 0 0 1 ] [ cos θ sin θ sin θ cos θ ] [ cos ε + j sin ε e j Δ ϕ j sin ε + cos ε e j Δ ϕ ] ,

где [ cos θ sin θ sin θ cos θ ] - оператор перехода из декартового поляризационного базиса, в котором записаны векторы Джонса излучаемых волн, в систему координат поляризационного разделителя;

[ 1 0 0 0 ] - оператор поляризатора первого плеча линейного поляризационного разделителя;

[ 0 0 0 1 ] - оператор поляризатора второго плеча линейного поляризационного разделителя.

После преобразований получим аналитические выражения для сигналов E ˙ 1 и E ˙ 2 на выходе линейного поляризационного разделителя вида:

E ˙ 1 = cos θ cos ε + j cos θ sin ε e j Δ ϕ j sin θ sin ε sin θ cos ε e j Δ ϕ ,                        ( 5 )

E ˙ 2 = sin θ cos ε + j sin θ sin ε e j Δ ϕ + j cos θ sin ε + cos θ cos ε e j Δ ϕ ,                        ( 6 )

С выходов плеч линейного поляризационного разделителя сигналы, описываемые аналитическими выражениями (5) и (6), поступают на входы амплитудно-фазового дискриминатора. Причем сигнал E ˙ 1 поступает на вход разностного канала, а сигнал E ˙ 2 поступает на вход суммарного канала амплитудно-фазового дискриминатора. Амплитуды A1 и А2 сигналов E ˙ 1 и E ˙ 2 на входе амплитудно-фазового дискриминатора имеют вид [6]

A 1 = 1 sin 2 ε cos 2 θ sin Δ ϕ sin 2 θ cos Δ ϕ ,                                            ( 7 )

A 2 = 1 + sin 2 ε cos 2 θ sin Δ ϕ + sin 2 θ cos Δ ϕ .                                            ( 8 )

Из анализа (7) и (8) видно, что амплитуды A1 и A2 сигналов E ˙ 1 и E ˙ 2 на входе амплитудно-фазового дискриминатора зависят не только от измеряемого параметра разности фаз Δφ, но и от угла эллиптичности ε излучаемых электромагнитных волн и от угла ориентации θ собственной системы координат линейного поляризационного разделителя относительно плоскости измерений. При θ=45° амплитуды A1 и A2, а также фазы ψ1 и ψ2 сигналов E ˙ 1 и E ˙ 2 на входе амплитудно-фазового дискриминатора имеют вид [6]

A 1 = 1 cos Δ ϕ ,             ( 9 ) ψ 1 = π 2 2 ε Δ ϕ 2 ,              ( 11 )

A 2 = 1 + cos Δ ϕ ,             ( 10 ) ψ 2 = 2 ε + Δ ϕ 2 ,              ( 12 )

а их разность фаз имеет вид

Δ ψ = ψ 1 ψ 2 = π 2 2 ε .                                  ( 13 )

Таким образом, при θ=45° амплитуды A1 и A2 зависят только от измеряемого параметра разности фаз Δφ между принимаемыми на подвижном объекте ортогонально эллиптически поляризованными электромагнитными волнами от первой и второй передающих антенн и не зависят от угла эллиптичности ε этих волн. В то же время разность фаз Δψ между сигналами E ˙ 1 и E ˙ 2 на входе амплитудно-фазового дискриминатора постоянна и, наоборот, определяется только углом эллиптичности ε излучаемых ортогонально поляризованных электромагнитных волн и не зависит от измеряемого параметра разности фаз Δφ.

Для обеспечения нормальной работы амплитудно-фазового дискриминатора необходимо, как отмечается в [6], чтобы разность фаз между сигналами, поступающими на его вход, была равна 90°, а амплитуды A1 и А2 сигналов E ˙ 1 и E ˙ 2 определялись выражениями (9) и (10). Из анализа (13) видно, что для передающих антенн, излучающих линейно ортогонально поляризованные электромагнитные волны с углом эллиптичности ε=0°, это условие выполняется. В случае, если передающие антенны излучают в общем случае ортогонально эллиптические поляризованные электромагнитные волны с углом эллиптичности ε, то, как следует из (13), их разность фаз отличается от 90° на величину, равную удвоенному углу эллиптичности ε излучаемых электромагнитных волн. В этом случае необходимо излучать электромагнитные волны с равной амплитудой и длиной волны, но с начальной разностью фаз, равной удвоенному углу эллиптичности ε [6].

