Шихта для изготовления стеклогранулята для производства гранулированного пеностекла


 


Владельцы патента RU 2508255:

Закрытое акционерное общество "Стромизмеритель" (RU)

Изобретение относится к составу шихты, используемой для изготовления стеклогранулята для производства гранулированного пеностекла. Технический результат изобретения заключается в повышении щелочестойкости стекла, снижении себестоимости шихты и уменьшении расходов энергоресурсов на варку стекла. Шихта для изготовления стеклогранулята содержит следующие компоненты, мас.%: диатомит - 51-60, кальцинированную соду - 14-17, доломит - 13-15, сульфат - 0,5-1,5 и циркон - 12-15,5. 2 пр.

 

Рост объемов производства бетона и железобетонных изделий требует значительного увеличения и количества выпускаемых заполнителей с различными физико-химическими свойствами. Особенно это касается производства легкого бетона, для изготовления которого необходимо использовать заполнители с более низкой по отношению к гравию и керамзиту плотностью. Этим условиям удовлетворяют только пеностеклянный гравий и гранулированное пеностекло, плотность которых составляет всего 100-180 кг/м3. Пеностеклянный гравий - это продукт дробления отходов, полученных при обрезке блоков и плит, а также резки и ломки непрерывно вырабатываемой ленты пеностекла. Гранулированное пеностекло является продуктом вспенивания гранул исходной шихты, которые производятся в тарельчатых и барабанных грануляторах.

Для изготовления блоков, плит, гравия и гранул из пеностекла традиционно используется стеклобой, чаще поставляемый из разных источников и имеющий соответственно разный химический состав. Естественно, что изготовленное из разнородного стеклобоя пеностекло также имеет нестабильные физико-химические характеристики. Этот факт имеет особое значение при использовании пеностекла в производстве легких бетонов, так как разные физико-химические параметры гранулированного пеностекла могут существенным образом влиять на механические характеристики изделий из бетона. Поэтому для повышения качества производимых пеностеклянных гранул, используемых в качестве наполнителей легких бетонов, целесообразно в качестве исходного сырья использовать стекло, сваренное в ванных стекловаренных печах из специально приготовленной шихты.

Еще одним немаловажным свойством наряду со стабильными физико-химическими характеристиками должны обладать пеностеклянные гранулы, применяемые в производстве бетона. Пеностеклянные гранулы должны иметь повышенную химическую стойкость по отношению к щелочам. До настоящего времени не удавалось использовать пеностекло в качестве наполнителей для бетонов из-за проблем, связанных с протеканием щелочно-силикатной реакции (ЩСР), поскольку эта реакция на поверхности стекла из-за содержания на ней положительных ионов Na+ происходит наиболее интенсивно. При взаимодействии с водой эти ионы способны создавать щелочные соединения NaOH, приводящие к изменению объема заполнителей, возникновению трещин и разрушению бетона. Поэтому основным требованием к стеклу для производства бетонных заполнителей является устойчивость к агрессивному воздействию со стороны цементного камня.

Этим требованиям отвечает стекло для производства цементностойкого стекловолокна, применяемого для армирования бетонов [1]. Шихта для варки подобного щелочестойкого стекла состоит, как правило, из семи-восьми компонентов и имеет сложный химический состав, включающий кроме кварцевого песка, мела, соды и глинозема соединения бора, лития, калия и циркона. Подобный состав связан с получением необходимых выработочных и эксплуатационных свойств стекла, предназначенного для производства цементностойкого стекловолокна. Приготовление шихты для варки цементностойкого стекловолокна связано не только с использованием таких высококачественных компонентов как кварцевый песок, сода, известняк (мел) и др., но и требует большего количества оборудования для разгрузки, обработки и дозирования сырьевых компонентов. Плавление этой шихты и варка из нее стекла производится при достаточно высоких температурах 1350-1580°C и характеризуется большими энергетическими затратами. Учитывая также то, что себестоимость производства пеностекла из подобного стекла является более высокой, чем производство других наполнителей бетона, использовать подобное стекло в качестве исходного сырья для изготовления гранулированного пеностекла не целесообразно.

