Способ визуализации структуры газоразрядного свечения объекта



Способ визуализации структуры газоразрядного свечения объекта
Способ визуализации структуры газоразрядного свечения объекта
Способ визуализации структуры газоразрядного свечения объекта
Способ визуализации структуры газоразрядного свечения объекта

 


Владельцы патента RU 2507553:

Открытое акционерное общество "Научно-исследовательский институт промышленного телевидения "Растр" (RU)

Изобретение относится к телевидению и может быть использовано при создании систем телевизионной визуализации и анализа изображений свечения газового разряда. Способ визуализации структуры газоразрядного свечения заключается в получении сигнала изображения матричным фотоприемником, преобразовании его в цифровой код, сравнении цифровых кодов элементов кадра с цифровыми кодами соответствующих элементов кадра, полученного в результате предыдущего сравнения, вычислении максимальных значений цифровых кодов (максимизация) и формировании результирующего изображения для отображения на экране монитора. При сравнении цифровых кодов также определяют их минимальные значения (минимизация), а результирующее изображение формируют путем вычисления среднего арифметического из соответствующих максимальных и минимальных значений цифровых кодов. Технический результат - повышение качества изображения. 3 ил.

 

Изобретение относится к телевидению и может быть использовано при создании систем телевизионной визуализации и анализа изображений свечения газового разряда в процессе биомедицинских исследований.

Известен способ телевизионной визуализации структуры свечения газа, заключающийся в запоминании в цифровом коде одного кадра видеопоследовательности, формируемой телевизионной камерой. Данный способ описан, в частности, в патенте РФ №2141250 A61B 5/05. Недостатком данного способа является низкое качество получаемого изображения, обусловленное низким отношением сигнал-шум, которым характеризуются изображения видеопоследовательности.

Наиболее близким по технической сущности к заявляемому решению является способ визуализации структуры газоразрядного свечения, заключающийся в получении последовательности кадров изображений матричным фотоприемником, преобразовании каждого кадра в цифровой код, сравнении с цифровыми кодами соответствующих элементов предыдущего кадра и формировании изображение газоразрядной структуры элементами с максимальными значениями цифровых кодов. Данный способ описан в способе по патенту №2437132 МПК G03B 41/00 на «Способ визуализации структуры газоразрядного свечения объекта в электромагнитном поле»).

Недостатком данного способа является наличие изменения средней яркости выходного изображения из-за увеличения его математического ожидания (среднего значения) после обработки видеопоследовательности. Кроме этого, повышение отношения сигнал-шум изображения при таком способе обработки видеопоследовательности также является недостаточным.

Основным источником шума является шум выходного устройства преобразователя «свет-сигнал» (матрицы ПЗС), который при достаточно слабом свечении объекта может частично или полностью маскировать полезный сигнал.

Задачей изобретения является повышение качества изображения за счет сохранения его средней яркости после обработки, а также за счет повышения отношения сигнал-шум, достигаемого путем более эффективного снижения уровня шума в получаемом изображении.

Для решения поставленной задачи в способе визуализации структуры газоразрядного свечения, заключающегося в получении сигнала изображения матричным фотоприемником, преобразовании его в цифровой код, сравнении цифровых кодов элементов кадра с цифровыми кодами соответствующих элементов кадра, полученного в результате предыдущего сравнения, вычислении максимальных значений цифровых кодов (максимизация) и формировании результирующего изображения для отображения на экране монитора, дополнительно при сравнении цифровых кодов определяют их минимальные значения (минимизация), а результирующее изображение формируют путем вычисления среднего арифметического из соответствующих максимальных и минимальных значений цифровых кодов.

Технический результат настоящего технического решения заключается в том, что при минимизации отсчетов яркости видеопоследовательности в силу симметричности распределения исходного гауссова шума происходит смещение математического ожидания в сторону его уменьшения на точно такую же величину, как и при максимизации. Однако, последующее усреднение максимальных и минимальных значений яркости соответствующих элементов компенсирует смещение математического ожидания, приводя его к исходному математическому ожиданию. При этом в результате такого усреднения одновременно происходит уменьшение среднеквадратического отклонения шума в раз по отношению к среднеквадратическому отклонению шума, получаемому после максимизации.

