Однофазно-трехфазный полупроводниковый реверсивный коммутатор, ведомый однофазной сетью переменного тока

Изобретение относится к реверсивным полупроводниковым коммутаторам, ведомым однофазной сетью переменного тока, и предназначено для использования в нерегулируемом электроприводе переменного тока для запуска и работы от однофазной сети трехфазных асинхронных двигателей. Первые выводы первого и второго полупроводниковых ключей соединены с фазой однофазной сети переменного тока. Первые выводы третьего и четвертого полупроводниковых ключей соединены с нулем однофазной сети переменного тока. Вторые выводы первого и третьего полупроводниковых ключей объединены и соединены с началом первой и концом третьей статорных обмоток. Вторые выводы второго и четвертого полупроводниковых ключей объединены и соединены с концом первой и началом третьей статорных обмоток. При этом начало второй статорной обмотки электродвигателя подключено к нулю, а ее конец - к фазе однофазной сети переменного тока. Технический результат - обеспечивается возможность повышения развиваемого двигателем момента и мощности за счет получения более равномерного кругового вращающегося магнитного потока поля статора, а также упрощения системы управления транзисторами. 7 ил.

 

Предлагаемое изобретение относится к реверсивным полупроводниковым коммутаторам, ведомым однофазной сетью переменного тока, и может быть использовано в нерегулируемом электроприводе переменного тока для запуска и работы от однофазной сети трехфазных асинхронных двигателей.

Известно устройство питания трехфазного асинхронного двигателя от однофазной сети с использованием конденсаторного сдвига в статорной цепи, осуществляющее питание от однофазной сети трехфазного асинхронного двигателя с обмотками, соединенными в звезду, в котором для получения вращающегося поля статора одна обмотка трехфазного асинхронного двигателя подключена к однофазной сети через конденсатор, а две другие обмотки - напрямую к однофазной сети (Вольдек А.И. Электрические машины. Учебник для студентов высших технических учебных заведений / А.И. Вольдек. - Л.: Энергия, 1974. - С.612, рис.30-7).

Основными недостатками описанного устройства питания трехфазного асинхронного двигателя от однофазной сети с использованием конденсаторного сдвига в статорной цепи является необходимость использования бумажных конденсаторов большой емкости, в результате чего момент двигателя обычно уменьшается в три раза, мощность двигателя падает до 50% от номинальной.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату (прототипом) - осуществление питания трехфазного асинхронного двигателя от однофазной сети переменного тока с обеспечением реверса - является однофазно-трехфазный транзисторный реверсивный коммутатор, ведомый однофазной сетью, содержащий два полупроводниковых ключа, каждый из которых соединен с фазой однофазной сети переменного тока. Начало первой обмотки трехфазного асинхронного двигателя подключено к фазе, а ее конец - к нулю однофазной сети переменного тока. Начала второй и третьей обмоток подключены к нулю однофазной сети переменного тока. Первый полупроводниковый ключ соединен с фазой однофазной сети переменного тока и концом второй обмотки трехфазного асинхронного двигателя и второй полупроводниковый ключ соединен с фазой однофазной сети переменного тока и концом третьей обмотки трехфазного асинхронного двигателя. В качестве полупроводниковых ключей использованы два биполярных транзистора, у которых эмиттеры соединены с фазой однофазной сети переменного тока. Так коллектор первого транзистора соединен с концом второй обмотки трехфазного асинхронного двигателя, и коллектор второго транзистора соединен с концом третьей обмотки трехфазного асинхронного двигателя (патент RU 109356, МПК H02P 27/16 (2006.01)).

Основными недостатками описанного однофазно-трехфазного реверсивного коммутатора, ведомого однофазной сетью, являются уменьшенное значение развиваемого двигателем момента и мощности вследствие эллиптичности вращающегося магнитного потока поля статора, а также сложность системы управления транзисторами ввиду необходимости учета полярности напряжения, проходящего через транзистор в каждый момент времени.

Предлагаемым изобретением решаются задачи повышения развиваемого двигателем момента и мощности, получения более равномерного кругового вращающегося магнитного потока поля статора, а также упрощения системы управления транзисторами.