В амплитудно-фазовом дискриминаторе происходит преобразование по частоте и усиление с учетом работы автоматической регулировки усиления, осуществляющей на промежуточной частоте нормировку сигналов E ˙ 1 и E ˙ 2 относительно сигнала E ˙ 2 . В результате на выходе амплитудно-фазового дискриминатора формируется выходное напряжение, знак которого учитывает знак разности фаз Δφ сравниваемых сигналов E ˙ 1 и E ˙ 2 , пропорциональное отношению вида [6]

S ( α ) = k A 1 A 2 = k t g Δ ϕ 2 ,                                                    ( 14 )

где k - коэффициент пропорциональности, зависящий от идентичности амплитудно- и фазо-частотных характеристик приемных каналов.

Полагая k=1 из (14) следует, что

Δ ϕ = ± 2 a r c t g A 1 A 2 ± n 2 π ,                                                             ( 15 )

где n=0, 1, 2, ….

С выхода амплитудно-фазового дискриминатора сигнал поступает на вычислитель, где с учетом (1) и (15), производится операция расчета пеленга а подвижного объекта по формуле

α = arcsin [ λ π d ( ± a r c t g A 1 A 2 ± n π ) ] .                                                 ( 16 )

Зависимость измеряемого отношения A1/A2 (14) от угловой координаты α подвижного объекта, по сути, является пеленгационной характеристикой угломерного устройства. Пользуясь соотношением (14) с учетом (1), полагая k=1, можно показать, что крутизна пеленгационной характеристики в точке α=0 определяется соотношением

μ ( α ) = | d S ( α ) d α | α = 0 = | d d α t g ( π d λ sin α ) | α = 0 = π d λ .                                    ( 17 )

Таким образом, крутизна пеленгационной характеристики а, следовательно, и точность пеленгования растут с увеличением отношения d / λ .

Недостатком этой радионавигационной системы является низкая точность измерений пеленга α подвижного объекта, находящегося на равносигнальном направлении и направлениях, близких к равносигнальному. Этот недостаток обусловлен низкой крутизной пеленгационной характеристики в указанных направлениях, при фиксированном отношении d/λ.

На фиг.1 представлена структурная электрическая схема радионавигационной системы для измерения пеленга подвижного объекта.

Радионавигационная система содержит передатчик 1, передающие антенны 2 и 3, расположенные в точках с известными координатами и разнесенные в плоскости измерений на расстоянии d друг от друга, на борту подвижного объекта радионавигационная система содержит приемную всеполяризованную антенну 4, линейный поляризационный разделитель 5, коаксильно-волноводные переходы 6 и 7, суммарно-разностный блок 8, фазовый угловой дискриминатор 9 и вычислитель 10.

На фиг.2 представлена структурная электрическая схема фазового углового дискриминатора 9, включающего в себя первый смеситель частоты 11, второй смеситель частоты 12, фазовращатель на π/2 13, гетеродин 14, первый усилитель промежуточной частоты (УПЧ) с ограничением по амплитуде 15, второй УПЧ с ограничением по амплитуде 16, фазовый детектор 17.

Радионавигационная система работает следующим образом.

Передатчик 1, через подключенные к нему двумя передающими антеннами 2 и 3 излучает электромагнитные волны соответственно с горизонтальной и вертикальной ориентациями плоскости поляризации с равными амплитудами, фазами и длинами волн.

На подвижном объекте суммарная электромагнитная волна, вектор Джонса которой в направлении α в декартовом поляризационном базисе, с учетом (4), при условии ε=0°, имеет вид:

E ˙ Σ = [ 1 e j Δ ϕ ] ,                                               ( 18 )

где Δ ϕ = 2 π d λ sin α - фазовый сдвиг между ортогонально линейно поляризованными электромагнитными волнами в точке приема в направлении α, (λ - длина волны),

полностью принимается всеполяризованной антенной 4 и поступает на вход линейного поляризационного разделителя 5, орты собственной системы координат которого совпадают с осями плеч ортогонально расположенных по отношению друг к другу прямоугольных волноводов и ориентированы, в общем случае, под углом θ с плоскостью измерений.

Тогда ортогонально линейно поляризованные сигналы на выходах плеч линейного поляризационного разделителя 5, опуская временную зависимость сигналов, определяются с помощью преобразований вида:

E ˙ 1 = [ 1 0 0 0 ] [ cos θ sin θ sin θ cos θ ] [ 1 e j Δ ϕ ] ,                                    ( 19 )

E ˙ 2 = [ 0 0 0 1 ] [ cos θ sin θ sin θ cos θ ] [ 1 e j Δ ϕ ] ,                                       ( 20 )

где [ cos θ sin θ sin θ cos θ ] - оператор перехода из декартового поляризационного базиса, в котором записаны векторы Джонса излучаемых волн, в систему координат поляризационного разделителя;

[ 1 0 0 0 ] - оператор поляризатора первого плеча линейного поляризационного разделителя;

[ 0 0 0 1 ] - оператор поляризатора второго плеча линейного поляризационного разделителя.

