Предварительно напряженная сейсмоизолирующая опора



Предварительно напряженная сейсмоизолирующая опора
Предварительно напряженная сейсмоизолирующая опора
Предварительно напряженная сейсмоизолирующая опора

 


Владельцы патента RU 2508429:

ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ВНЕШТОРГСЕРВИС" (RU)

Изобретение относится к строительству, в частности к области обеспечения сейсмостойкости зданий и сооружений. Предварительно напряженная сейсмоизолирующая опора для зданий и сооружений состоит из нижней и верхней частей, образующих замкнутую камеру, в которой размещена промежуточная подушка из шариков и смазки. Нижняя часть опоры имеет втулку с резьбой, предназначенную для заполнения полости шариками и смазкой, снижающей трение и обеспечивающей защиту внутренней поверхности от коррозии, а также содержит болт для создания предварительного напряжения в промежуточной подушке. Верхняя часть состоит из опорной плиты, направляющей обоймы и конического сердечника, который служит для снижения удельного давления на внутреннюю поверхность опоры. Замкнутая камера прикреплена ребрами жесткости к опорным плитам. Жесткость верхней части обеспечивается ребрами и полостью, заполненной бетоном. Для крепления опоры в ее опорных плитах предусмотрены отверстия для анкерных болтов. Технический результат состоит в обеспечении защиты зданий и сооружений от сейсмических толчков, снижении стоимости строительства в сейсмических районах. 3 ил.

 

Область техники.

Изобретение относится к строительству, в частности к области обеспечения сейсмостойкости зданий и сооружений. Цель изобретения -обеспечение необходимого уровня сейсмостойкости зданий и снижение стоимости их строительства в сейсмических районах.

Уровень техники.

Наиболее близкие к изобретению следующие сейсмоизолирующие устройства:

- резинометаллические опоры;

- кинематические опоры;

- тарельчатый фундамент.

Общий принцип сейсмоизолирующих устройств состоит в том, что они включают в себя три части, две из которых - связаны с фундаментом, разделенные на нижнюю часть, которая опирается на основание, и верхнюю часть жестко связанную со зданием. Третья часть - сейсмоизолирующая, обеспечивает силовую связь между верхней и нижней частью фундамента, обеспечивая необходимую податливость. В мире запатентовано многочисленное разнообразие сейсмоизолирующих устройств. В России наибольшее распространение получили резинометаллические опоры и кинематические опоры по методу Ю.Д. Черепинского.

При всех их преимуществах сейсмоизолирующий тарельчатый фундамент не обеспечивает регулирование демпфирующих свойств.

Известна предварительно напряженная сейсмоизолирующая опора для зданий и сооружений, состоящая из нижней и верхней частей, образующих замкнутую камеру, в которой размещена промежуточная подушка из шариков и смазки (RU 2374393 С2, Е02D 27/00, 27.11.2009) выбранная в качестве наиболее близкого аналога.

Новизна изобретения заключается в том, что промежуточная подушка опоры выполнена с предварительным напряжением, что обеспечивает возможность регулирования параметров демпфирования опоры. Раскрытие изобретения, краткое описание чертежей и принципа работы.

Цель изобретения - повышение сейсмостойкости зданий и эффективности капитальных вложений в сейсмических районах.

Предварительно напряженная сейсмоизолирующая опора для зданий и сооружений, состоящая из нижней и верхней частей, образующих замкнутую камеру, в которой размещена промежуточная подушка из шариков и смазки, при этом согласно изобретению нижняя часть опоры имеет втулку с резьбой, предназначенную для заполнения полости шариками и смазкой, снижающей трение и обеспечивающей защиту внутренней поверхности от коррозии, а также содержит болт для создания предварительного напряжения в промежуточной подушке, а верхняя часть состоит из опорной плиты, направляющей обоймы и конического сердечника, который служит для снижения удельного давления на внутреннюю поверхность опоры, замкнутая камера прикреплена ребрами жесткости к опорным плитам, жесткость верхней части обеспечивается ребрами и полостью, заполненной бетоном, а для крепления опоры в ее опорных плитах предусмотрены отверстия для анкерных болтов.