Наиболее близким к предполагаемому решению по технической сущности является состав шихты для изготовления стеклогранулята для пеностекла [2], содержащий кальцинированную соду, доломит и кремнеземосодержащую породу с содержанием оксида кремния не менее 83 мас.% и размером фракции менее 0,1 мм. Причем в качестве кремнеземосодержащего сырья используется кварцевый песок, маршалит, диатомит или опока.

Данная шихта имеет более низкую себестоимость за счет использования такого сырья, как диатомит или опока и может плавиться при более низких температурах, чем шихта на основе кварцевого песка. Но стекло, сваренное из этой шихты, не очень хорошо вспенивается из-за отсутствия в составе смеси сульфата. Кроме того, полученное пеностекло имеет низкую щелочестойкость и не может использоваться в качестве наполнителей для легких бетонов.

Решаемая задача - снижение себестоимости шихты за счет использования более дешевого сырья и уменьшения расхода энергоресурсов на варку стекла, а также повышение химостойкости стекла, используемого для производства гранулированного пеностекла.

Этот технический результат достигается тем, что шихта для изготовления стеклогранулята для производства гранулированного пеностекла, включающая диатомит, кальцинированную соду и доломит, отличается тем, что дополнительно содержит сульфат и циркон при следующем соотношении компонентов, мас.%:

Диатомит 50-60
Калицинированная сода 14-17
Доломит 13-15
Сульфат 0,5-1,5
Циркон 12-15,5

Преимуществом предлагаемого состава шихты является наличие циркона, который повышает химостойкость и щелочестойкость стекла и увеличивает насыпную плотность полученной шихты. Повышение химостойкости резко снижает воздействие щелочной среды в цементной композиции бетона на пеностеклянные гранулы наполнителя. А увеличение насыпной плотности шихты по сравнению с легкой шихтой, приготовленной только на основе диатомита, улучшает процессы хранения, транспортирования и загрузки шихты в стекловаренную печь.

Другим преимуществом данного состава шихты по сравнению с прототипом является наличие в нем сульфата, при диссоциации которого в процессе варки стекла образуется большое количество микропузырей (мошки) из газа SO2, играющего важную роль при вспенивании стекла. Поскольку парциальное давление газа SO2 внутри закрытых пор пеностекла значительно выше парциального давления газа СO2, который образуется при использовании традиционных вспенивателей на основе углеводородного сырья, то процесс вспенивания стекла, сваренного из шихты с повышенным содержанием сульфата, происходит более эффективно.

Шихту готовят смешением материалов в указанных соотношениях с последующим компактированием на валковом прессе. При этом частичная замена мелкодисперсного диатомита с размером фракции менее 0,1 мм на циркон, в составе которого находится примерно 67-68% ZrO2 и 32-33% SiO2, позволяет при размере фракции циркона от 0,5 до 0,8 мм получать более плотную структуру шихты за счет сочетания мелких и относительно крупных частиц ее компонентов. Во время компактирования сосредоточенная внутри пористых частиц диатомита остаточная влага, а также золи и гели, образовавшиеся в результате гидратации кремнезема, выдавливаются на поверхность диатомей (окаменевшие скелеты водорослей, состоящие из аморфного кремнезема) и прочно связывают между собой частицы компактированной шихты, активизируя одновременно ее химическую активность. В дальнейшем приготовленная шихта загружается в ванную стекловаренную печь, в которой варится стекло. На выработке стекло сливается в гранулятор, в котором формируется стеклогранулят, являющийся сырьем для последующей переработки и производства гранулированного пеностекла.

Сущность изобретения поясняется примерами, в которых приведены некоторые свойства шихты и показаны результаты варки стекла из шихты с разным процентным содержанием сульфата и циркона. При этом в качестве сульфата могут использоваться сульфаты щелочных металлов (натрий, калий, литий) и щелочноземельных металлов (кальций).