После преобразований получим аналитические выражения для сигналов E ˙ 1 и E ˙ 2 на выходе линейного поляризационного разделителя 5 вида:

E ˙ 1 = cos θ sin θ e j Δ ϕ ,                                                   ( 21 )

E ˙ 2 = sin θ + cos θ e j Δ ϕ .                                                   ( 22 )

С выходов плеч линейного поляризационного разделителя 5, ориентированного под углом θ=45° к плоскости измерений, сигналы E ˙ 1 и E ˙ 2 , через соответствующие им коаксиально-волноводные переходы 6 и 7 поступают на входы суммарно-разностного блока 8 и имеют вид

E ˙ 1 = 2 2 ( 1 e j Δ ϕ ) ,                                                       ( 23 )

E ˙ 2 = 2 2 ( 1 + e j Δ ϕ ) .                                                       ( 24 )

Соответственно амплитуды A1 и А2, а также фазы ψ1 и ψ2 сигналов E ˙ 1 и E ˙ 2 на входе суммарно-разностного блока 8 имеют вид:

A 1 = 1 cos Δ ϕ ,             ( 25 ) ψ 1 = a r c t g sin Δ ϕ 1 cos Δ ϕ ,              ( 26 )

A 2 = 1 + cos Δ ϕ ,             ( 27 ) ψ 2 = a r c t g sin Δ ϕ 1 + cos Δ ϕ ,              ( 28 )

а их разность фаз, после преобразований имеет вид:

Δ ψ = ψ 1 ψ 2 = π 2 .                                                                   ( 29 )

Из анализа (25) и (27) следует, что при θ=45° амплитуды сигналов E ˙ 1 и E ˙ 2 на входе суммарно-разностного блока 8 зависят только от измеряемого параметра разности фаз Δφ между принимаемыми на борту подвижного объекта ортогонально линейно поляризованными электромагнитными волнами от передающих антенн 2 и 3.

В то же время, из анализа (29) видно, что разность фаз Δφ между сигналами E ˙ 1 и E ˙ 2 на входе суммарно-разностного блока 8 постоянна и, наоборот, не зависит от измеряемого параметра разности фаз Δφ.

На выходах суммарно-разностного блока 8 формируются нормированные, с точностью до постоянного коэффициента 1 / 2 , суммарный E ˙ Σ и разностный E ˙ Δ сигналы вида:

E ˙ Σ = 1 2 ( E ˙ 1 + E ˙ 2 ) ,            ( 30 ) и E ˙ Δ = 1 2 ( E ˙ 1 E ˙ 2 ) .              ( 31 )

Подставляя (23) и (24) в (30) и (31) и вводя, для наглядности представлений, временную зависимость сигналов, получим аналитические выражения для суммарного E ˙ Σ и разностного E ˙ Δ сигналов на выходе суммарно-разностного блока 8 вида:

E ˙ Σ = 1 e j ω t ,            ( 32 ) и E ˙ Δ = 1 e j ( ω t + Δ ϕ ) .              ( 33 )

Соответственно амплитуды AΣ и AΔ суммарного E ˙ Σ и разностного E ˙ Δ сигналов и их разность фаз ψΔΣ имеют вид:

A Σ = A Δ = 1,                                                               ( 34 )

и их разность фаз

ψ Δ ψ Σ = ± a r c t g t g Δ ϕ ± n π ,                                           ( 35 )

где n=0, 1, 2, …,

или, после преобразований, с учетом n=0 получим

ψ Δ ψ Σ = ± Δ ϕ .                                                               ( 36 )

Из анализа (34) и (36) следует, что при ориентации линейного поляризационного разделителя 5 под углом θ=45° к плоскости измерений, амплитуды АΣ и АΔ суммарного E ˙ Σ и разностного E ˙ Δ выходных сигналов суммарно-разностного блока 8 постоянны и равны между собой (34) и не зависят от углового положения подвижного объекта. В то же время разность фаз ψΔΣ между разностным E ˙ Δ и суммарным E ˙ Σ сигналами на выходе суммарно-разностного блока 8, наоборот определяется угловым положением подвижного объекта и совпадает с измеряемой разностью фаз Δφ между принимаемыми ортогонально линейно поляризованными электромагнитными волнами и связаны между собой соотношением (36).