При максимизации производится обработка кадров видеопоследовательности, содержащих изображения разрядных фигур, полученных от одиночных возбуждающих импульсов в соответствии со следующим выражением:

,

где i=1,2…n, Ui - цифровые коды элементов (отсчеты яркости) текущего кадра, Ui-1 - цифровые коды элементов (отсчеты яркости) кадра, полученные при предыдущем сравнении, n - число кадров видеопоследовательности.

При минимизации производится обработка кадров видеопоследовательности, содержащих изображения разрядных фигур, полученных от одиночных возбуждающих импульсов в соответствии со следующим выражением:

.

Таким образом, сущность обработки по формулам (1) и (2) заключается в последовательном поэлементном сравнении очередного кадра видеопоследовательности с результатом предыдущего сравнения и выбором максимального и минимального из сравниваемых отсчетов яркости в качестве результирующего. При первом цикле сравнения (первый кадр, i=1) предыдущий результат сравнения Ui-1=U0 принимают равным нулю.

Результирующее изображение формируется путем усреднения соответствующих отсчетов яркости, получаемых по формулам (1) и (2), в соответствии со следующим выражением:

.

Практическая достижимость результата по предлагаемому способу проиллюстрирована на фиг.1 и 2. На фиг.1 представлены несколько изображений (фиг.1а) из видеопоследовательности, полученных при возбуждении свечения одиночным импульсом, и результирующее изображение (фиг.1б), полученное в соответствии с выражениями (1) - (3).

На фиг.2 представлены осцилограммы сигнала тестовых полос на равномерном фоне, характеризующие разброс значений яркости в изображении вдоль выделенной строки (дисперсию шума) в исходном одиночном кадре видеопоследовательности и в обработанном в соответствии с выражениями (1), (2) и (3). Как видно из фиг.2, дисперсия шума в изображении, обработанном путем комбинирования операций максимизации, минимизации и усреднения по выражениям (1)-(3), существенно меньше, чем в исходном одиночном кадре видеопоследовательности и в обработанном только путем максимизации по выражению (1). Из рисунка также видно, что в результате максимизации математическое ожидание смещается «вверх» от исходного значения, в результате минимизации математическое ожидание смещается «вниз» от исходного значения, а после комбинированной обработки по выражениям (1)-(3) среднее значение (математическое ожидание) математическое ожидание становится соответсвующим исходному значению.

Технические решения, содержащие совокупность признаков, идентичную признакам изобретения, не выявлены, что определяет соответствие изобретения критерию «новизна». Так, в частности, по сравнению с известным методом уменьшения шумов путем усреднения всех кадров видеопоследовательности, предлагаемый способ позволяет сохранить особенности структуры каждого отдельного кадра, в то время как усреднение изменяет яркость изображения вплоть до возможного полного подавления одиночных откликов, не повторяющихся в кадрах видеопоследовательности.

Заявителем не выявлены какие-либо источники информации, содержащие сведения о влиянии отличительных признаков на достигаемый результат, что свидетельствует о соответствии изобретения критерию «изобретательский уровень».

Структурная схема, реализующая данный способ, представлена на фиг.3. Способ осуществляется следующим образом. В генераторе 1 одиночные импульсы для возбуждения свечения формируют путем выделения заднего фронта (окончания) кадрового гасящего импульса, вырабатываемого синхрогенератором телевизионной камеры, и увеличения амплитуды возбуждающих импульсов до величины 10-20 кВ с использованием высоковольтного трансформатора. Импульсы высокого напряжения подают на электрод 2, выполненный из оптически прозрачного материала (например, SnO2 толщиной 200 мкм) и нанесенный на поверхность стеклянной пластины 3. При этом вокруг объекта 4, располагаемого на противоположной по отношению к электроду поверхности стеклянной пластины, возникает электромагнитное поле и вызываемое им свечение газа. В телевизионной камере 5, располагаемой со стороны электрода, оптическое изображение свечения посредством объектива переносится на матричный фотоприемник, электрический сигнал с которого поступает на стандартное устройство видеозаписи 6, подключаемое к персональному компьютеру 7 для преобразования в цифровой код, запоминания и отображения на экране компьютерного монитора 8.

