Тепловой химический источник тока



Тепловой химический источник тока
Тепловой химический источник тока
Тепловой химический источник тока

 


Владельцы патента RU 2508580:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Предложенное изобретение относится к тепловым химическим источникам тока (ТХИТ), имеющим плотность энергии порядка 60 Вт·час/кг, которые могут быть использованы для питания электрической энергией автономных приборов и систем. Повышение безопасности, упрощение сборки при одновременном улучшении разрядных характеристик при сохранении необходимой прочности при механических нагружениях заявленного устройства является техническим результатом изобретения. Тепловой химический источник тока содержит блок электрохимических элементов (ЭХЭ) в корпусе с крышкой, внутренней тепло- и электроизоляцией, пиротехнические нагревательные элементы (ПТН) и ЭХЭ, каждый из которых содержит последовательно чередующиеся твердые слои анода, электролита, катода в расчетном количестве, поджатых упругим элементом и снабженных тепло- и электроизоляцией, знакопеременные гермовыводы для соединения с внешним потребителем, систему активации. Каждый слой ЭХЭ и пиротехнических нагревательных элементов выполнен с центральным сквозным отверстием, все ЭХЭ собраны последовательно на центральном изолированном стержне и жестко фиксированном с одной стороны на днище корпуса посредством втулки, а с другой - на крышке корпуса посредством основания, представляющего собой пространственную фигуру в виде плоского круга из нержавеющей стали с опорными лапками. 1 пр., 3 ил., 1 табл.

 

Предполагаемое изобретение относится к электротехнике, к области резервных химических источников тока на твердом теле и может быть использовано для изготовления тепловых химических источников тока с ионной проводимостью, имеющих плотность энергии порядка 60 Вт*час/кг и применяющихся для питания электрической энергией автономных приборов и систем.

Известно устройство теплового химического источника тока (ТХИТ), содержащего блок электрохимических элементов (ЭХЭ), каждый из которых состоит из расчетного количества твердых слоев анода, катода, электролита, нагревательных элементов, ограниченных с внешней стороны общим корпусом с теплоизоляцией и крышкой (патент РФ №2369944, МПК H01M 6/36, публ. 10.10.2009 г., БИ 28/09 г.).

Недостатком данного устройства является сложность сборки и недостаточно высокие электрохимические показатели (разрядный ток, напряжение).

Известно в качестве наиболее близкого по технической сущности к заявляемому устройство теплового химического источника тока (ТХИТ), содержащего блок электрохимических элементов (ЭХЭ), каждый из которых из расчетного количества твердых слоев анода, катода, электролита, теплонагревательных элементов между ними, ограниченных с внешней стороны общим корпусом с электро - и теплоизоляцией и крышкой (патент РФ №2091918, МПК H01M 6/36, публ. 27.09.1997 г., БИ №27/97).

К недостаткам прототипа относятся недостаточно высокие показатели токовых нагрузок, снимаемых с источника тока, электрического напряжения, необходимого для питания внешних потребителей, сложная технология изготовления и сборки ТХИТ.

Задачей авторов предполагаемого изобретения является разработка теплового химического источника тока (ТХИТ), обеспечивающего требования по безопасности, упрощение сборки при одновременном улучшении разрядных характеристики и сохранении необходимой прочности при механических нагружениях.

Новый технический результат, получаемый при использовании предлагаемого изобретения заключается в обеспечении упрощения сборки, повышении прочности и безопасности за счет уменьшения риска короткого замыкания на на элементы конструкции корпуса, в улучшении разрядных характеристик ТХИТ за счет увеличения площади ЭХЭ и улучшения тепловых свойств теплонагревательных элементов.

Указанные задача и новый технический результат достигаются тем, что в отличие от известной конструкции теплового химического источника тока, содержащего блок электрохимических элементов (ЭХЭ) в корпусе с крышкой и внутренней тепло- и электроизоляцией, пиротехнические нагревательные элементы (ПТН) и ЭХЭ, каждый из которых содержит последовательно чередующиеся твердые слои анода, электролита, катода в расчетном количестве, поджатых упругим элементом и снабженных тепло- и электроизоляцией, знакопеременные гермовыводы для соединения с внешним потребителем, систему активации, согласно изобретению каждый слой ЭХЭ и пиротехнических нагревательных элементов выполнен с центральным сквозным отверстием, все ЭХЭ собраны последовательно на центральном изолированном стержне, жестко фиксированном с одной стороны - на днище корпуса посредством втулки, а с другой - на крышке корпуса посредством основания, представляющего собой пространственную фигуру в виде плоского круга из нержавеющей стали с опорными лапками, выполненными радиально расходящимися в направлении от центра за контуры плоского круга и отогнутыми в направлении к опорной поверхности крышки, которые закреплены на соответствующих выступах крышки, на крышке корпуса также установлена система активации, каждый слой ЭХЭ и ПТН выполнен в виде запрессованных в металлические обечайки таблеток из порошков электрохимического и пиротехнического составов соответственно, анод в каждом ЭХЭ выполнен из литий - борного композита, знакопеременные гермовыводы выведены наружу через керамические изоляторы, вмонтированные в сквозные отверстия крышки корпуса.