Конструкция поясняется чертежами где на фиг.1 - вид сверху опоры, на фиг.2 - разрез А-А на фиг.1, на фиг.3 - вид снизу опоры.

Предварительно напряженная сейсмоизолирующая опора см. фиг.1, 2, 3 состоит из нижней части 3 и верней части 1, образующих замкнутую камеру, в которой размещена промежуточная подушка 2 с предварительным напряжением. Промежуточная подушка выполнена из шариков и смазки (вязкой масляной среды) с предварительным напряжением. Предварительно напряженная промежуточная подушка позволяет регулировать параметры демпфирования и энергопоглощения опоры. При землетрясении нижняя часть 3 опоры с основанием хаотически колеблются, а в верхней части 1 опоры и жестко с ней связанном здании значительно снижаются инерционные сейсмические нагрузки, что обеспечивает повышение сейсмостойкости зданий и сооружений.

Предварительно напряженная сейсмоизолирующая опора см. фиг.1, 2 и 3 состоит:

- из нижней части 3 и верхней части 1, образующих замкнутую камеру, в которой размещена промежуточная подушка 2 из шариков и смазки, которая снижает трение и обеспечивает защиту внутренней поверхности от коррозии. Замкнутая камера ребрами жесткости 4 крепится к опорной плите 12. Нижняя часть 3 опоры имеет втулку 5 с резьбой, через нее полость камеры заполняется шариками и смазкой, а также болт 6, натяжением которого создается предварительное напряжение в промежуточной подушке 2.

- из верхней части 1, состоящей из опорной плиты 8, направляющей обоймы 9 и конического сердечника 11, который служит для снижения удельного давления на внутреннюю поверхность опоры.

Жесткость верхней части обеспечивается ребрами 4* и полостью 10 заполненной бетоном, которая образована коническим сердечником 11 и опорной плитой 8. Для крепления опоры к конструкциям в опорных плитах предусмотрены отверстия 7 для анкерных болтов.

Сейсмоизолирующая опора с предварительно напряженной промежуточной подушкой работает следующим образом.

Статические нагрузки от здания через опорную плиту 8 опоры передаются на верхнюю часть 1 опоры и через промежуточную подушку 2 равномерно на нижнюю часть 3 опоры и через опорную плиту 12 на фундамент и основание.

От горизонтальных составляющих сейсмических толчков нижняя опорная плита 12 и связанная с ней нижняя часть 3 опоры перемещаются горизонтально в направляющей обойме 9, при этом верхняя часть 1 опоры остается в покое.

Промежуточная подушка 2 при горизонтальных перемещениях не меняется в объеме, меняется по форме камера, шарики в вязкой среде перемещаются из одной области в другую и обратно, при этом степенью предварительного напряжения промежуточной подушки регулируют демпфирующие свойства опоры.

Опора сконструирована, так что нижняя часть 3 опоры с фундаментом и основанием при землетрясении может перемещаться по горизонтали относительно верхней части 1 опоры и связанного с ней здания, что обеспечивает защиту зданий и сооружений от сейсмических толчков.

Предварительно напряженная сейсмоизолирующая опора для зданий и сооружений, состоящая из нижней и верхней частей, образующих замкнутую камеру, в которой размещена промежуточная подушка из шариков и смазки, отличающаяся тем, что нижняя часть опоры имеет втулку с резьбой, предназначенную для заполнения полости шариками и смазкой, снижающей трение и обеспечивающей защиту внутренней поверхности от коррозии, а также содержит болт для создания предварительного напряжения в промежуточной подушке, а верхняя часть состоит из опорной плиты, направляющей обоймы и конического сердечника, который служит для снижения удельного давления на внутреннюю поверхность опоры, замкнутая камера прикреплена ребрами жесткости к опорным плитам, жесткость верхней части обеспечивается ребрами и полостью, заполненной бетоном, а для крепления опоры в ее опорных плитах предусмотрены отверстия для анкерных болтов.



 

Похожие патенты:

Изобретение относится к области строительства, а именно к возведению зданий и сооружений в сейсмических районах. Сейсмостойкое здание включает каркас и фундаментную плиту, подвешенную на жестких в вертикальном направлении тягах к объемлющему ее, заглубленному в грунт фундаментному стакану.

