Способ получения углеводородных пропеллентов



Способ получения углеводородных пропеллентов
Способ получения углеводородных пропеллентов

 


Владельцы патента RU 2508283:

Кузьменко Евгений Юрьевич (RU)

Изобретение относится к химической промышленности, а именно к технике осушки и очистки экологически чистых углеводородных газов - пропеллентов и может быть использовано в газовой, нефтехимической, а также бытовой химии. Способ получения углеводородных пропеллентов включает комплексную осушку и очистку углеводородного сырья и выделение композиции углеводородного пропеллента. В качестве углеводородного сырья используют пропанбутановую фракцию, или изобутан, или н-бутан, или пропан, или смесь пропана и н-бутана. Осушку и очистку осуществляют путем пропускания сырья в жидкой фазе через сорбенты в трех последовательно расположенных адсорберах. Первый по ходу технологического процесса адсорбер заполнен оксидом алюминия, второй по ходу технологического процесса адсорбер заполнен цеолитом NaA, а третий по ходу технологического процесса адсорбер заполнен цеолитом NaX. Заданную композицию пропеллента получают после третьего по ходу адсорбера, причем в случае использования в качестве углеводородного сырья смеси пропана и н-бутана заданную композицию пропеллента получают в смесителе смешением пропана и н-бутана при массовом отношении, равном 0,96. Достигаемый при этом технический результат заключается в получении продукции высокого качества с низким содержанием влаги и сернистых соединений, а также в снижении эксплуатационных и капитальных затрат на реализацию и проведение процесса. 2 ил., 1 табл.

 

Область техники

Данное изобретение относится к химической промышленности, конкретно к технике получения экологически чистых углеводородных газов - пропеллентов, применяемых в качестве газа вытеснителя для аэрозольных упаковок. Газ вытеснитель представляет собой сжиженный углеводородный газ в виде фракций и (или) их смесей (композиций) и различается по давлению насыщенных паров и фракционному составу. Качество осушки и очистки газа вытеснителя определяет его использование в тех отраслях, где очень высоки требования к газу по содержанию меркаптанов и влаги (парфюмерно-косметическая продукция, медицинские аэрозоли, производство автокосметики, монтажной пены, лакокрасочной продукции).

Уровень техники

Наиболее близким по своей технической сущности и достигаемому техническому результату является изобретение «Способ получения углеводородных пропеллентов» [1], [патент RU №2115684, C1, дата публикации 20.07.1998 г.]. Согласно данному изобретению в способе получения углеводородных пропеллентов, включающем ректификацию углеводородного сырья, очистку, дезодорацию и осушку, в процессе ректификации выделяют смесь углеводородов заданного композитного состава с избыточным давлением насыщенных паров, соответствующим избыточному давлению насыщенных паров углеводородных пропеллентов и подвергают ее предварительной очистке и дезодорации на активированном угле, а осушку осуществляют на синтетических цеолитах. Причем осушку и очистку осуществляют путем пропускания смеси углеводородов через размещенные последовательно слои цеолитов NaA, CaA и NaX. При этом регенерацию осуществляют азотом или осушенным углеводородным газом.

В качестве сырья для получения пропеллентов используется углеводородная смесь С3+8.

Основными недостатками прототипа являются:

- применение послойной засыпки цеолитов NaA, CaA и NaX в адсорберах приводит к перемешиванию слоев в процессе адсорбционной осушки и очистки, что ухудшает селективность процесса и, соответственно, чистоту товарного пропеллента;

- применение угольных адсорберов увеличивает технологическую сложность и стоимость установки;

- использование в качестве газа регенерации чистого азота и адсорбционных блоков приводит к высокой себестоимости продукции.

Задача предлагаемого способа заключается в создании экологически чистой технологии получения углеводородных пропеллентов, которая позволит получить продукцию высокого качества с низким содержанием влаги и сернистых до 0,0001% и значительно снизить эксплуатационные и капитальные затраты на реализацию и проведение процесса.