С выходов суммарно-разностного блока 8 суммарный E ˙ Σ и разностный E ˙ Δ сигналы, описываемые аналитическими выражениями (32) и (33) с параметрами (34) и (36) поступают на входы фазового углового дискриминатора 9 (см. фиг.2), т.е. поступают соответственно на первые входы смесителей частоты 11 и 12, а на их вторые входы поступает сигнал с выхода гетеродина 14. После чего, сигнал с выхода первого смесителя частоты 11 через фазовращатель на 90° 13 поступает на вход первого УПЧ с ограничением по амплитуде 15, а сигнал с выхода второго смесителя частоты 12 поступает на вход второго УПЧ с ограничением по амплитуде 16. В УПЧ 15 и 16, имеющих идентичные амплитудно-фазочастотные характеристики, осуществляется усиление сигналов промежуточной частоты, а также производится их нормировка за счет амплитудного ограничения усиливаемых сигналов промежуточной частоты с порогом ограничения U0. Затем выходной сигнал УПЧ 15 поступает на первый вход фазового детектора 17, а выходной сигнал УПЧ 16 поступает на второй вход фазового детектора 17. На выходе фазового детектора 17 формируется сигнал пропорциональный синусу разности фаз ψΔΣ входных сигналов и имеет вид:

S ( α ) = U 0 sin ( ψ Δ ψ Σ ) ,                                                        ( 37 )

или с учетом (36)

S ( α ) = U 0 sin Δ ϕ ,                                                                 ( 38 )

где U0=const.

Производя нормировку (38) S ( α ) / U 0 и подставляя из (18) значение Δφ в (38) получим выражение для пеленгационной характеристики вида:

S ( α ) U 0 = sin ( 2 π d λ sin α ) .                                                            ( 39 )

При малых значениях α, полагая U0=1, зависимость (39) имеет приближенно линейный характер:

S ( α ) U 0 2 π d λ α .                                                                       ( 40 )

Таким образом, по сигналу с выхода фазового детектора 17 можно определить величину и знак угла отклонения α от перпендикуляра, восстановленного к середине базы d, образованной передающими антеннами 2 и 3.

Найдя производную нормированного выходного сигнала фазового детектора 17 S ( α ) / U 0 в точке α=0°, получим выражение для крутизны пеленгационной характеристики вида:

μ ( α ) = | d ( S ( α ) ) / U 0 d α | α = 0 = | d d α sin ( 2 π d λ sin α ) | α = 0 = 2 π d λ .                                    ( 41 )

Из (41) следует, что крутизна пеленгационной характеристики, а, следовательно и точность пеленгования растут с увеличением отношения d / λ .

С выхода фазового детектора 17 сигнал поступает в вычислитель 10, где по измеренной разности фаз ψΔΣ между разностным E ˙ Δ и суммарным E ˙ Σ выходными сигналами суммарно-разностного блока 8, с учетом (37) и (18), рассчитывается пеленг α подвижного объекта в заданной системе координат и при заданном отношении d / λ , по формуле:

α = arcsin { λ 2 π d [ ± ( ψ Δ ψ Σ ) ± n π ] } ,                                                ( 42 )

где n=0, 1, 2, ….

Проведем сравнительный анализ точности измерений пеленга α подвижного объекта между устройством прототипом и заявляемой радионавигационной системой.

Из сравнительного анализа (17) и (41) следует, что когда подвижный объект находится на равносигнальном направлении, или на направлениях близких к равносигнальному, крутизна пеленгационной характеристики в заявляемой радионавигационной системе, при одном и том же отношении d/λ, в два раза выше, чем у устройства прототипа. А поскольку известно [1, 7], что при одном и том же отношении сигнал/шум на входе приемных каналов ошибка пеленгования δα связана с крутизной пеленгационной характеристики µ соотношением [7]:

δ α = 1 μ ,                                                                               ( 43 )

то увеличение ее крутизны в два раза снижает ошибку пеленгования δα соответственно в два раза и тем самым обеспечивается более высокая точность измерений пеленга α.

Повышение точности измерений пеленга α подвижного объекта на указанных направлениях достигается за счет применения суммарно-разностной обработки сигналов на выходе линейного поляризационного разделителя, ориентированного под углом 45° к плоскости измерений.