В стекольной промышленности для производства большинства видов алюмосиликатных стекол (оконное и тарное стекло), бой которых может использоваться для производства пеностекла, чаще применяется сульфат натрия Na2SO4, являющийся осветлителем стекломассы. Эффект осветления стекломассы достигается за счет выделения большого количества микропузырьков газа, образующегося при термической диссоциации сульфата натрия в процессе варки стекла. Аналогичный эффект достигается и при использовании сульфата калия K2SO4. Одновременно при варке натриевого стекла на основе кальцинированной соды Na2CO3 и сульфата калия проявляется эффект взаимодействия двух щелочей натрия и калия [3], который позволяет получить стекло с повышенной кислотостойкостью. Однако, поскольку сульфат натрия чаще получают как побочный продукт различных химических производств, он значительно дешевле сульфата калия и еще более дешевле сульфата лития, соединения которого используются для придания стеклу специальных выработочных свойств. Поэтому для снижения себестоимости шихты, если не требуется придания пеностеклу повышенных характеристик кислотостойкости или других специальных свойств, целесообразно использовать сульфат натрия. Что же касается сульфата кальция, то он, как правило, входит в состав шихты лишь в виде небольших примесей, содержащихся в карбонатном сырье (доломит, известняк), и при расчете рецепта шихты не учитывается.

В связи с этим рассмотрим примеры состава шихты с сульфатом натрия.

Пример 1

Диатомит загружают в смеситель и тщательно перемешивают с содой, доломитом, сульфатом натрия и цирконом в заданном процентном соотношении 60, 14, 13, 1, 12. Шихта получается сыпучей (остаточная влажность, сосредоточенная внутри пор диатомей, позволяет дополнительно не увлажнять шихту) и имеет удельную плотность около 0,7 г/см3. После уплотнения в валковом прессе ее плотность увеличивается до 0,9-1,0 г/см3.

При варке стекла из этой шихты температура варки снижается на 100°C по отношению к варке стекла из шихты, приготовленной на основе кварцевого стекла (например, шихта для оконного стекла, из которого чаще всего производят пеностекло). Наличие циркона в шихте незначительно на 10-20°С (по отношению к шихте без циркона) повышает температуру варки, но увеличивает щелочестойкость стекла, что необходимо для производства пеностеклянных наполнителей легких бетонов. Щелочестойкость определяют по ГОСТ 19810-85. В соответствии с этим стандартом щелочестойкость, измеряемая в мг/дм2, показывает на сколько уменьшилась масса образца, обрабатываемого щелочью, по отношению к площади поверхности образца.

Полученное при данном соотношении компонентов шихты значение щелочестойкости сваренного стекла находится в пределах 80-100 мг/дм2, что соответствует 2-му классу щелочестойкости.

При снижении содержания циркона (менее 12%) в шихте стекло становится менее химостойким и относится к 3-му классу щелочестойкости, что не удовлетворяет требованиям к щелочестойкости наполнителей бетонов.

Наличие в шихте 1% сульфата натрия позволяет получить стекло, насыщенное микропузырьками с газом SO2, что способствует хорошему вспениванию стекла при последующем производстве пеностекла.

При количестве сульфата натрия менее 0,5% в стекле практически отсутствуют микропузырьки с газом SO2. Это связано с улетучиванием сульфата при загрузке шихты и варке стекла на начальных фазах стекловарения.

Пример 2

Диатомит, соду, доломит, сульфат натрия и циркон загружают в смеситель в заданном процентном соотношении 54, 15, 14, 1,5, 15,5 и тщательно перемешивают. Шихта получается сыпучей и имеет удельную плотность около 0,75 г/см3. После уплотнения в валковом прессе ее плотность увеличивается до 1,1 г/см3, что более благоприятно сказывается на режим загрузки шихты в печь (она меньше пылит и улетучивается). Поскольку уменьшено количество диатомита, снижающего температуру варки стекла, а количество более тугоплавкого материала циркона увеличено, общее снижение температуры варки стекла меньше, чем в 1-м примере, и составляет примерно 90°C, что также приводит к экономии энергоресурсов. Снижение содержания диатомита ниже 51% приводит к росту температуры варки стекла и недопустимому снижению SiO2 в составе стекла.