Раскрытие изобретения

Поставленная задача достигается тем, что в способе получения углеводородных пропеллентов, включающий осушку и очистку углеводородного сырья, выделение композиции углеводородного пропеллента, в отличие от прототипа, в качестве углеводородного сырья используют пропан бутановую фракцию, или изобутан, или н-бутан, или пропан, осушку и очистку осуществляют путем пропускания сырья в жидкой фазе через сорбенты в трех последовательно расположенных адсорберах. Первый по ходу технологического процесса адсорбер заполнен оксидом алюминия, второй по ходу технологического процесса адсорбер заполнен цеолитом NaA, а третий по ходу технологического процесса адсорбер заполнен цеолитом NaX. Заданные композиции пропеллентов получают после третьего по ходу адсорбера или смешиванием полученных композиций н-бутана и пропана в массовом отношении 0,96.

Предлагаемый способ получения углеводородных пропеллентов осуществляется на установке, которая представлена на чертежах, где на фиг.1 приведена принципиальная схема узла осушки и очистки, а на фиг.2 принципиальная схема узла получения композиции пропеллента.

В узел осушки и очистки включены четыре блока адсорберов. Блок №1 предназначен для осушки и очистки пропан бутановой фракции. Блок №2 предназначен для осушки и очистки изобутана. Блок №3 предназначен для осушки и очистки н-бутана. Блок №4 предназначен для осушки и очистки пропана. Схемой обвязки трубопроводов предусмотрено отключение любого адсорбера для проведения процесса регенерации. Процесс регенерации адсорберов в каждом блоке проводится поочередно. Для проведения регенерации используется паровая фаза очищенного углеводородного сырья (пропан бутановой фракции (ПБФ), изобутана, н-бутана или пропана). Паровая фаза отбирается из емкости хранения очищенного компоненна пропеллента, компремируется до давления 0,6 МПа и подается в отрегенерированый адсорбер для проведения процесса охлаждения. Паровая фаза компонента пропеллента, проходя через охлаждаемый адсорбер, частично нагревается и поступает в рекуперативный теплообменник. Рекуперативный теплообменник предназначен для утилизации тепла газа регенерации. После рекуперативного теплообменника паровая фаза компонента пропеллента нагревается в печи до регламентной температуры и поступает в верхнюю часть регенерируемого адсорбера. Газ регенерации после регенерируемого адсорбера, проходя по трубной части рекуперативного теплообменника частично охлаждается, отдавая тепло газу, поступающему на регенерацию. В зимнее время для подогрева до 20°C подаваемой на адсорбцию углеводородного компонента используется рекуперативный теплообменник, где происходит нагрев за счет охлаждения газа регенерации. В летнее время подогрев углеводородного компонента перед адсорбцией не требуется, теплообменник используется для окончательного охлаждения газа регенерации за счет испарения углеводородного компонента в межтрубном пространстве. Теплообменник включается в работу совместно с сепаратором. Охлажденный, содержащий влагу и десорбированные примеси газ регенерации поступает в специальную емкость для сбора газа регенерации. Отстоявшаяся вода из емкости сбора газа регенерации периодически дренируется. Осушенные и очищенные компоненты пропеллентов подаются насосами в узел получения композиции углеводородного компонента, который состоит из приемных емкостей насосов и смесителя. В качестве смесителя для получения товарной композиции пропеллента из отдельных компонентов - пропана и бутана использован турбосмеситель.

Компоненты углеводородного сырья дозируются в смеситель насосами, необходимое количество компонента подаваемого на смешение устанавливается по массовому расходомеру. В результате смещения образуется композиция пропеллента с определенным давлением насыщенных паров.