Проводя сравнительный анализ выражений (25) и (29) с соответствующими выражениями (34) и (36) видим, что суммарно-разностная обработка сигналов, позволяет преобразовать угловую информацию о подвижном объекте, которая в устройстве прототипе содержится в амплитудных соотношениях (25) и (27) сигналов на выходе линейного поляризационного разделителя, в фазовые соотношения сигналов (36) на выходе суммарно-разностного блока в заявляемой радионавигационной системе. При этом пеленгационная характеристика (14) преобразовывается в пеленгационную характеристику (37). Причем эти преобразования осуществляются на высокой частоте до входов приемных каналов с использованием пассивных элементов в виде коаксиальных линий из-за их простоты и стабильности характеристик. Кроме того, использование суммарно-разностной обработки выходных сигналов линейного поляризационного разделителя на высокой частоте позволяет, так же как и в фазовых суммарно-разностных моноимпульсных системах [1, 7] предъявлять менее жесткие требования к идентичности амплитудно-фазовых характеристик приемных каналов, по сравнению с прямым измерением разности фаз Δφ. При этом необходимо так же отметить, что суммарно-разностная обработка осуществляется на выходе линейного поляризационного разделителя, ориентированного, так же как в прототипе, под углом 45° к плоскости измерений. Это обстоятельство позволяет обеспечить комплексные независимые измерения пеленга α за счет одновременного использования как амплитудных отношений (25) и (27) сигналов на выходе линейного поляризационного разделителя, так и использования фазовых соотношений (36) сигналов на выходе суммарно-разностного блока, что, безусловно, повысит точность и достоверность получаемой навигационной информации.

В 3-см диапазоне волн заявляемая радионавигационная система может быть реализована следующим образом.

В качестве передатчика 1 может быть использован, например, стандартный генератор высокочастотных колебаний типа ГЧ-83, к выходу которого подключен делитель мощности, выполненный в виде двойного волноводного Т-образного разветвителя [8]. Причем первый выход разветвителя подключен к передающей антенне 2, а его второй выход подключен через отрезок скрученного на 90° прямоугольного волновода к передающей антенне 3.

В качестве передающих антенн 2 и 3 может быть использована рупорная антенна [9].

Приемная всеполяризованная антенна 4 может быть выполнена в виде круглого рупора [8].

Линейный поляризационный разделитель 5 выполнен в виде волновода круглого сечения с переходом на два ортогонально расположенных волноводов прямоугольного сечения [10].

Суммарно-разностный блок 8 выполнен на коаксиальных линиях [1].

Фазовый угловой дискриминатор 9 может быть выполнен по известной [7] схеме фазо-фазовой моноимпульсной системе.

Вычислитель 10 может быть выполнен на базе бортового компьютера подвижного объекта.

Заявляемая радионавигационная система позволяет повысить точность измерений пеленга а подвижного объекта в два раза в случаях, когда подвижный объект находится на равносигнальном направлении и на направлениях близких к равносигнальному, за счет большей крутизны пеленгационной характеристики, сохраняя при этом габариты приемной антенны неизменными. Последнее позволяет повысить эффективность практического применения радионавигационных средств на подвижных объектах, где масса и габариты приемной антенны приобретают первостепенное значение.

Источники информации, использованные при составлении описания изобретения:

1. Ширман Я.Д. Теоретические основы радиолокации. - М.: «Транспорт», 1973.

2. Ярлыков М.С. Статистическая теория радионавигации. - М.: «Радио и связь», 1985. - 343 с.

3. Астафьев Г.П., Шебшаевич B.C., Юрков Ю.А. Радиотехнические средства навигации летательных аппаратов. - М.: «Советское радио», 1962. - 963 с.

4. Казаринов Ю.М. и др. Радиотехнические системы. - М.: «Советское радио», 1968. - 495 с.

5. Бадулин Н.Н., Гулько В.Л. Навигационная система для определения пеленга. - А.С. №1355955, М. кл.4, G01S 3/02, приоритет от 9.12.1985.

6. Бадулин Н.Н., Гулько В.Л. Способ измерения пеленга подвижного объекта и устройство для его осуществления. - Патент СССР №1251003, М. кл.4, G01S 3/02, приоритет от 29.01.1985.

7. Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. - М.: «Радио и связь», 1984. - 312 с.

8. Жук М.С., Молочков Ю.Б. Проектирование линзовых сканирующих широкодиапазонных антенн и фидерных устройств. - М.: «Энергия», 1973. - 401 с.

9. Драбкин А.Л. и др. Антенно-фидерные устройства. - М.: «Советское радио», 1974.

10. Канарейкин Д.Б., Павлов Н.Ф., Потехин В.А. Поляризация радиолокационных сигналов. - М.: «Советское радио», 1966. - 440 с.