Полученное при этом соотношении компонентов шихты значение щелочестойкости сваренного стекла составляет 60-70 мг/дм3 и соответствует 1-му классу щелочестойкости. Дальнейшее увеличение содержания циркона незначительно повышает щелочестойкость стекла и приводит к росту температуры варки стекла и его себестоимости.

Увеличение содержания сульфата натрия до 1,5% максимально насыщает стекло микропузырьками с газом SO2, но дальнейший рост процентного содержания сульфата натрия в шихте нецелесообразен из-за образования большого количества пены при варке стекла.

Таким образом, варьируя соотношение диатомита, снижающего температуру варки стекла, с сульфатом натрия и цирконом, можно добиться таких положительных свойств стекла, как его химостойкость и насыщенность микропузырьками с газом SO2. Аналогичные показатели щелочестойкости стекла достигаются при аналогичном процентном содержании сульфата калия, но, как уже отмечалось, шихта на основе сульфата калия получается значительно дороже.

Изготовленное гранулированное пеностекло из подобного стекла, сваренного из шихты предложенного состава, можно использовать в качестве наполнителя в производстве легких бетонов и снизить до минимума влияние ЩСР на физические характеристики как наполнителя, так и самого бетона.

Источники информации:

1. Технология стекла. Справочные материалы под ред. П.Д.Саркисова. - М. ГУП «ИПК «Чувашия». 2012 г. с.629.

2. Патент РФ на изобретение №2361829, кл. С03С 11/00, опубл. 20.07.2009 г.

3. Химическая технология стекла и ситаллов. Учебник для ВУЗов под ред. Н.М.Павлушкина. Стройиздат, Москва, 1983 г., с.432.

Шихта для изготовления стеклогранулята для производства гранулированного пеностекла, включающая диатомит, кальцинированную соду и доломит, отличающаяся тем, что дополнительно содержит сульфат и циркон при следующем соотношении компонентов, мас.%:

Диатомит 50-60
Кальцинированная сода 14-17
Доломит 13-15
Сульфат 0,5-1,5
Циркон 12-15,5



 

Похожие патенты:
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в получении пеностекла из техногенных отходов.
Изобретение относится к строительным теплоизоляционным материалам. Технический результат изобретения заключается в расширении сырьевой базы, снижении температуры вспенивания до 900-950°C, себестоимости, утилизации золошлаковых отходов ТЭС и упрощении технологии получения пеношлакостекла.
Изобретение относится к теплоизоляционным материалам. Технический результат изобретения заключается в расширении сырьевой базы, снижении себестоимости, утилизации золошлаковых отходов ТЭС, снижении температуры вспенивания до 900-950°С и упрощении технологии получения пеношлакостекла.
Изобретение относится к составу стекольной шихты, используемой для изготовления стеклогранулята для пеностекла. .

Изобретение относится к способам подготовки шихты для изготовления стеклогранулята для пеностекла. .

Изобретение относится к теплоизоляционным материалам, в частности пеностеклу. .
Изобретение относится к области производства пеностекла. .
Изобретение относится к области технологии силикатов и касается производства изделий из пеностекла. .
Изобретение относится к области производства теплоизоляционного пеностекла. .
Изобретение относится к способу активации шихты для производства пеностекла. .
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в упрощении способа получения цветного пеностекла. Молотое силикатное стекло и карбонатсодержащий газообразователь смешивают. Газообразователь пропитывают 3-5% водным раствором азотнокислой соли кобальта, или никеля, или меди, или марганца с последующим его высушиванием до постоянной массы. Смесь укладывают, вспенивают, отжигают с последующим охлаждением.
Изобретение относится к гранулированному пеношлакостеклу. Технический результат изобретения заключается в расширении сырьевой базы, снижении себестоимости, утилизации золошлаковых отходов ТЭС, снижении температуры вспенивания до 850-870°С. Гранулированное пеношлакостекло получают на основе следующих компонентов, мас.%: шлак ТЭС 55-70; борная кислота 10-20; мел 1-5; стеклобой 14-25. 3 пр., 1 табл.