Узел осушки и очистки содержит емкость 1, слив с которой соединен с насосом 2, нагнетательный патрубок которого через теплообменник 6 связан с входом в нижнюю часть адсорбера 3. Выход адсорбера 3, соединен с входом в верхнюю часть адсорбера 4. Выход адсорбера 4, соединен с входом в нижнюю часть адсорбера 5. Адсорберы 3, 4, 5 работают последовательно для глубокой осушки и тонкой очистки компонентов углеводородных пропеллентов с размещенными в них адсорбентами. Адсорбер 3 заполнен активным оксидом алюминия. Адсорбер 4 заполнен цеолитом NaA. Адсорбер 5 заполнен цеолитом NaX. Выходы углеводородной смеси из адсорберов 3, 4, 5 соединены с фильтром 14 тонкой очистки компонентов пропеллентов от цеолитной пыли, выход из которого соединен с трубопроводом готовой продукции - углеводородного пропеллента, который направляется в емкость 16. Схемой предусмотрено четыре блока адсорбционной очистки, состоящих из адсорберов 3, 4, 5 с целью отключения любого блока или адсорбера для проведения процесса регенерации. При этом один из блоков продолжает работать в режиме осушки и очистки углеводородной смеси. Трубопровод 17, подводящий газ регенерации к верхней части адсорберов 3, 4, 5, соединен с узлом подготовки газа регенерации. В качестве газа регенерации используется паровая фаза углеводородного пропеллента из емкости 16, которая из ее верхней части поступает на компрессор 15, сжимается до 0,6 МПа и поступает по трубопроводу 18 в нижнюю часть адсорберов 3, 4, 5 для проведения процесса охлаждения адсорбента, прошедшего высокотемпературную регенерацию. Паровая фаза углеводородного пропеллента частично нагревается и охлаждает горячий адсорбент в адсорберах 3, 4, 5 и поступает из верхней части адсорберов в рекуперативный теплообменник 8. Рекуперативный теплообменник соединен трубопроводом с печью 9, в которой газ регенерации нагревается до режимной температуры и по трубопроводу 17 поступает в верхнюю часть адсорберов 3, 4, 5. Выход газа регенерации из нижней части адсорберов 3, 4, 5 соединен с фильтром 7, предназначенным для очистки от цеолитной пыли. Очищенный газ регенерации по трубопроводу соединен с рекуперативным теплообменником 8 для частичного охлаждения и направляется в воздушный холодильник 10 для окончательного охлаждения. Выход из воздушного холодильника соединен трубопроводом с емкостью 12, предназначенной для сбора газа регенерации. В зимнее время газ регенерации с нижней части адсорберов 3, 4, 5 направляется в рекуперативный теплообменник 6 для утилизации тепла и подогрева углеводородной смеси, поступающей на адсорбцию. Выход из теплообменника 6 соединен трубопроводом с емкостью 12, которая соединена линией слива с насосом 13. Трубопровод с нагнетания насоса 13 предназначен для откачки жидкого углеводородного влажного и загрязненного компонента пропеллента для нужд автозаправочной станции. Теплообменник 6 соединен трубопроводами с сепаратором 11.

Узел получения композиции углеводородного компонента содержит емкости 19, 21, 23 и 25 в которые с нагнетания насосов 18а адсорбционных блоков узлов осушки и очистки 1, 2, 3 и 4 по трубопроводам поступают очищенные и осушенные компоненты для приготовления композиций. В емкость 19 поступает пропан бутановая фракция из блока №1, слив емкости 19 соединен с насосом 20, нагнетательный патрубок которого связан трубопроводом с входом емкость 28 для сбора товарного пропеллента марки №1, с давлением насыщенных паров 0,3-0,4 МПа. В емкость 21 поступает Изобутан из блока №2, слив емкости 21 соединен с насосом 22, нагнетательный патрубок которого связан трубопроводом с входом емкость 29 для сбора товарного пропеллента марки №2, с давлением насыщенных паров 0,21-0,26 МПа. В емкость 23 поступает Н-бутан из блока №3, слив емкости 23 соединен с насосом 24, нагнетательный патрубок которого связан трубопроводом с входом емкость 30 для сбора товарного пропеллента марки №3, с давлением насыщенных паров 0,11-0,16 МПа. В емкость 25 поступает пропан из блока №4, слив емкости 25 соединен с насосом 26, нагнетательный патрубок которого связан трубопроводом с входом емкость 32 для сбора товарного пропеллента марки №4, с давлением насыщенных паров 0,72-0,83 МПа. На вход смесителя 27 по трубопроводу с нагнетания насоса 24 подается бутан, а после насоса 26 пропан. Выход из смесителя 27 соединен с емкостью 31 для сбора товарного пропеллента марки №5, с давлением насыщенных паров 0,43-0,47 МПа.

Установка работает следующим образом.

Жидкий компонент углеводородного пропеллента принимается в емкость 1 и насосом 2 подается в нижнюю часть адсорбера 3, который заполнен активным оксидом алюминия общего назначения, предназначенной для первичной осушки пропан бутановой фракции. С верхней части адсорбера углеводородный компонент поступает в адсорбер 4, который заполнен цеолитом NaA для глубокой осушки. В адсорбере 5, заполненном цеолитом NaX происходит глубокая очистка компонента от сероводорода, меркаптанов и других примесей. Полученный углеводородный компонент из адсорбера 5 очищается в фильтре тонкой очистки 14 от цеолитной пыли и поступает в емкость 16, предназначенной для сбора углеводородного компонента. Схемой предусмотрено четыре блока адсорбционной очистки, состоящих из адсорберов 3, 4, 5, с целью отключения любого блока или адсорбера для проведения процесса регенерации.