Радионавигационная система для измерения пеленга подвижного объекта, содержащая передатчик, выход которого соединен с входами двух разнесенных передающих антенн с ортогональными собственными поляризациями, расположенных в точках с известными координатами в плоскости измерений на расстоянии d друг от друга, и расположенные на подвижном объекте приемную всеполяризованную антенну, выход которой соединен с входом линейного поляризационного разделителя, выполненного в виде перехода с круглого волновода на два ортогонально расположенных по отношению друг к другу прямоугольных волновода, орты собственной системы координат которого совпадают с осями плеч прямоугольных волноводов и ориентированы под углом 45° к плоскости измерений, и вычислитель, отличающаяся тем, что введены первый и второй коаксиально-волноводные переходы, суммарно-разностный блок, выполненный на коаксиальных линиях, и фазовый угловой дискриминатор, при этом входы первого и второго коаксиально-волноводных переходов со стороны прямоугольных волноводов подключены к выходам линейного поляризационного разделителя, а их выходы подключены к входам суммарно-разностного блока, а два его выхода подключены к соответствующим двум входам фазового углового дискриминатора, а его выход подключен к входу вычислителя, причем передающие антенны имеют соответственно горизонтальную и вертикальную линейные собственные поляризации.



 

Похожие патенты:

Использование: в устройстве для обнаружения сигналов и определения направления на их источник. Сущность: устройство для обнаружения сигналов и определения направления на их источник содержит выполненную определенным образом дискретную антенную решетку (ДАР), включающую N ненаправленных пассивных и М активно-пассивных электроакустических преобразователей, соответствующие им I каналы передачи информации, блок управления характеристикой направленности, блок вычисления относительных координат элементов ДАР, пороговое устройство, вычислитель порога принятия решения, индикатор, блок управления активно-пассивными элементами ДАР, а также формирователь характеристик направленности с временной задержкой сигналов.

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения зондирующих сигналов гидролокаторов, установленных на подвижном носителе.

Изобретение относится к области радиотехники и может быть использовано при решении задач радиопеленгации с помощью переносных (малогабаритных) средств в декаметровом и метровом диапазонах радиоволн.

Изобретение относится к измерительной технике, в частности к пеленгаторам. .

Изобретение относится к области радиолокации и может быть использовано в радиолокаторах поиска и слежения. .

Изобретение относится к радиотехнике и может быть использовано для обнаружения и пеленгации фазоманипулированных сигналов. .

Изобретение относится к вычислительной технике. .

Изобретение относится к тепловым выключателям, предназначенным для защиты электронных и электрических приборов от перегрева при неисправностях, позволяет повысить надежность термовыключателя.

Изобретение относится к конструктивному выполнению средств гидрофизических исследований и может быть использовано, например, при реализации систем акустической томографии или систем пассивного обнаружения шумящих объектов.

Изобретение относится к радиотехнике, а именно к области пеленгации. Достигаемый технический результат - расширение возможностей пеленгации, сокращение времени расчета угловых параметров многолучевого ионосферного сигнала. Технический результат достигается тем, что круговую антенную систему, расположенную на поверхности земли, дополняют линейной системой вибраторов, расположенных вдоль вертикали к поверхности земли. С помощью сформированной таким образом антенной системы (трехмерная антенная система), многоканального приемника, многоканального аналого-цифрового преобразователя (АЦП) и временного преобразования Фурье формируют пространственно-временной массив комплексных данных E ∧ n , m , отображающий значения напряженности поля в n точках трехмерного пространства (n - номер вибратора) и в m-е моменты времени, с интервалами 1-2 секунды (индекс m определяет номер временного среза данных на n вибраторах, m=1÷M+1). Количество временных срезов данных берется на единицу больше, чем количество лучей М. Затем осуществляют соответствующую математическую обработку, фильтруют однолучевые поля из совокупности полей ионосферного сигнала, формируют для каждого выделенного поля диаграммы направленности, сканируют диаграммой направленности в диапазоне оценочных максимумов и углов места и оценивают азимуты, углы места и амплитуды по максимуму диаграммы направленности для М лучей ионосферного сигнала. 6 ил.

Изобретение относится к радиотехнике и может быть использовано при разработке систем для определения координат источника радиоизлучения (ИРИ), а также в пассивной радиолокации. Достигаемый технический результат - повышение точности оценки разности моментов приема сигналов источника радиоизлучения, в двух разнесенных приемных пунктах. Указанный результат достигается за счет того, что в заявленном способе осуществляют прием сигнала в двух разнесенных приемных пунктах, оцифровку напряжения с выхода антенны, обнаружение сигнала, в каждом приемном пункте, оценку разности моментов приема, включающем оценку задержки отраженного сигнала относительно прямого в каждом приемном пункте, оценку разности моментов приема отраженных сигналов, вычисление разности моментов приема прямых сигналов как суммы задержки между прямым и отраженным сигналом в первом приемном пункте и задержки между отраженными сигналами в первом и во втором приемном пункте, минус задержка между прямым и отраженным сигналом во втором приемном пункте. 4 ил.