Для решения поставленной задачи в однофазно-трехфазном полупроводниковом реверсивном коммутаторе, ведомом однофазной сетью переменного тока, снабженном двумя полупроводниковьми ключами, каждый из которых соединен с фазой однофазной сети переменного тока, а одна из трех статорных обмоток подключена к нулю и к фазе однофазной сети переменного тока, согласно изобретению устройство дополнительно снабжено двумя полупроводниковыми ключами, причем в качестве каждого из полупроводниковых ключей использован полевой транзистор. Первые выводы первого и второго полупроводникового ключей соединены с фазой однофазной сети переменного тока, первые выводы третьего и четвертого полупроводниковых ключей соединены с нулем однофазной сети переменного тока, вторые выводы первого и третьего полупроводниковых ключей объединены и соединены с началом первой и концом третьей статорных обмоток, вторые выводы второго и четвертого полупроводниковых ключей объединены и соединены с концом первой и началом третьей статорных обмоток. При этом начало второй статорной обмотки подключено к нулю однофазной сети переменного тока, а конец второй статорной обмотки подключен к фазе однофазной сети переменного тока.

Обеспечение возможности повышения развиваемого двигателем момента и мощности, получения более равномерного кругового вращающегося магнитного потока поля статора, а также упрощения системы управления транзисторами в однофазно-трехфазном полупроводниковом реверсивном коммутаторе, ведомом однофазной сетью переменного тока, достигается путем использования в качестве полупроводниковых ключей четырех полевых транзисторов, пропускающих ток в обоих направлениях, без необходимости учета полярности напряжения, проходящего через транзисторы, и без подачи на транзисторы тока управления, так как управление полевым транзистором осуществляется электростатическим полем, создаваемым зарядами, что значительно упрощает систему управления транзисторами.

Предлагаемое изобретение поясняется чертежами, где на фиг.1 приведена принципиальная электрическая схема однофазно-трехфазного полупроводникового реверсивного коммутатора, ведомого однофазной сетью переменного тока; на фиг.2 - векторная диаграмма кругового вращающегося поля статора двигателя, которое состоит из шести фиксированных положений вектора магнитного потока; на фиг.3 - направления магнитного потока и протекающего тока по обмоткам статора двигателя в соответствии с векторной диаграммой, изображенной на фиг.2; на фиг.4 - пофазное изменение напряжения в обмотках статора двигателя в соответствии с векторной диаграммой, изображенной на фиг.2; на фиг.5 - векторная диаграмма кругового вращающегося поля статора двигателя, которое состоит из шести фиксированных положений магнитного потока, при обратном направлении вращения двигателя; на фиг.6 - направления магнитного потока и протекающего тока по обмоткам статора двигателя в соответствии с векторной диаграммой, изображенной на фиг.5; на фиг.7 - пофазное изменение напряжения в обмотках статора двигателя в соответствии с векторной диаграммой, изображенной на фиг.5.

Кроме того, на чертежах изображено следующее:

- Ф - фаза;

- 0 - ноль;

- A, B и C - статорные обмотки A, B и C трехфазного асинхронного электродвигателя соответственно;

- VT1 - VT4 - полевые транзисторы.

- I, II, III, IV, V, VI - последовательные фиксированные положения вектора магнитного потока кругового вращающегося поля статора двигателя;

- прямые линии со стрелками - направления вектора магнитного потока кругового вращающегося поля статора двигателя;

- Uceти=f(t) - изменение питающего напряжения во времени;

- прямые линии, сплошные и дискретные, со стрелками вдоль обмоток статора двигателя - направления магнитного потока и тока в обмотках статора;

t1-t7 - моменты времени коммутации транзисторов.

Однофазно-трехфазный полупроводниковый реверсивный коммутатор, ведомый однофазной сетью переменного тока, содержит четыре полупроводниковых ключа, в качестве каждого из которых использован полевой транзистор, причем два их четырех полупроводниковых ключей соединены с фазой однофазной сети переменного тока. Первые выводы первого и второго полупроводниковых ключей соединены с фазой однофазной сети переменного тока. Первые выводы третьего и четвертого полупроводниковых ключей соединены с нулем однофазной сети переменного тока. Вторые выводы первого и третьего полупроводниковых ключей объединены и соединены с началом первой и концом третьей статорных обмоток. Вторые выводы второго и четвертого полупроводниковых ключей объединены и соединены с концом первой и началом третьей статорных обмоток. При этом начало второй статорной обмотки подключено к нулю однофазной сети переменного тока, а конец второй статорной обмотки подключен к фазе однофазной сети переменного тока.