Регенерация адсорбентов в адсорберах 3, 4, 5 осуществляется паровой фазой углеводородного компонента из емкости 16, которая из ее верхней части сжимается компрессором 15 до 0,6 МПа и подается в нижнюю часть адсорберов 3, 4, 5 для проведения процесса охлаждения адсорбента, прошедшего высокотемпературную регенерацию. Паровая фаза углеводородного компонента пропеллента частично нагревается и охлаждает горячий адсорбент в адсорберах 3, 4, 5 и поступает из верхней части адсорберов в рекуперативный теплообменник 8. Рекуперативный теплообменник предназначен для утилизации тепла газа регенерации. После рекуперативного теплообменника паровая фаза углеводородного компонента пропеллента нагревается в печи 9, до режимной температуры 150-300°C и поступает в верхнюю часть адсорберов 3, 4, 5. Газ регенерации после регенерируемых адсорберов направляется в фильтр 7, предназначенный для очистки от цеолитной пыли и далее направляется в рекуперативный теплообменник 8 частично охлаждается, отдавая тепло газу, поступающему на регенерацию. После рекуперативного теплообменника газ регенерации окончательно охлаждается в воздушном холодильнике 10 и поступает в емкость 12 для сбора и утилизации. В зимнее время для подогрева подаваемой на адсорбционный блок газ регенерации после воздушного холодильника 10 направляется в рекуперативный теплообменник 6, где происходит нагрев его за счет охлаждения газа регенерации. Теплообменник 6 включается в работу совместно с сепаратором 11.

Охлажденный, содержащий влагу и десорбированные примеси газ регенерации поступает в специальную емкость 12 для сбора газа регенерации. Отстоявшаяся вода из емкости 12 периодически дренируется. Жидкий углеводородный компонент насосом 13 откачивается для нужд автозаправочной станции.

Осушенные и очищенные углеводородные компоненты: пропан бутановая фракция, изобутан, н-бутан и пропан поступают на узел получения композиции углеводородного компонента в емкости 19, 21, 23 и 25 с адсорбционных блоков узлов осушки и очистки 1, 2, 3 и 4 для приготовления композиций. В емкость 19 поступает пропан бутановая фракция из блока №1 и насосом 20 подается в емкость 28 для сбора товарного пропеллента марки №1. В емкость 21 поступает изобутан из блока №2 и насосом 22 подается в емкость 29 для сбора товарного пропеллента марки №2. В емкость 23 поступает н-бутан из блока №3 и насосом 24 подается в емкость 30 для сбора товарного пропеллента марки №3. В емкость 25 поступает пропан из блока №4 и насосом 26 подается в емкость 32 для сбора товарного пропеллента марки №4. На вход смесителя 27 по трубопроводу с нагнетания насоса 24 подается бутан, а после насоса 26 пропан. Выход из смесителя 27 соединен с емкостью 31 для сбора товарного пропеллента марки №5.

При использовании в качестве смесителя для приготовления композиции пропеллента турбосмесителя применяют смеситель фирмы «Sulzer» S-4000.

Примеры 1-5 показывают реализацию настоящего изобретения по способу получения углеводородных пропеллентов с использованием различных вариантов композиции пропеллента из компонентов углеводородного сырья.

Пример 1. Данный пример иллюстрирует реализацию по способу получения углеводородного пропеллента на основе углеводородного сырья -пропан бутановой фракции (ПБФ).

Для получения углеводородного пропеллента, с избыточным давлением насыщенных паров 0,3-0,4 МПа, необходимого для аэрозольных упаковок, пропан бутановую фракцию осушают и очищают от сернистых примесей.

Способ получения углеводородных пропеллентов реализован на установке (фиг.1 и фиг.2).