Изобретение относится к области строительства и используется при сооружении и анализе напряженно-деформированного состояния строящихся преимущественно высоких и высотных зданий и сооружений на неравномерно сжимаемых грунтах.

Изобретение относится к области строительства, а именно к устройству сейсмозащиты зданий и сооружений для защиты конструкций, людей и оборудования от интенсивных горизонтальных и вертикальных колебаний природного и техногенного происхождения, передающихся на эти здания, сооружения.

Изобретение относится к области строительства, в частности к сейсмоизолирующим устройствам зданий и сооружений. .

Изобретение относится к строительству и может быть использовано для защиты территорий с расположенными зданиями и сооружениями, находящихся в сейсмически опасных районах, а также для их защиты от виброколебаний, источником которых может быть любое технологическое оборудование или оружие.

Изобретение относится к области строительства, в частности к устройствам, используемым для укрепления фундамента зданий и сооружений и предотвращения их разрушения в сейсмически неблагоприятных районах.

Изобретение относится к области строительства, в частности к устройствам, используемым для укрепления фундамента зданий и сооружений, и предотвращения их разрушения в сейсмически неблагоприятных районах.

Изобретение относится к строительству зданий, восприимчивых к стихийным бедствиям. .

Изобретение относится к опоре для защиты сооружений, которая выполнена в виде маятниковой скользящей опоры. .

Изобретение относится к области строительства и может быть использовано при строительстве зданий и сооружений, в частности, в регионах с повышенной сейсмической активностью.

Изобретение относится к электроэнергетике. Устройство сейсмоустойчивой установки разрядника содержит монтажный узел под нижнем фланцем разрядника, заземлитель, регистратор срабатывания и стойку-фундамент. Устройство снабжено вторым монтажным узлом на верхнем фланце разрядника и порталом с подвесным изолятором на его траверсе. Разрядник подвешивается посредством второго монтажного узла к подвесному изолятору, а монтажный узел под нижним фланцем закреплен к стойке-фундаменту дополнительной демпферной конструкцией. Технический результат - повышение сейсмоустойчивости разрядника и сохранение его в рабочем состоянии при значительных ветровых нагрузках. 1 ил.

Изобретение относится к области строительства сейсмостойких сооружений. Технический результат: обеспечение оперативного управления сейсмозащитой здания или сооружения и повышение сейсмостойкости объекта в аварийной ситуации. Комплексная система сейсмозащиты здания или сооружения включает сейсмостойкое здание замкнутого типа на пространственной фундаментной платформе со скользящим слоем в основании, имеющей верхнюю и нижнюю плиты, скрепленные ребрами. Система дополнительно содержит автоматически управляемую систему-предохранитель с сейсмозащитным устройством, повышающую сейсмостойкость здания и обеспечивающую его сейсмозащиту в аварийной ситуации. Автоматически управляемая система-предохранитель содержит проводную или беспроводную быстродействующую связь между сейсмостанцией наблюдения, находящейся на удаленном расстоянии от здания, и размещенным в здании модулем управления, воспринимающим аварийный сигнал с сейсмостанции и передающим его актуаторам, размещенным в полостях фундаментной платформы. При этом актуаторы выполнены в виде напорных баллонов со смазывающей жидкостью и снабжены запорными элементами, взаимодействующими с модулем управления и срабатывающими по управляющему решению при получении аварийного сигнала от сейсмостанции впрыскиванием дозированной порции смазки в скользящий слой под фундаментной платформой здания, нижняя плита которой снабжена отверстиями или решетками, а скользящий слой, являющийся амортизатором сейсмического воздействия, образован из нескольких слоев полимерной пленки, верхние из которых выполнены перфорированными с отверстиями, пропускающими смазывающую жидкость внутрь между верхними слоями пленки, а нижние слои непроницаемы. 1 ил.
Изобретение относится к строительству и может быть использовано при возведении тяжелых с перекрестно-стеновой конструктивной схемой сооружений, которые устраиваются на сжимаемых грунтах в районах с повышенной сейсмичностью. Способ возведения свайно-плитного фундамента в сейсмических районах включает устройство свайного поля и фундаментной плиты с отверстиями, заполняемыми бетоном при достижении плиты-ростверка расчетной осадки, равной ½ от допустимой величины для данного типа здания. Плита-ростверк имеет сквозные отверстия, посредствам которых плиту устанавливают на сваи с возможностью свободного перемещения вдоль них. После устройства плиты-ростверка возводят несущие стены с нишами под сваи и продолжают монтаж несущих конструкций в течение времени, пока осадка плиты-ростверка не достигнет ½ от максимальной расчетной осадки, затем все ниши в стенах заполняют бетоном. Технический результат состоит в повышении восприятия плитой доли нагрузки, передаваемой от сооружения с перекрестно-стеновой конструктивной схемой на фундамент, снижении осадки. 2 ил.