Предлагаемое устройство относится к контрольно-поисковым средствам, а именно к устройствам обнаружения местоположения людей, оказавшихся под завалами, образовавшимися в результате стихийного (землетрясения, торнадо, цунами и др.) или иного бедствия, и поиска взрывчатых и наркотических веществ, и может быть использовано при техногенных авариях, природных катастрофах, террористических актах и при предотвращении опасных для населения акций. Технической задачей изобретения является повышение помехоустойчивости и достоверности приема и демодуляции сложных сигналов с фазовой манипуляцией путем подавления узкополосных помех. Устройство обнаружения людей под завалами и поиска взрывчатых и наркотических веществ содержит одетый на служебную собаку 1 ошейник 2, мобильный первичный преобразователь 3 и вторичный преобразователь 12. Первичный преобразователь 3 содержит тактильные сенсоры 4.1 и 4.2, коммутатор 5, усилитель 6, модулятор 7, радиопередатчик 8, источник 9 питания, световой 10 и звуковой 11 маячки, задающий генератор 18, фазовый манипулятор 19, триггер 17, однополярный вентиль 20, интегратор 21, пороговый блок 22, ключ 23, усилитель 24 мощности и передающую антенну 25. Вторичный преобразователь 12 содержит вибраторную антенну 26, рамочную антенну 27, усилители 28 и 29 высокой частоты, амплитудные детекторы 30 и 31, блок 32 деления, пороговый блок 33, ключ 15, демодуляторы 14 и 44, перемножители 34, 35, 38 и 39, узкополосные фильтры 36 и 40, фильтры 37 и 41 нижних частот, фазоинверторы 42 и 43, блок 45 вычитания и регистратор 16. 7 ил.

Изобретение относится к области радиотехники и может использоваться при проектировании и эксплуатации комплексов радиопеленгации или систем радиосвязи портативного, мобильного (бортового) и стационарного базирования. Технический результат - повышение устойчивости функционирования методов оценки напряженности электромагнитного или акустического поля Для этого на каждом элементе антенной решетки записывают интервал на временном интервале [0,Т], производят формирование дискретного спектра напряженности поля с использованием процедуры преобразования Фурье, при этом. для каждой из полученных спектральных компонент находят вектор комплексных амплитуд/вспомогательных источников как приближенное решение матрично-векторного уравнения с использованием процедуры квазирешения. Число вспомогательных источников определяется как число наиболее значимых собственных чисел автокорреляционной матрицы принятых антенной решеткой сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок. Далее определяют значения поля спектральной компоненты в произвольной точке плоскости антенной решетки (формируют «виртуальный» канал приема сигналов) как скалярное произведение найденного вектора комплексных амплитуд вспомогательных источников и соответствующего вектора «виртуального» канала приема сигналов. 4 з.п. ф-лы, 1 ил.