Предлагаемая конструкция теплового химического источника тока поясняется следующим образом.

На фиг.1 представлен вид предлагаемого теплового химического источника тока, где 1 - крышка, выполненная из стали, на которой жестко фиксированы, например, сваркой, корпус 2 и днище 3 корпуса, ограничивающие собой герметичное пространство ТХИТ. Вдоль вертикальной оси цилиндрического корпуса 2 в герметичном пространстве теплового химического источника установлен и жестко фиксирован блок электрохимических элементов (ЭХЭ), состоящий из расчетного количества чередующихся ЭХЭ 4 и пиротехнических нагревательных элементов (ПТН) 5. Каждый ЭХЭ (фиг.2) представляет собой пресс-пакет из твердых слоев анода 19, электролита 20 и катода 21 с сеткой 22. Для нагрева блока ЭХЭ до рабочей температуры и обеспечения электрической связи между ними установлены пиронагреватели. ПТН (фиг.3), состоящие из тепловыделяющего пиротехнического состава 23, запрессованного в металлическую обечайку. Каждый слой ЭХЭ и слои ПТН выполнены с центральным сквозным отверстием, а сборка блока ЭХЭ ведется на изолированном центральном стержне 6, что обеспечивает упрощение сборки ТХИТ за счет появления свободного доступа к местам установки ЭХЭ и ПТН. Центральный стержень, выполненный из закаленной стали, с одной стороны через специальную втулку 7 жестко закреплен на днище 3, с другой -жестко закреплен на круглом основании 8 блока ЭХЭ, которое, в свою очередь, с помощью винтов крепится к крышке 1 ТХИТ. Таким образом, центральный стержень представляет собой жестко закрепленную с двух сторон прочную ось, воспринимающую осевые и боковые механические нагрузки с минимальными деформациями.

Предлагаемый ТХИТ имеет в своем составе устройство активации, установленное на плате 9, которая крепится к крышке 1 корпуса ТХИТ.

Для сохранения необходимой рабочей температуры в блоке ЭХЭ и ограничения температуры корпуса по внутренним поверхностям корпуса 2 и днища 3 установлены теплоизоляторы 10, 11, 12 (фиг.1). Теплоизоляторы выполнены из теплоизоляционного материала ТЭМ-23 с низким коэффициентом теплопроводности.

Связь ТХИТ с внешним потребителем осуществляется через силовые знакопеременные контакты (гермовыводы) 13, установленные на крышке корпуса с использованием керамических изоляторов 14 (фиг.1), обеспечивающих электро изоляцию их от крышки, герметичность внутреннего объема ТХИТ и работу при повышенных температурах (порядка 600°С рабочих режимов, предусмотренных требованиями эксплуатации.

Как это видно в предлагаемом ТХИТ в конструкции крышки совмещены функции крепления блока ЭХЭ, платы электровоспламенителей и силовых гермовыводов 13 для связи с внешним потребителем.

Контроль и приведение ТХИТ в рабочее состояние осуществляется через стандартный соединитель - вилку 15, закрепленную на крышке ТХИТ.

Предлагаемое устройство работает следующим образом.

Первоначально подают импульс тока на электрический мостик электровоспламенителя от внешнего источника тока. Электровоспламенитель (ЭВ) срабатывает и дает форс пламени на пирошнур, при горении которого воспламеняются пиротехнические нагревательные элементы 5, расположенные между ЭХЭ. При достижении рабочей температуры электролит становится ионопроводящим. При разогреве ионопроводящая среда приобретает чисто ионную проводимость электрического тока и на ЭХЭ возникает разность потенциалов. После нарастания величины разности потенциалов до требуемой величины ТХИТ готов к работе.