Изобретение относится к области сейсмостойкого строительства и может быть использовано при строительстве каркасных зданий с отдельными фундаментами. Система сейсмозащиты каркасных зданий характеризуется наличием элементов скольжения. Состоит из колонн с расширенной верхней частью, установленных в цокольном или подвальном этаже, элементов скольжения (стальной и фторопластовой пластин) и ограничителей перемещений в виде арматурных стержней или стальных канатов, опирающихся одним концом на ригели через стальные пружины, а другим - в фундамент. На опорные части ригелей установлена стальная пластина из нержавеющей стали, а на расширенную часть колонны - стальная пластина и пластина из фторопласта. Технический результат состоит в снижении сейсмических нагрузок на надфундаментную часть здания, повышении надежности работы системы сейсмоизоляции при вертикальных составляющих сейсмического воздействия. 1 ил.

Изобретение относится к строительству и может быть использовано для мониторинга основания фундаментов в проблемных грунтовых условиях. Фундамент с индикатором сверхнормативных деформаций, просадок, провалов в основании представляет собой монолитную железобетонную плиту, ленту либо сборный блок, в которых выполнены на всю толщину вертикальные технологические каналы (штрабы). В технологическом канале смонтирован индикатор деформации, представляющий собой расположенное между верхней и нижней выпадающей крышками реле зазора с двумя пластинами и клеммой, установленными соосно вертикально одна над другой и удерживаемыми в разомкнутом состоянии с помощью распорной пружины, нижняя крышка связана с реле зазора, реле зазора подключено к пульту службы охраны или к пульту диспетчерской ЖКХ. Технический результат состоит в обеспечении подачи своевременного автоматического сигнала на пульт при начавшихся деформациях основания, повышении надежности фундамента. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области строительства, в частности к защите строительных конструкций от сейсмического воздействия и снижению сейсмической нагрузки на здание. Технический результат: повышение сейсмостойкости здания, позволяющей упростить конструкцию фундаментов, и вместе этим расширить область использования сейсмозащиты, повышение технико-эксплуатационных характеристик здания с уменьшением горизонтальной сейсмической нагрузки на 2-3 балла в широком спектре частот. Сейсмостойкое здание включет пространственно жесткие этажи, колонны каркаса, опертые на нижнее железобетонное основание, которое не имеет жестких связей с вышележащими несущими конструкциями и лежит на скользящей прокладке, фундаменты выполнены из монолитного бетона в виде плиты или перекрестных лент. Для сейсмозащиты здания используется диссипация энергии землетрясения, построенная на принципах демпфирования сухого трения, при этом коэффициент трения материала прокладки между фундаментом и несущими элементами здания принимается от доли весовой характеристики, приложенной на каждой опоре, а несущие колонны здания в уровне сопряжения с фундаментом имеют дополнительные упругие элементы опор, которые принимают участие в работе по достижению перемещений несущими колоннами заданной величины и способствуют возвращению несущих колонн в исходное положение, при этом жесткость упругих опор назначается от остаточной доли, которая воспринимается демпферами сухого трения по весовой характеристике здания для каждого опорного элемента колонн, а упругие элементы выполнены из цилиндрических, или тарельчатых пружин, или их комбинации; для обеспечения условий устойчивости здания от суммарной ветровой нагрузки, интенсивности сейсмической нагрузки и предельного значения перемещения здания при сейсмическом воздействии колонны опираются на фундаменты через скользящие прокладки и объединенны жесткой горизонтальной платформой из перекрестных балок, на фундаментных конструкциях устроены опорные столики с закладными анкерами и пластинами, в пространстве между опорными столиками и перекрестными балками вставлены упругие элементы. 10 з.п. ф-лы, 22 ил. 4 табл.