Изобретение относится к системам управления безопасностью полетов. Достигаемый технический результат - повышение эффективности систем управления безопасностью полетов. Способ основан на введении в бортовое оборудование воздушных судов системного процессора, который объединен с бортовой системой объективного контроля, бортовой и наземной аппаратурой моноимпульсных вторичных радиолокаторов, работающих в дискретно-адресном режиме и модернизированных до режима «8», радиовещательного автоматического зависимого наблюдения, аппаратурой международной системы спасания терпящих бедствие КОСПАС-САРСАТ, устанавливаемой на навигационных искусственных спутниках Земли Глонасс-К1 и его модификациях. Системный процессор обеспечивает формирование признаков наличия или отсутствия целостности воздушных судов с последующей передачей их экипажу, центрам управления и спасания на основе указанного объединения, что позволяет осуществить в реальном масштабе времени упреждающие, коррективные действия, необходимые для поддержания требуемого уровня безопасности полетов от взлета до посадки, а также оперативное определение местоположения воздушного судна в случае аварийной посадки без использования аварийных бортовых устройств регистрации. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый технический результат - возможность частотной и пространственной селекции источников сигналов. Технический результат достигается тем, что устройство для определения направления на источник сигнала, содержит первую магнитную антенну, ориентированную в направлении Север - Юг, вторую магнитную антенну, ориентированную в направлении Запад - Восток, электрическую антенну с круговой диаграммой направленности, шесть усилителей, десять аналого-цифровых преобразователей (АЦП), персональную электронно-вычислительную машину (ПЭВМ или микропроцессор), блок системы единого времени (GPS или Глонасс), блок связи с абонентами, четыре смесителя, десять управляемых фильтров, четыре коммутатора, пять цифроаналоговых преобразователей (ЦАП), четыре калибратора, формирователь, третью магнитную антенну с круговой диаграммой направленности, а также гониометр. Перечисленные средства выполнены и соединены между собой определенным образом. 1 ил.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый техническим результат - возможность частотной и пространственной селекции источников сигналов. Указанный результат достигается тем, что устройство для определения направления на источник сигнала содержит первую магнитную антенну, ориентированную в направлении Север-Юг, первый усилитель, вторую магнитную антенну, ориентированную в направлении Запад-Восток, второй усилитель, последовательно соединенные третью антенну с круговой диаграммой направленности, третий усилитель, а также первый, второй и третий аналого-цифровые преобразователи (АЦП), персональную электронно-вычислительную машину (ПЭВМ или микропроцессор), дополнительно содержит блок системы единого времени (GPS или Глонасс), блок связи с абонентами, первый коммутатор, второй коммутатор, первый управляемый фильтр, четвертый АЦП, третий коммутатор, четвертый коммутатор, второй управляемый фильтр, пятый АЦП, первый цифроаналоговый преобразователь (ЦАП), первый калибратор, второй ЦАП, второй калибратор, третий ЦАП, третий калибратор, четвертый ЦАП, формирователь, а также третий, четвертый и пятый управляемые фильтры, первый и второй смесители, а также гониометр. Перечисленные средства определенным образом выполнены и соединены между собой. 1 ил.

Изобретение относится к области радиолокации, в частности к юстировочным щитам. Юстировочный щит моделирует прямые и зеркально отраженные от земли радиосигналы, идущие от ракеты и цели на конечном участке наведения. Юстировочный щит находится в дальней зоне антенны радиопеленгатора и содержит лазерный и инфракрасный излучатели. Для имитации сигналов от приемоответчика ракеты и сигналов, отраженных от цели, щит снабжен генератором радиоимпульсов с синтезатором частот. Достигается повышение точности юстировки. 3 ил.

Изобретение относится к радиолокации и может использоваться в спутниковых радионавигационных системах и комплексах радиоэлектронного подавления. Достигаемый технический результат - обеспечение возможности определения наклонной дальности до прямолинейно движущейся цели в отсутствии априорных данных о скорости ее движения. Достижение указанного технического результата обеспечивается за счет того, что совместно обрабатывают два последовательных во времени измерения пеленгов (углов азимута на цель β1 и β2) и мощностей сигналов Pc1 и Рс2, принимаемых автономной угломерной системой для рассматриваемых моментов измерений t1, t2, учитывая, что базовая точка измерения соответствует геометрическому центру автономной угломерной системы, а линия Ц1ЦN - траектория движения цели - соответствует точкам Ц1 и Ц2 измерения пеленга на цель в моменты времени t1 и t2, предполагая, что цель движется прямолинейно, затем вычисляют величины: производят два последовательных измерения принятой частоты f1, f2 в моменты времени измерений t1, t2 и на основании производимых измерений определяют величины и Δβ21=β2-β1, затем определяют дальность до цели по формуле: R 2 = c T ( 1 − K f 12 ) ( K f 12 Q 21 + 1 ) cos ( Δ β 21 ) − ( Q 21 + K f 12 ) . 5 ил.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения воздушных судов (объектов) по их радиоизлучениям. Достигаемый технический результат - повышение точности измерения угла места примерно на порядок с расширением области надежного определения дальности с 30 км до 70-80 км, что упрощает, делает более надежным и безопасным привод воздушного судна на необорудованные аэродромы, буровые площадки. Указанный результат достигается за счет того, что способ включает прием сигналов бортового передатчика с помощью антенн, образующих кольцевую решетку, располагаемую вблизи и параллельно земной поверхности, определение по принятым антеннами решетки сигналам азимута объекта, измерение комплексных амплитуд принятых сигналов и преобразование измерений в угловой спектр путем умножения на комплексно-сопряженные диаграммы направленности антенн, суммирования результатов умножения по совокупности антенн и определения квадрата модуля суммы. Одновременно сигналы принимают с помощью дополнительных антенн, располагаемых на нормали к плоскости решетки из ее центра, угловой спектр нормируют на сумму квадратов модулей диаграмм направленности антенн (ДНА) и определяют угол места объекта, как положение его максимума. При этом ДНА определяют в направлении полученного азимута и с учетом коэффициента отражения радиоволн от земной поверхности. 6 ил.
Наверх