Жидкий компонент углеводородного пропеллента - пропан бутановая фракция (ПБФ) принимается в емкость 1 и насосом 2 подается в нижнюю часть адсорбера 3, который заполнен активным оксидом алюминия общего назначения, предназначенной для первичной осушки фракции ПБФ. С верхней части адсорбера углеводородный компонент поступает в адсорбер 4, который заполнен цеолитом NaA для глубокой осушки. В адсорбере 5, заполненном цеолитом NaX происходит глубокая очистка компонента от сероводорода, меркаптанов и других примесей. Полученный углеводородный пропеллент из адсорбера 5 очищается в фильтре тонкой очистки 14 от цеолитной пыли и поступает в емкость 16, предназначенной для сбора углеводородного компонента. Схемой предусмотрено четыре блока адсорбционной очистки, состоящих из адсорберов 3, 4, 5, с целью отключения любого блока или адсорбера для проведения процесса регенерации.

Регенерация адсорбентов в адсорберах 3, 4, 5 осуществляется паровой фазой углеводородного компонента из емкости 16, которая из ее верхней части сжимается компрессором 15 до 0,6 МПа и подается в нижнюю часть адсорберов 3, 4, 5 для проведения процесса охлаждения адсорбента, прошедшего высокотемпературную регенерацию. Паровая фаза углеводородного компонента пропеллента частично нагревается и охлаждает горячий адсорбент в адсорберах 3, 4, 5 и поступает из верхней части адсорберов в рекуперативный теплообменник 8. Рекуперативный теплообменник предназначен для утилизации тепла газа регенерации. После рекуперативного теплообменника паровая фаза углеводородного компонента пропеллента нагревается в печи 9, до режимной температуры 150-300°C и поступает в верхнюю часть адсорберов 3, 4, 5. Газ регенерации после регенерируемых адсорберов направляется в фильтр 7, предназначенный для очистки от цеолитной пыли и далее направляется в рекуперативный теплообменник 8 частично охлаждается, отдавая тепло газу, поступающему на регенерацию. После рекуперативного теплообменника газ регенерации окончательно охлаждается в воздушном холодильнике 10 и поступает в емкость 12 для сбора и утилизации. В зимнее время для подогрева подаваемой на адсорбционный блок газ регенерации после воздушного холодильника 10 направляется в рекуперативный теплообменник 6, где происходит нагрев его за счет охлаждения газа регенерации. Теплообменник 6 включается в работу совместно с сепаратором 11.

Охлажденный, содержащий влагу и десорбированные примеси газ регенерации поступает в специальную емкость 12 для сбора газа регенерации. Отстоявшаяся вода из емкости 12 периодически дренируется. Жидкий углеводородный компонент насосом 13 откачивается для нужд автозаправочной станции.

Осушенная и очищенная пропан бутановая фракция поступает на узел получения композиции углеводородного компонента в емкость 19 с адсорбционного блока №1 узла осушки и очистки и насосом 20 подается в емкость 28 для сбора товарного пропеллента марки 1.

Пример 2. Данный пример иллюстрирует реализацию по способу получения углеводородного пропеллента аналогично примеру 1, отличающийся тем, что в качестве сырья для получения углеводородного пропеллента, с избыточным давлением насыщенных паров 0,21-0,26 МПа, необходимого для аэрозольных упаковок, используют изобутан.

Осушенный и очищенный изобутан поступает на узел получения композиции углеводородного компонента в емкость 21, с адсорбционного блока №2 узла осушки и очистки и насосом 22 подается в емкость 29 для сбора товарного пропеллента марки 2.

Пример 3. Данный пример иллюстрирует реализацию по способу получения углеводородного пропеллента аналогично примеру 1, отличающийся тем, что для получения углеводородного пропеллента, с избыточным давлением насыщенных паров 0,11-0,16 МПа, необходимого для аэрозольных упаковок, используют н-бутан.

Осушенный и очищенный н-бутан поступает на узел получения композиции углеводородного компонента в емкость 23, с адсорбционного блока №3 узла осушки и очистки и насосом 24 подается в емкость 30 для сбора товарного пропеллента марки 3.

Пример 4. Данный пример иллюстрирует реализацию по способу получения углеводородного пропеллента аналогично примеру 1, отличающийся тем, что для получения углеводородного пропеллента, с избыточным давлением насыщенных паров 0,72-0,83 МПа, необходимого для аэрозольных упаковок, используют пропан.