Таким образом, используемый в предлагаемом ТХИТ оптимальный принцип сборки, в которой все слои ЭХЭ, ПТН, элементы электроизоляции набраны на центральном стержне, способствует упрощению процесса сборки ТХИТ по сравнению с прототипом, в котором была предусмотрена поэтапная сборка - сначала в полости вспомогательной детали, а затем на общем основании с использованием многосложных и длительных процедур фиксации, сварки токовыводов, крепления резьбовыми элементами (длительность сборки предлагаемого ТХИТ около 2-х часов, тогда как в прототипе - 5 часов). При этом были достигнуты более высокие разрядные характеристики, соответствующие заданным требованиям ТХИТ за счет увеличения количества ЭХЭ и их поверхности, уменьшения внутреннего сопротивления ЭХЭ за счет конструктивного выполнения твердых слоев активной системы в виде запрессованных в металлические обечайки (сетки) таблеток, а также высокая прочность сборки за счет использования упругих элементов, создающих заданное усилие поджатия блока ЭХЭ.

Возможность промышленного реализации предлагаемого ТХИТ подтверждается следующими примерами.

Пример 1. В лабораторных условиях предлагаемый тепловой химический источник тока был реализован на опытном образце конкретного типа, представляющем собой герметичное цилиндрическое устройство (фиг.1), выполненное из стали марки 12X18H10T и состоящее из крышки 1, корпуса 2 и днища 3, соединенных между собой лазерной сваркой. Крышка 1 корпус 2 изготовлены механической формовкой из стального листа. На корпусе расположены опорные поверхности и резьба для крепления предлагаемого ТХИТ в эксплуатируемое изделие.

Блок ЭХЭ представляет собой столб из последовательно набранных на общем стержне 6 слоев ЭХЭ 4, между которыми расположены слои пиротехнических нагревателей (ПТН) 5.

ЭХЭ и ПТН выполнены с центральным сквозным отверстием, сборку последних ведут на изолированном центральном стержне 6, жестко фиксированном между крышкой 1 и днищем 3 корпуса 2.

Поджатие пакета ЭХЭ и ПТН производится упругими элементами 16 и гайкой 17, что обеспечивает снижение внутреннее сопротивления сборки при работе ТХИТ.

Основной рабочей единицей блока ЭХЭ является собственно ЭХЭ (фиг.2), представляющий собой таблетку (фиг.З). состоящую из слоев анода 19. электролита 20 и катода 21 с сеткой 22, впрессованных в фигурные металлические чашки с центральным отверстием.

ПТН, используемый для нагрева ЭХЭ до рабочей температуры, представляет собой прессованную таблетку (фиг.3) из пиротехнического состава 23, помещенного в металлическую обечайку, что обеспечивает механическую прочность ПТН и электрическую связь между ЭХЭ.

Напряжение с блока ЭХЭ снимается с помощью токовыводов 18, соединенных с силовыми гермовыводами 13, изолированными от крышки втулками 14, изготовленными из керамики на основе оксида алюминия.

Плата 9 с системой активации и контроля исходного состояния ТХИТ крепится к крышке. Для сохранения необходимой рабочей температуры в блоке ЭХЭ и ограничения температуры корпуса 2 по внутренним поверхностям корпуса 2, днища 3 и крышки 1 корпуса установлены теплоизоляторы 10, 11, 12. Теплоизоляторы выполнены из теплоизоляционного материала на основе мелкодисперсного кварцевого волокна с низким коэффициентом теплопроводности.

Контроль исходного состояния и приведение ТХИТ в рабочее состояние осуществляется через стандартный соединитель - вилку 15, закрепленную на крышке ТХИТ.

Результаты измерений сведены в таблицу 1.

Как показали пример и данные таблицы 1, использование предлагаемого ТХИТ позволило обеспечить выполнение требований по электрическим характеристикам. прочности конструкции, безопасности работы при штатном режиме разряда, упростить технологию сборки при обеспечении предъявляемых требований по массово-габаритным характеристикам.

Таблица 1
Примеры реализации Электрические и разрядные характеристики Прочность конструкции Безопасность ТХИТ Процесс сборки ТХИТ
ТХИТ прототипа Сопротивление цепи ИК не более 0,1 Ом Сопротивление между электрически несвязанными цепями не менее 20 МОм Напряжение от 21 до 30 B Ток разряда до 3,5 A Прочность ТХИТ ограничена прочностью материала корпуса блока ЭХЭ Возможен риск короткого замыкания, т.к. не предусмотрены средства надежной изоляции токовыводов Многосложная процедура выполнения корпуса с окнами, сложность набора пакета ЭХЭ и ПТН, их фиксация и центрирование.
Предлагае-
мый ТХИТ
Сопротивление цепи ИК не более 0,5 Ом Сопротивление между электрически несвязанными цепями не менее 20 МОм Напряжение от 26,5 до 35,5 B Ток разряда до 15 A Прочность обеспечена материалом центрального стержня и выполнением ПТН и ЭХЭ прессованием в металлические ограничительные элементы - обечайки Наличие внутренней тепло- и электроизоляции, керамических изоляторов на центральном стержне, гермовыводах крышки, уменьшение риска короткого замыкания. Упрощение и ускорение процесса сборки за счет набора на центральном стержне ЭХЭ и ПТН.