Пример выполнения однофазно-трехфазного полупроводниковой реверсивной коммутатора, ведомой однофазной сетью переменного тока. Устройство снабжено полупроводниковыми ключами, в качестве которых используются четыре полевых транзистора. Первый вывод 1 первого транзистора 2 (VT1) соединен с фазой однофазной сети переменного тока, первый вывод 3 третьего транзистора 4 (VT3) соединен с нулем однофазной сети переменного тока, второй вывод 5 первого транзистора 2 (VT1) и второй вывод 6 третьего транзистора 4 (VT3) объединены и соединены с началом 7 первой статорной обмотки А и концом 8 третьей статорной обмотки С электродвигателя. Первый вывод 9 второго транзистора 10 (VT2) соединен с фазой однофазной сети переменного тока, первый вывод 11 четвертого транзистора 12 (VT4) соединен с нулем однофазной сети переменного тока, второй вывод 13 второго транзистора 10 (VT2) и второй вывод 14 четвертого транзистора 12 (VT4) объединены и соединены с концом 15 первой статорной обмотки А и началом 16 третьей статорной обмотки С электродвигателя. Начало 17 второй статорной обмотки В электродвигателя подключено к нулю, а ее конец 18 к фазе однофазной сети переменного тока.

Работа однофазно-трехфазного полупроводникового реверсивного коммутатора, ведомого однофазной сетью переменного тока, происходит следующим образом. В статорные обмотки трехфазного асинхронного двигателя подается однофазное переменное напряжение посредством коммутации соответствующих полупроводниковых ключей, обеспечивающих получение вращающегося магнитного поля статора. Первоначально на затворы транзисторов подано напряжения, создающее электрическое поле для закрытия транзисторов. Векторно-алгоритмическое управление осуществляется снятием напряжения с затворов транзисторов в определенной последовательности. Для обеспечения вращения поля статора в соответствие с векторной диаграммой, показанной на фиг.2, необходимо осуществлять снятие напряжения с затворов транзисторов 2 (VT1), 4 (VT3), 10 (VT2), 12 (VT4) в следующей последовательности:

- в начальный момент времени t0, при прохождении положительной полуволны питающего напряжения сети, снимается напряжение с затворов транзисторов 10 (VT2) и 4 (VT3), ток протекает по обмоткам A и B в обратном направлении, по обмотке C в прямом направлении - обеспечивается получение I фиксированного положения вектора магнитного потока поля статора;

- в момент времени t1 транзисторы 2 (VT1), 4 (VT3), 10 (VT2), 12 (VT4) закрыты, ток протекает по обмотке B в обратном направлении - обеспечивается получение II фиксированного положения вектора магнитного потока поля статора;

- в момент времени t2 снимается напряжение с затворов транзисторов 2 (VT1) и 12 (VT4), ток протекает по обмоткам B и C в обратном направлении, по обмотке A в прямом направлении - обеспечивается получение III фиксированного положения вектора магнитного потока поля статора;

- в момент времени t3, при прохождении отрицательной полуволны питающего напряжения сети, снимается напряжение с затворов транзисторов 10 (VT2) и 4 (VT3), ток протекает по обмоткам A и B в прямом направлении, по обмотке С в обратном направлении - обеспечивается получение IV фиксированного положения вектора магнитного потока поля статора;

- в момент времени t4 транзисторы 2 (VT1), 4 (VT3), 10 (VT2), 12 (VT4) закрыты, ток протекает по обмотке B в прямом направлении, - обеспечивается получение V фиксированного положения вектора магнитного потока поля статора;

- в момент времени t5 снимается напряжение с затворов транзисторов 2 (VT1) и 12 (VT4), ток протекает по обмоткам B и C в прямом направлении, по обмотке A в обратном направлении - обеспечивается получение VI фиксированного положения вектора магнитного потока поля статора.

Для обеспечения вращения вектора магнитного потока кругового вращающегося поля статора двигателя в соответствии с векторной диаграммой, показанной на фиг.5, необходимо осуществлять снятие напряжения с затворов транзисторов 2 (VT1), 4 (VT3), 10 (VT2), 12 (VT4) в следующей последовательности:

- в начальный момент времени t0, при прохождении положительной полуволны питающего напряжения сети, снимается напряжение с затворов транзисторов 2 (VT1) и 12 (VT4), ток протекает по обмоткам B и C в обратном направлении, по обмотке A в прямом направлении - обеспечивается получение I фиксированного положения вектора магнитного потока поля статора;

- в момент времени t1 транзисторы 2 (VT1), 4 (VT3), 10 (VT2), 12 (VT4) закрыты, ток протекает по обмотке B в обратном направлении - обеспечивается получение II фиксированного положения вектора магнитного потока поля статора;