Осушенный и очищенный пропан поступает на узел получения композиции углеводородного компонента в емкость 25, с адсорбционного блока №4 узла осушки и очистки и насосом 26 подается в емкость 32 для сбора товарного пропеллента марки 4.

Пример 5. Данный пример иллюстрирует реализацию по способу получения углеводородных пропеллентов аналогично примерам 3 и 4, отличающийся тем, что заданную композицию пропеллента с избыточным давлением насыщенных паров 0,43-0,47 МПа, получают в смесителе смешением пропана и н-бутана при массовом соотношении равном 0,96.

Осушенный и очищенный пропан поступает на узел получения композиции углеводородного компонента в емкость 25, с адсорбционного блока №4 узла осушки и очистки и насосом 26 подается в коллектор смесителя 27. Осушенный и очищенный н-бутан поступает на узел получения композиции углеводородного компонента в емкость 23, с адсорбционного блока №3 узла осушки и очистки и насосом 24 подается в коллектор смесителя 27. Расход пропана и бутана контролируются массовыми расходомерами. Массовое отношение пропана к бутану на входе в смеситель равно 0,96. Готовая композиция из смесителя 27 подаются в емкость 31 для сбора товарного пропеллента марки 5.

Качество углеводородных пропеллентов приведено в таблице 1.

Таблица 1
№ примера Избыточное давление насыщенных паров, МПа Массовая доля сероводорода и меркаптановой серы, % Массовая доля нелетучих веществ, % Массовая доля воды, % Запах
1 2 3 4 5 6
1 0,30-0,40 0,0003 0,02 0,0001 Соответствует запаху образца-эталона
2 0,21-0,26 0,0001 0,02 0,0001 Соответствует запаху образца-эталона
1 2 3 4 5 6
3 0,11-0,16 0,0001 0,02 0,0001 Соответствует запаху образца-эталона
4 0,72-0,83 0,0002 0,02 0,0001 Соответствует запаху образца-эталона
5 0,43-0,47 0,0003 0,02 0,0001 Соответствует запаху образца-эталона
Прототип

Достигаемый технический результат

Преимуществом заявляемой установки перед прототипом являются:

- осушка углеводородного пропеллента высокого качества с низким содержанием воды до 0,0001%;

- очистка углеводородного пропеллента высокого качества с низким содержанием сернистых соединений до 0,0001%;

- реализация принципа комплексной глубокой осушки и очистки сырья. Осушка и очистка углеводородной смеси происходит трех адсорберах, соединенных последовательно;

- предложена схема загрузки в блоке адсорберов: первый по ходу адсорбер заполнен активным оксидом алюминия, предназначенным для первичной осушки углеводородной смеси; второй по ходу адсорбер заполнен цеолитом NaA, предназначенным для глубокой осушки углеводородной смеси; третий адсорбер заполнен цеолитом NaX, предназначенным для глубокой очистки углеводородной смеси от сероводорода, меркаптанов и других примесей.

Способ получения углеводородных пропеллентов, включающий осушку и очистку углеводородного сырья, выделение композиции углеводородного пропеллента, отличающийся тем, что в качестве углеводородного сырья используют пропан бутановую фракцию или изобутан, или н-бутан, или пропан, или смесь пропана и н-бутана, осушку и очистку осуществляют путем пропускания сырья в жидкой фазе через сорбенты в трех последовательно расположенных адсорберах, первый по ходу технологического процесса адсорбер заполнен оксидом алюминия, второй по ходу технологического процесса адсорбер заполнен цеолитом NaA, а третий по ходу технологического процесса адсорбер заполнен цеолитом NaX, заданную композицию пропеллента получают после третьего по ходу адсорбера, при этом в случае использования в качестве углеводородного сырья смеси пропана и н-бутана заданную композицию пропеллента получают в смесителе смешением пропана и н-бутана при массовом отношении, равном 0,96.



 

Похожие патенты:

Изобретение относится к жидкостям для образования аэрозолей, пригодным в качестве раствора ароматического вещества для аэрозольного ингалятора. .

Изобретение относится к производству пропеллентов и композиций на их основе. .

Изобретение относится к технологии получения экологически чистых углеводородных газов - пропеллентов. .

Изобретение относится к аэрозольным составам, в частности к пропеллентам для аэрозольных упаковок, используемых в бытовой химии. .