Изобретение относится к производству теплоизоляционных строительных материалов. Технический результат изобретения заключается в упрощении технологии получения вспененного материала, снижении температуры вспенивания шихты, снижении термических напряжений в изделии. Шихта для изготовления вспененного материала содержит аморфную кремнеземистую породу и натриевое жидкое стекло с модулем 1,2-1,5 и плотностью 1350-1400 кг/м3 при следующем соотношении компонентов, мас.%: аморфная кремнеземистая порода - 43; натриевое жидкое стекло - 57. Исходные компоненты шихты перемешивают в течение 10-15 мин и получают пластичную формовочную массу. Массу гранулируют с последующим опудриванием гранул во вспученном вермикулите с размером зерен 0,5-2,5 мм. Вспенивание гранулированной шихты проводят в замкнутом объеме металлической формы при температуре 680-700°С в течение 0,5-1 ч. Охлаждение форм с готовыми изделиями проводят от температуры вспенивания до температуры 50°С на воздухе в течение 1-3 ч. 2 н.п. ф-лы, 1 ил., 1 табл.
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в упрощении технологии изготовления пеностекла. Измельченное силикатное стекло и газообразователь смешивают, укладывают полученную смесь. В качестве газообразователя используют порошок шлама водоочистки, образующегося в результате удаления солей жесткости при водоподготовке на тепловых электроцентралях. Количество шлама составляет 1-10% от массы силикатного стекла. 2 пр.

Способ и устройство для изготовления пористого остеклованного блока могут найти применение в строительстве для изготовления крупноблочных теплоизоляционных и стеновых конструкций и в качестве наполнителей легких бетонов. Предварительно, например, с помощью масс-спектрометра определяют химический состав гранулированной кварцсодержащей шихты и по химическому составу рассчитывают петрохимический коэффициент щелочности, затем кварцсодержащую шихту равномерно и с постоянной скоростью подают в зону нагрева, в которой под действием термоудара гранулы шихты перемешивают, вспенивают и нагревают до температуры, температуру вспенивания Тогн в зоне нагрева обеспечивают согласно формуле Тогн=2781,5-974,7 ПКЩ, где ПКЩ - петрохимический коэффициент щелочности, в период появления жидкой стеклофазы на поверхности гранул проводят формование пористого остеклованного блока, в начале кристаллизации форму с заполненными вспененными гранулами удаляют из зоны нагрева, кристаллизацию проводят, снижая температуру со скоростью 15-20ºС/мин до температуры спекаемости Тспек, которую определяют по формуле Тспек=2364,3-873,4 ПКЩ, и выдерживают при указанной температуре 10-60 мин для фиксирования образовавшейся пористой структуры сформованного блока, затем осуществляют охлаждение и изотермическую выдержку блока в течение 8-60 мин при температуре отжига 400-650ºС, после чего форму с блоком охлаждают до температуры 70ºС и вынимают из формы. Для реализации способа устройство содержит теплоагрегат, состоящий из двух емкостей, установленных последовательно и соединенных между собой в верхней части каналом. В первой емкости расположена зона нагрева с устьем для наддува нагретого сжатого воздуха и/или азота и инертных газов. Вторая емкость выполнена из двух частей, отделенных шибером-задвижкой. Верхняя часть второй емкости предназначена для накопления и осаждения вспененных в первой камере гранул, а нижняя - для установки формы. Последовательно со второй емкостью установлена печь, например туннельная. Печь связана со второй емкостью с помощью механизма для извлечения и подачи формы и состоит из трех последовательных зон. Первая зона - зона спекаемости вспененных гранул, вторая зона - зона охлаждения пористого остеклованного блока до температуры отжига стеклофазы, а третья зона - зона охлаждения до температуры 80-70°С. Все зоны соединены между собой механизмом для перемещения форм. Технический результат - повышение эффективности и производительности изготовления пористых остеклованных блоков и улучшение их качества. 2 н. и 4 з.п. ф-лы, 1 ил., 1 табл., 5 пр.
Изобретение относится к производству гранулированного пеностекла. Технический результат изобретения заключается в расширении сырьевой базы, упрощении способа производства гранулированного пеностекла при сохранении высокой щелочностойкости получаемого гранулированного пеностекла. Несортовой стеклобой измельчают с получением тонкомолотого стекольного порошка. К стекольному порошку добавляют порообразователь, крупнопористый силикагель и связующее с получением пеностекольной смеси. Крупнопористый силикагель измельчен до размера частиц не более 80 мкм. Смесь гранулируют и вспенивают сырцовые гранулы в печи с получением гранулированного пеностекла. 2 з.п.ф-лы,2 табл.
Изобретение относится к теплоизоляционным материалам. Технический результат изобретения заключается в снижении ресурсоемкости технологии получения гранулированного пеношлакостекла и температуры вспенивания гранулированного пеношлакостекла до 800-850 С°. Гранулированное пеношлакостекло содержит следующие компоненты, мас.%: шлак ТЭС 50-60; бой стекла 30-40; бура 3-7; антрацит 3-7. 5 пр., 1 табл.