- в момент времени t2 снимается напряжение с затворов транзисторов 10 (VT2) и 4 (VT3), ток протекает по обмоткам A и B в обратном направлении, по обмотке C в прямом направлении - обеспечивается получение III фиксированного положения вектора магнитного потока поля статора;

- в момент времени t3, при прохождении отрицательной полуволны питающего напряжения сети, снимается напряжение с затворов транзисторов 2 (VT1) и 12 (VT4), ток протекает по обмоткам B и C в прямом направлении, по обмотке A в обратном направлении - обеспечивается получение IV фиксированного положения вектора магнитного потока поля статора;

- в момент времени t4 транзисторы 2 (VT1), 4 (VT3), 10 (VT2), 12 (VT4) закрыты, ток протекает по обмотке B в прямом направлении - обеспечивается получение V фиксированного положения вектора магнитного потока поля статора;

- в момент времени t5 снимается напряжение с затворов транзисторов 10 (VT2) и 4 (VT3), ток протекает по обмоткам A и B в прямом направлении, по обмотке C в обратном направлении - обеспечивается получение VI фиксированного положения вектор магнитного потока поля статора.

Таким образом, на основании изложенного можно сделать вывод о том, что предлагаемое изобретение имеет преимущества по сравнению с известными из-за более равномерного кругового вращающегося магнитного потока поля статора, а следовательно и повышенного развиваемого двигателем момента и мощности, а также упрощенной системы управления транзисторами.

Однофазно-трехфазный полупроводниковый реверсивный коммутатор, ведомый однофазной сетью переменного тока, снабженный двумя полупроводниковыми ключами, каждый из которых соединен с фазой однофазной сети переменного тока, а одна из трех статорных обмоток подключена к нулю и к фазе однофазной сети переменного тока, отличающийся тем, что устройство дополнительно снабжено двумя полупроводниковыми ключами, причем в качестве каждого из полупроводниковых ключей использован полевой транзистор, первые выводы первого и второго полупроводниковых ключей соединены с фазой однофазной сети переменного тока, первые выводы третьего и четвертого полупроводниковых ключей соединены с нулем однофазной сети переменного тока, вторые выводы первого и третьего полупроводниковых ключей объединены и соединены с началом первой и концом третьей статорных обмоток, вторые выводы второго и четвертого полупроводниковых ключей объединены и соединены с концом первой и началом третьей статорных обмоток, при этом начало второй статорной обмотки подключено к нулю однофазной сети переменного тока, а конец второй статорной обмотки подключен к фазе однофазной сети переменного тока.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в системах управления электроприводами общепромышленного применения. Технический результат - снижение энергопотребления частотно-регулируемого асинхронного электропривода при снижении нагрузок двигателя ниже номинальных.

Изобретение относится к области электротехники и может быть использовано в системах запуска нагрузки такой, как электродвигатель. Техническим результатом является понижение пульсирующего тока в сглаживающем конденсаторе даже при ШИМ управлении инвертором в режиме двухфазной модуляции.

Изобретение относится к области электротехники и может быть использовано для защиты вращающейся машины переменного тока и ее схемы возбуждения от перегрузок по току.

Изобретение относится к области электротехники и может быть использовано для защиты вращающейся машины переменного тока и ее схемы возбуждения от перегрузок по току.

Изобретение относится к области электротехники и может быть использовано для управления электродвигателем, имеющего ротор с постоянными магнитами. .

Изобретение относится к области электротехники и может быть использовано для управления возбуждением вращающейся машины переменного тока. .

Изобретение относится к области электротехники и может быть использовано для управления возбуждением вращающейся машины переменного тока. .

Изобретение относится к области электротехники. .

Изобретение относится к области электротехники и может быть использовано для управления асинхронной и синхронной машинами в отсутствие датчика положения вращения.

Изобретение относится к области электротехники и может быть использовано для перезапуска вращающейся машины переменного тока. .

Изобретение относится к области электротехники и может быть использовано в управляемых асинхронных двигателях. Техническим результатом является упрощение алгоритма управления асинхронным двигателем при наборе и сбросе заданной частоты вращения и при пуске асинхронного двигателя на «выбеге». В способе управления, осуществляемом в соответствии с формулой изобретения, останавливают изменение задания по частоте при изменении входного переменного напряжения в широких пределах или изменении значения задания по частот; когда ток или напряжение в звене постоянного тока достигают своих критических значений, отключают инвертор от звена постоянного тока до тех пор, пока ток или напряжение в звене постоянного тока не станет ниже критического значения. При изменении задания по частоте, пуске и остановке асинхронного двигателя выходное напряжение и частоту изменяют по одному и тому же закону скалярного частотного управления. При выключении инвертора плавно снижают выходные напряжения и частоту до нуля, а при повторном пуске плавно разгоняют асинхронный двигатель с текущими значениями напряжения и частоты для исключения генераторного режима на «выбеге». 2 ил.