Изобретение относится к химической обработке, в частности к способам очистки оптической поверхности растворителями. .

Изобретение относится к устройству 100 для получения тетрамера. Устройство содержит: A) зону 170 фракционирования, в которой получается продукт 180 дистилляции, содержащий один или несколько углеводородов С6 для получения одного или нескольких соединений С12; и B) зону 200 удаления оксигенатов для удаления одного или нескольких оксигенатных соединений из продукта 180 дистилляции, прошедшего через зону 200 удаления оксигенатов.

Изобретение относится к биотопливам, способам их получения. Способ (10) получения произведенного из биомассы пиролизного масла с низким содержанием металлов включает стадии: контактирования полученного из биомассы пиролизного масла, содержащего металлы, с кислотной ионообменной смолой, имеющей сульфокислотные активные группы, чтобы получить произведенное из биомассы пиролизное масло с низким содержанием металлов и отработанную кислотную ионообменную смолу (14); удаления полученного из биомассы пиролизного масла с низким содержанием металлов из отработанной кислотной ионообменной смолы (16); и промывки отработанной кислотной ионообменной смолы растворителем, выбранным из группы, состоящей из метанола, этанола, ацетона и их комбинаций, чтобы удалить, по меньшей мере, часть остаточного полученного из биомассы пиролизного масла с низким содержанием металлов из отработанной кислотной ионообменной смолы и сохранить остаточный растворитель в полученном из биомассы пиролизном масле с низким содержанием металлов.

Изобретение относится к способу выделения п-ксилола из сырьевого потока, содержащего С8-ароматические углеводороды и, по меньшей мере, один С9-ароматический углеводородный компонент.

Изобретение относится к области химической технологии, а именно к получению очищенного от примесей бензола. .

Изобретение относится к удалению ртути из потока газообразного углеводорода. .

Изобретение относится к способу уменьшения уровня в сыром органическом продукте остаточного катализатора, использованного для получения органического продукта. .
Изобретение относится к адсорбентам, которые можно использовать в процессах адсорбции из газовой или жидкой фазы для выделения изомеров алкил(арил)ароматических соединений, включая изомеры терфенила.

Изобретение относится к способу удаления оксигената из потока, содержащего от 50 до 99,99 вес.% парафинов и от 0 до 50 вес.% олефинов, который включает следующие стадии: а) пропускание сырьевого потока, содержащего от 50 до 99,99 вес.% одного или более исходных С10-С15-парафинов, от 0 до 50 вес.% олефинов и одного или более оксигенатов через адсорбентный слой, представляющий собой обменивающий щелочной или щелочно-земельный катион Х-цеолита с целью удаления практически всех указанных оксигенатов; и b) отвод парафина(ов) из адсорбентного слоя с получением очищенного потока.

Изобретение относится к способу очистки алкилароматических соединений с алкильной цепью 9-25 атомов углерода, включающему следующие стадии: i) разделение смеси алкилароматических соединений в ректификационной колонне, которая отделяет от 60 до 85 мас.% исходного сырья через верхнюю часть колонны, с получением легкой фракции и тяжелой фракции, ii) разделение тяжелой фракции стадии (i) в ректификационной колонне, которая работает при давлении в верхней части от 0 до 0,1 МПа (от 0 до 1 бар), при температуре в нижней части от 175 до 290°С и при температуре в верхней части от 90 до 200°С, с получением легкой фракции и тяжелой фракции, iii) удаление предшественников хромофоров из легкой фракции стадии (ii) посредством перколяционной фильтрации через неподвижный слой применяемого для очистки твердого вещества, iv) удаление при помощи перегонной колонны, которая работает при температуре в диапазоне от 60 до 250°С, легких побочных продуктов, полученных на стадии (iii), v) смешивание очищенного алкилата, полученного на стадии (iv), с наиболее легкой фракцией, полученной при перегонке на стадии (i).

Изобретение относится к области химии. Сырьевой поток 209 разделяют в первой адсорбционной системе с переменным давлением (PSA1) на первую фракцию 210, включающую в значительной степени адсорбированные компоненты и на вторую фракцию 212, включающую в значительной степени неадсорбированные компоненты, при этом первая фракция 210 включает большую часть СН4 и CO2 из сырьевого потока, а вторая фракция 212 включает большую часть Н2 и СО из сырьевого потока.
Наверх