Изобретение относится к области получения блочного термостойкого пеностекла. Технический результат изобретения заключается в повышении термостойкости, прочности конечного продукта, снижении энергозатрат и сокращении времени отжига. Пенообразующую смесь помещают в металлические формы, которые нагревают в печи со скоростью 3,7°C/мин до 820°C с выдержкой 40 мин с последующим резким охлаждением до 600°С со скоростью 2,0°C/мин и отжигом 12 часов. 4 табл.

Изобретение относится к комплексной переработке железистых редкометальных руд с получением пористого стекломатериала. Технический результат изобретения заключается в расширении сырьевой базы для получения стекломатериала. Шихту состава на основе руды, мас. %: SiO2 - 5,1; CaO - 0,9; Al2O3 - 5,2; MgO - 0,3; Fe2O3 - 54, MnO - 13,1; ZnO - 0,9; SrO - 0,4; P2O5 - 5,1; SO3 - 0,7; TiO2 - 0,9; Y2O3 - 0,3; ZrO2 - 0,06; BaO - 2,6; Nb2O5 - 0,9; La2O3 - 2,0; CeO2 - 3,1; Pr2O3 - 0,32; Nd2O3 - 0,97; ThO2 - 0,1, при содержании углерода до 0,5 мас.% сверх 100% плавят в слабо восстановительной среде при температуре 1300°C и при соотношении SiO2/CaO=5,6. Содержание Na2O в руде доводят до 3 мас.%. Происходит разделение расплава и удаление металлической высокофосфористой части расплава на основе железа. В оставшемся расплаве доводят содержание углерода до 15 мас.% сверх 100% углем для создания сильно восстановительной среды. Соотношение SiO2/CaO доводят до 0,9 известняком, повышают температуру до 1600°C, плавят до образования карбида кремния. Осуществляют разделение расплава на металлическую и силикатную части. Удаляют низкофосфористый чугун и охлаждают силикатную часть расплава термоударом для получения пористого химически активного стекломатериала, обогащенного окислами редкоземельных металлов, эффективного для дальнейшей переработки. 2 пр.

Изобретение относится к получению блочного термостойкого пеностекла. Технический результат изобретения заключается в сокращении времени вспенивания, снижении энергозатрат, в повышении термостойкости, прочности пеностекла. Пенообразующая смесь включает медицинское стекло XT и медицинское стекло АБ в соотношении 4:1 и пенообразователь. Нагрев пенообразующей смеси производят со скоростью 3,5°C/мин. Вспенивание проводят при 830°C в течение 45 минут с последующим резким охлаждением с 600 до 400°C со скоростью 0,5°C/мин и с 400 до 50°C со скоростью 1,1°C/мин. 4 табл.
Наверх