Изобретение относится к области электротехники и может быть использовано для преобразования мощности постоянного тока в мощность переменного тока. Техническим результатом является предотвращение быстрых флуктуаций тока, связанных с операциями включения/выключения каждого элемента переключения. Устройство преобразования мощности включает в себя: элементы (S1-S6) переключения, которые подключены параллельно к общей токопроводящей шине и возбуждают токи разных фаз; и контроллер (14) электродвигателя, который управляет соответствующими элементами (S1-S6) переключения. Контроллер (14) электродвигателя управляет соответствующими элементами (S1-S6) переключения таким образом, что направление флуктуации тока, обусловленной операцией включения/выключения одного элемента переключения, противоположно направлению флуктуации тока, обусловленной операцией включения/выключения, по меньшей мере, одного из других элементов переключения. 2 н. и 10 з.п. ф-лы, 25 ил.

Изобретение относится к электротехнике, в частности к регулируемым приводам переменного тока, и может быть использовано для минимизации потерь электроэнергии при питании асинхронных электродвигателей, применяемых для насосов, вентиляторов и других машин и механизмов. Технический результат заключается в поддержании максимального и постоянного КПД двигателя во всем допустимом диапазоне изменения внешнего момента при заданной угловой скорости. Технический результат достигается тем, что в структуру предложенного устройства вводится вычислительный блок, который в условиях незначительной вариации внешнего момента Мс рассчитывает параметры скорости и потокосцепления. Это позволяет без применения датчика скорости, механически связанного с валом двигателя, и блока датчиков главного потокосцепления, размещаемых в зазоре статора, поддерживать максимальный и постоянный КПД двигателя во всем допустимом диапазоне изменения внешнего момента при заданной угловой скорости. 3 ил.

Изобретение относится к области электротехники и может быть использовано для управления инверторным устройством. Техническим результатом является увеличение срока службы переключающих элементов. Инверторное устройство в своей основе включает в себя инвертор (3), компонент (12, 26, 27) детектирования скорости вращения и компонент (9) управления. Инвертор (3) включает в себя множество пар переключающих элементов (Q1-Q6). Компонент (9) управления управляет состоянием включения-выключения переключающих элементов (Q1-Q6), чтобы преобразовывать постоянный ток от источника (1) энергии постоянного тока в переменный ток, попеременно выполняя первое и второе управления, когда скорость вращения двигателя (4), соединенного с переключающими элементами, больше, чем предписанная скорость вращения. Первое управление включает переключающие элементы (Q1, Q3, Q5), которые непосредственно соединены с положительным электродом источника энергии, и выключает переключающие элементы (Q2, Q4, Q6), которые непосредственно соединены с отрицательным электродом источника энергии. Второе управление включает переключающие элементы (Q2, Q4, Q6), которые непосредственно соединены с отрицательным электродом, и выключает переключающие элементы (Q1, Q3, Q5), которые непосредственно соединены с положительным электродом. 2 н. и 9 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники и может быть использовано в вентильном электроприводе автономных объектов. Техническим результатом является повышение энергоэффективности за счет оптимизации в режиме пуска и использования режима рекуперативного торможения. Электропривод автономного объекта с вентильным двигателем содержит датчик положения ротора, автономный инвертор напряжения, регулятор скорости, тригонометрические преобразователи. Выходы регулятора тока в проекции на ось q и регулятора тока в проекции на ось d подключены к вычислителю, а выход вычислителя подключен к управляющему входу автономного инвертора напряжения, который соединен с обмотками вентильного двигателя через обратную связь по току, через обратную связь по скорости и через обратную связь по потоку в проекции на ось d. 1 ил.