Тепловой химический источник тока, содержащий блок электрохимических элементов (ЭХЭ) в корпусе с крышкой и внутренней тепло- и электроизоляцией, пиротехнические нагревательные элементы (ПТН) и ЭХЭ, каждый из которых содержит последовательно чередующиеся твердые слои анода, электролита, катода в расчетном количестве, поджатых упругим элементом и снабженных тепло- и электроизоляцией, знакопеременные гермовыводы для соединения с внешним потребителем, систему активации, отличающийся тем, что каждый слой ЭХЭ и пиротехнических нагревательных элементов выполнен с центральным сквозным отверстием, все ЭХЭ собраны последовательно на центральном изолированном стержне, жестко фиксированном с одной стороны - на днище корпуса посредством втулки, а с другой - на крышке корпуса посредством основания, представляющего собой пространственную фигуру в виде плоского круга из нержавеющей стали с опорными лапками, выполненными радиально расходящимися в направлении от центра за контуры плоского круга и отогнутыми в направлении к опорной поверхности крышки, которые закреплены на соответствующих выступах крышки, на крышке корпуса также установлена система активации, каждый слой ЭХЭ и ПТН выполнен в виде запрессованных в металлические обечайки таблеток из порошков электрохимического и пиротехнического составов соответственно, анод в каждом ЭХЭ выполнен из литий-борного композита, знакопеременные гермовыводы выведены наружу через керамические изоляторы, вмонтированные в сквозные отверстия крышки корпуса.



 

Похожие патенты:

Изобретение относится к области электротехники, может быть использовано в производстве тепловых химических источников тока. Технический результат - повышение надежности работы и уменьшение времени выхода на режим.

Изобретение относится к области энергетики, в частности к разработке составов солей лития, которые могут быть использованы в качестве расплавляемых электролитов для химического источника тока.
Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для химических источников тока на основе солей лития и калия.
Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для химических источников тока на основе солей лития и калия.
Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для химических источников тока на основе солей лития и калия.

Изобретение относится к электротехнической промышленности, может быть использовано в тепловых литиевых источникам тока. .
Изобретение относится к электротехнической промышленности и может быть использовано при производстве тепловых литиевых источников тока. .
Изобретение относится к электротехнике, может быть использовано при производстве тепловых химических источников. .
Изобретение относится к электротехнической промышленности и может быть использовано в производстве тепловых химических источниках тока. .
Изобретение относится к электротехнике и может быть использовано при производстве тепловых химических источников тока. .
Данное изобретение представляет собой способ получения и запасения электрической энергии постоянного тока. Технический результат - обеспечение питания технических средств с малым электропотреблением от прикосновения к телу человека.

Изобретение относится к первичным химическим источникам тока одноразового действия, в частности к тепловым батареям, которые могут быть использованы для автономного питания бортовой аппаратуры летательных аппаратов.

Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов, включающих бромиды, метаванадаты, молибдаты и сульфаты лития, которые применяются в качестве расплавляемых электролитов для высокотемпературных химических источников тока.
Изобретение относится к химическим источникам тока, в частности к катодным материалам. .

Изобретение относится к гальваническому элементу и встроенному индикатору состояния заряда. .

Изобретение относится к электротехнике и касается производства химических источников тока. .

Изобретение относится к электротехнике и касается производства химических источников тока. .

Изобретение относится к электротехнике и касается утилизации хим.источников тока. .

Изобретение относится к электротехнической промышленности и может быть использовано при производстве материала положительного электрода источников тока на основе лития, для питания электронных устройств различной мощности, в частности портативных приборов, транспортных средств и т.д. Предлагается полученный из растворимых прекурсоров сложный оксид состава SrFe12O19 для применения в качестве активного вещества для композитного материала положительного электрода литиевого аккумулятора, состоящего из связки, токопроводящего агента и активного вещества. Варьируя температурный режим обжига, можно получать целевую фазу с различными регулируемыми размерами частиц. Подбор размера частиц позволяет оптимизировать эксплуатационные параметры работы аккумулятора. Сохранение структуры при разряде (внедрение лития) позволило использовать данный материал до 80-100% от теоретической емкости. Удельная теоретическая емкость составляет 303 мАч/г. 6 н. и 2 з.п. ф-лы, 1 табл., 6 ил.
Наверх