Получаемые цифровые коды элементов кадров видеопоследовательности обрабатывают в компьютере программным путем в соответствии с выражениями (1)-(3) и получаемое результирующее изображение отображают на компьютерном мониторе.

В качестве матричного фотоприемника может быть использована практически любая ПЗС-камера стандартной чувствительности, в качестве устройства видеозаписи может быть использовано практически любое стандартное устройство, например, типа Aver EZ Capture фирмы Aver Media, подключаемое PCI- шине компьютера.

Результирующее изображение может быть получено, например, путем программирования в среде стандартного пакета MATLAB. Изображения, приведенные на фиг.1, получены, в частности, при помощи специальной программы MIXER, написанной в среде C++.

Таким образом, для реализации данного способа применены известные материалы и оборудование, что обуславливает соответствие изобретения критерию «промышленная применимость».

Способ визуализации структуры свечения газа, заключающийся в получении сигнала изображения матричным фотоприемником, преобразовании его в цифровой код, сравнении цифровых кодов элементов кадра с цифровыми кодами соответствующих элементов кадра, полученными в результате предыдущего сравнения, вычислении максимальных значений цифровых кодов и формировании изображения структуры свечения газа для отображения на экране монитора, отличающийся тем, что дополнительно при сравнении цифровых кодов элементов кадров изображений вычисляют минимальные значения цифровых кодов, а изображение структуры свечения газа формируют элементами, коды которых равны среднеарифметическому из максимального и минимального значений цифровых кодов соответствующих элементов кадра.



 

Похожие патенты:

Изобретение относится к способу расчета стека фокуса, соответствующего объектному пространству, по его дискретной пленоптической функции как преобразование сумм по длине условных плоскостей в четырехмерном гиперкубе.

Изобретение относится к телевидению и может быть использовано при создании систем телевизионной визуализации и анализа изображений газоразрядного свечения для биомедицинских исследований.

Изобретение относится к области исследований быстропротекающих процессов, а конкретно к фоторегистрации кумулятивных струй. .

Изобретение относится к области электроники и медицины и может быть использовано для получения, обработки и анализа электронных изображений объектов с помощью газоразрядного свечения, образующегося при помещении объектов в электрическое поле высокой напряженности.

Изобретение относится к рекламной и развлекательной технике и может быть использовано для рекламирования любых товаров и услуг, информации и сообщений, для проповедей, создания комфортных условий и развлечения пассажиров в поездах метро или поездах, движущихся в туннелях.

Изобретение относится к цветному телевидению л может быть применено при получении линейного растра в цветных кинескопах техникой фотопечати с использованием щелевой теневой маски кинескопа в качестве фотошаблона.

Изобретение относится к фототехнике и позволяет повысить качество фотографирования , а также упростить конструкцию. .

Изобретение относится к электрографии и может быть использовано для получения фотографических снимков различных объектов в электрическом поле высокой напряженности .

Картридж // 2567439
Данное изобретение относится к картриджу, съемно крепящемуся к основному корпусу устройства формирования изображения, такого как лазерный принтер, и к устройству формирования изображения. Заявленный картридж содержит кожух, включающий первую боковую стенку и вторую боковую стенку, противоположную первой боковой стенке в продольном направлении, пассивный блок, выполненный с возможностью принятия движущей силы от наружной части, установленной на корпусе и выполненный с возможностью вращения вокруг первой осевой линии, параллельной продольному направлению, и обнаруживаемое тело, установленное на первой боковой стенке и включающее обнаруживаемую часть, выполненную с возможностью обнаружения обнаруживающим блоком, при этом обнаруживаемое тело выполнено с возможностью выдвигаться наружу в продольном направлении по отношению к первой боковой стенке и втягиваться внутрь в продольном направлении по отношению к первой боковой стенке. Технический результат заключается в предотвращении задержки установки или извлечения картриджа, обуславливаемой обнаруживаемой частью и происходящей внутри основного корпуса устройства, и предотвращении повреждения обнаруживаемой части, например, из-за столкновения с другими элементами, когда картридж извлекают из основного корпуса устройства. 17 з.п. ф-лы, 20 ил.
Наверх