Изобретение относится к области электротехники и может быть использовано для управления и/или регулирования при эксплуатации трехфазного двигателя. Технический результат - повышение эффективности и надежности ограничения тока статора при высокой динамике при эксплуатации двигателя. Трехфазный двигатель питается от 3-фазного выпрямителя тока с использованием регулятора (123) тока статора и регулятора (113) частоты скольжения или с использованием регулятора тока статора и регулятора вращающего момента. Для ограничения образующего вращающий момент компонента тока основного колебания тока статора, то есть тока через статор двигателя (N), подводимую к регулятору (113) частоту скольжения или регулятору вращающего момента заданную величину (ω*Sl) ограничивают до максимальной величины (ω*Sl_i_max) частоты скольжения или максимальной величины вращающего момента; для ограничения образующего поток компонента тока основного колебания тока статора ограничивают скорость, с которой изменяется подведенная к регулятору (123) потока статора заданная величина (ψ*S), до максимальной величины (ΔψS,max, на выходе от 119). Максимальную величину (ω*Sl_i_max) частоты скольжения или максимальную величину вращающего момента вычисляют в зависимости от заданной максимальной величины (iS,max) тока для величины основного колебания тока статора и в зависимости от отфильтрованной фактической величины (|iSd|f) образующего поток компонента (iSd) тока основного колебания тока (iS) статора. 2 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники и может быть использовано для автоматизированной идентификации параметров электропривода с асинхронными электродвигателями. Технический результат - расширение области применения. Устройство содержит трехфазный асинхронный электродвигатель, параметры которого подлежат оцениванию, датчики фазных напряжений статора, датчики фазных токов статора, преобразователь фазных напряжений и преобразователь фазных токов статора, позволяющие преобразовывать фазные напряжения и токи статора в напряжения и токи обобщенной машины, настраиваемую модель асинхронного электродвигателя, пять блоков вычисления оценок параметров, сумматоры. Устройство позволяет оценивать параметры, переменные величины и частоту вращения асинхронного электродвигателя без использования датчиков частоты вращения, углового ускорения и устройств дифференцирования. 8 ил.

Изобретение относится к области электротехники и может быть использовано в преобразователях мощности. Технический результат - повышение коэффициента мощности и коэффициента полезного действия. Звено (3) DC содержит конденсатор (3а), подключенный параллельно выходу схемы (2) преобразователя, и выдает пульсирующее напряжение (vdc) звена DC. Схема (4) инвертора преобразует выход звена (3) DC в АС путем коммутации и подает АС в подключенный к ней двигатель (7). Контроллер (5) управляет коммутацией схемы (4) инвертора таким образом, что токи (iu, iv и iw) двигателя пульсируют синхронно с пульсацией напряжения (vin) питания. Контроллер (5) управляет коммутацией схемы (4) инвертора в соответствии с нагрузкой двигателя (7) или рабочим состоянием двигателя (7) и снижает амплитуду пульсации токов (iu, iv и iw) двигателя. 5 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники и может быть использовано для приведения в действие стиральной машины. Технический результат - уменьшение энергопотребления. Схема (1) управления, которая управляет синхронным двигателем (M) с постоянными магнитами, используемым для приведения в действие барабана в стиральных машинах, содержит преобразователь (2), который преобразует напряжение сети переменного тока в напряжение постоянного тока, трехфазный инвертор (3), который инвертирует постоянный ток, получаемый от преобразователя (2), в трехфазный ток (Ia, Ib, Ic), блок (4) оценки скорости и положения, который определяет данные, связанные с положением и скоростью ротора, посредством датчиков напряжения во время запуска и работы двигателя (M), и микроконтроллер (5), который обеспечивает управление двигателем (M) за счет отправки синусоидальных переключающих сигналов в трехфазный инвертор (3) с сигналами, получаемыми от блока (4) оценки скорости и положения. 7 з.п. ф-лы, 3 ил.

Способ регулирования тягового привода может быть использован в тяговых асинхронных электроприводах автономных транспортных средств, в том числе пневмоколесных машин, тракторов, а также тепловозов. Обеспечивает работу ДВС на предельной и частичных характеристиках в режимах наибольшей экономичности и распределение тяговых усилий между активными колесами транспортного средства при прямолинейном движении, а при малых скоростях - и на поворотах, аналогичное распределению тяговых усилий в широко применяемом и хорошо зарекомендовавшем себя дифференциальном приводе. Изменения значений обратных связей по напряжению и току обратно пропорционально частоте вращения генератора. Частотное регулирование каждого электродвигателя электропривода осуществляется посредством задания предварительно рассчитанных параметров (абсолютного скольжения и тока) в функции частот вращения электродвигателей, обеспечивающих работу электродвигателей в оптимальном режиме. При этом каналы задания частот напряжений электродвигателей не имеют обратных связей. Технический результат заключается в обеспечении работы ДВС в режиме наибольшей экономичности. 2 з.п. ф-лы, 7 ил.
Наверх