Изобретение относится к области строительства, в частности к опорам сейсмостойких сооружений (зданий). Сейсмоизолирующая опора включает несущий элемент колонны, которая через верхнюю опорную плиту опирается на резинометаллическую опору (РМО), а нижняя опорная пластина РМО при помощи анкерных болтов соединена с фундаментом, РМО выполнена из поочередно уложенных друг на друга упругих резиновых листов (прокладок) и металлических листов, а в средней части устроено центральное ядро. В фундаментах устроены стаканы, в которые вставлены пластинчатые (цилиндрические) упругие элементы в виде анкерных болтов, величина затяжки, которых назначается с коэффициентом надежности γf, в 1,2-1,5 раза большим, чем горизонтальная составляющая на опору от расчетной ветровой нагрузки Pw. Нижняя опорная пластина РМО опирается на закладную металлическую пластину фундамента с отверстиями для перемещения пластинчатых упругих элементов через скользящую прокладку. Технический результат состоит в повышении сейсмостойкости здания, упрощении конструкции, расширении области использования сейсмозащиты для зданий с различной интенсивностью землетрясения. 4 з.п. ф-лы, 1 табл., 9 ил.

Изобретение относится к строительству фундаментов мелкого заложения на вечномерзлых грунтах. Плитный фундамент в вечномерзлом грунте, усиленный заглубленной обоймой, расположенной вне фундамента по его периметру на некотором расстоянии от края плиты. Заглубление низа обоймы превышает глубину максимальных горизонтальных перемещений грунта, расстояние обоймы от края плиты назначают в зависимости от запланированной проектной несущей способности или осадки фундамента. В составной обойме из армоэлементов их верхние части соединены поясом. Составная обойма выполнена из отдельных армоэлементов без зазоров между ними или с шагом, зависящим от запланированной проектной несущей способности или проектной осадки фундамента. В грунтовое основание под плитой ниже планируемой осадки фундамента предварительно погружают вертикальные термоэлементы для принудительного охлаждения или подогрева грунта при выравнивании фундамента. Термоэлементы соединяют подающими и отводящими магистралями с источником холода и источником тепла. Технический результат состоит в повышении надежности конструкции, снижении материалоемкости при строительстве плитного фундамента в вечномерзлом грунте. 11 з.п. ф-лы, 7 ил.

Изобретение относится к строительству, в частности к возведению фундаментов на просадочных основаниях. Фундамент для просадочных оснований, включающий наружную коническую или пирамидальную оболочку с уширением в нижней части. Внутренняя оболочка, состоящая из соединенных угловых элементов, шарнирно закрепленных в пазах наружной оболочки фундамента, выполнена в форме конуса или пирамиды с уширением или с сужением в нижней части. Технический результат состоит в повышении несущей способности и надежности фундамента на деформируемых основаниях, снижении трудоемкости. 4 ил.

Изобретение относится к строительству в сейсмически опасных районах, а именно к устройствам, снижающим воздействие горизонтальных колебаний земной коры на здания и сооружения, и способам защиты и сохранения несущих конструкций зданий при землетрясениях. Плоскостной подшипник качения, устанавливаемый в сейсмических фундаментах для защиты зданий и сооружений от горизонтальных колебаний земной коры при землетрясениях, состоит из трех расположенных строго горизонтально, одна над другой, стальных плит (квадратные в плане стальные листы с высокими плоскостными свойствами из низкоуглеродистой термически необработанной стали толщиной не менее 15 мм), между которыми в каретке из полиэтилена низкого давления с шагом 10 мм друг от друга укладываются элементы качения - стальные стержни из круглой стальной низкоуглеродистой термически необработанной проволоки диаметром 5 мм. Между первым и вторым листами стержни укладываются в одном направлении, а между вторым и третьим листами - в перпендикулярном направлении по отношению к первым. Технический результат состоит в обеспечении устойчивости зданий в сейсмически опасных районах, повышении надежности зданий. 2 н.п. ф-лы, 2 ил.
Наверх