Способ управления судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе



Способ управления судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе
Способ управления судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе
Способ управления судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе
Способ управления судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе

 

B63H25/00 - Управление судами: уменьшение скорости хода, осуществляемое иными средствами, чем движители (использование подвижно установленных движителей для управления судном B63H 5/14; использование подвижно установленных забортных двигательно-движительных агрегатов B63H 20/00); динамическая постановка на якорь, т.е. расположение судов с помощью основных или вспомогательных движителей (постановка судов на якорь, кроме динамической, B63B 21/00; устройства для уменьшения килевой и бортовой качки или подобных нежелательных движений судов с помощью реактивных струй или гребных винтов B63B 39/08)

Владельцы патента RU 2509029:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГБОУВПО "МГТУ") (RU)

Изобретение относится к водному транспорту и касается управления движением швартующегося судна при выполнении им швартовной операции к судну-партнеру, лежащему в дрейфе. Текущее положение траектории сближения определяют в виде прямой линии, проходящей через две заданные точки на плоскости. Текущее положение заданных точек на плоскости в любой заданный момент времени рассчитывают с использованием значений текущих координат носовой и кормовой точек судна-партнера, лежащего в дрейфе, заданного расстояния между бортами швартующихся судов, заданного положения швартующегося судна относительно судна партнера, лежащего в дрейфе в конечной стадии швартовки, и текущего значения длины тормозного пути швартующегося судна, необходимого для перехода его от исходной скорости движения к скорости, равной продольной составляющей линейной скорости швартующего судна. Сближение осуществляют в два этапа. На каждом этапе сближения используют свои заданные точки на плоскости. На первом этапе сближения швартующееся судно выходит в первую условную точку. На втором этапе во вторую условную точку. Технический результат реализации изобретения заключается в совершенствовании управления швартующимся судном при выполнении им швартовной операции к судну-партнеру, лежащему в дрейфе, и тем самым обеспечении безопасности швартовной операции. 4 ил.

 

Изобретение относится к водному транспорту и касается управления швартующимся судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе.

Известен способ управления швартующимся судном при выполнении им швартовной операции к борту судна-партнера (патент №2422326, опубл. 27.06.2011), когда в пределах контуров швартующегося судна и судна-партнера, в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу А (швартующееся судно), An (судно-партнер), другая - в корме В (швартующееся судно), Bn (судно-партнер) (фиг.1,2) относительно мидель-шпангоута соответствующего судна.

Координаты точек А, В, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек А(X0A, Y0A), В(X0B, Y0B) швартующегося судна и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном А(XA, YA), BnВ, YB) и судном-партнером An(XAn, YAn), Bn(XBn, YBn), координаты центров тяжести (ЦТ) швартующегося судна в связанной с ним подвижной координатной системе G (XG, YG) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn) (фиг.3), а также значения расстояния между диаметральными плоскостями (ДП) швартующихся судов h0 и расстояния между ЦТ швартующихся судов m, рассчитывают:

- координаты центра тяжести швартующегося судна G(X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A n ' ( X A ' n , Y A ' n ) и B n ' ( X B ' n , Y B ' n ) , расположенных на перпендикулярах к ДП судна-партнера, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера G n ' ( X 0 G ' n , Y 0 G ' n ) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера через точки A n ' и B n ' ;

- координаты второй заданной точки P2(X0P2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения dυ/dS=f(υ, C1 C2, C3,…),

где

υ - текущее значение скорости швартующегося судна;

S - путь;

C1, C2, C3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции). Текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ=υn, т.е.

S T = υ н υ n f ( υ , C 1 , C 2 , C 3 , ) d

где υн - начальная скорость швартующегося судна; υn - скорость судна-партнера.

При этом текущие значения параметров уравнения движения швартующегося судна С1, С2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [5], [6].

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1 Y0P1) и ЦТ швартующегося судна G(X0G, Y0G). После этого определяют поперечные смещения точек A и B от найденной указанным способом траектории сближения.

Непрерывно определяемые значения координат точек A и B, An и Bn позволяют непрерывно вычислять координаты ЦТ швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST - и первой заданной точки P1; а также поперечные смещения dA и dB точек A и B швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB,

где kA, kB - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки P1.

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G(X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G0Р1; Y0G=Y0P1), оно переходит к сближению со второй заданной точкой P2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A n ' ( X A ' n , Y A ' n ) и B n ' ( X B ' n , Y B ' n ) , координаты которых рассчитывают непрерывно. Текущие координаты второй заданной точки P20Р2, Y0P2), лежащей на линии A n ' B n ' вычисляют также непрерывно.

Постоянно определяемые значения координат точек A и B, An и Bn позволяют непрерывно вычислять: координаты точек A n ' и B n ' , ЦТ G швартующегося судна и ЦТ Gn судна-партнера, второй заданной точки P2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек A и B швартующегося судна от текущего положения траектории сближения, которой является линия A n ' B n ' .

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку Р2 по линии A n ' B n ' .

Момент выхода швартующегося судна во вторую заданную точку P2 соответствует равенству координат ЦТ швартующегося судна и второй заданной точки, то есть X0G=X0P2, Y0G=Y0P2.

Однако в этом способе управления судном, выполняющим швартовную операцию к борту судна-партнера, есть определенный недостаток, не позволяющий безопасно сблизиться швартующемуся судну с судном-партнером, если оно лежит в дрейфе. Направление вектора линейной скорости дрейфующего судна υ' определяется углом дрейфа β' (угол между диаметральной плоскостью судна и вектором линейной скорости судна) (фиг.4), а величина β' может достигать больших значений в пределах от 0 до 180° [1], [3], [4]. Таким образом, в момент выхода швартующегося судна к борту судна-партнера, лежащего в дрейфе, линейная скорость швартующегося судна и должна быть равна продольной составляющей линейной скорости швартующего судна υ x ' , то есть υ = υ x ' .

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в соблюдении условия движения швартующегося судна в конечной стадии швартовки со скоростью, равной продольной составляющей линейной скорости судна-партнера.

Для достижения указанного технического результата в способе управления швартующимся судном, при выполнении им швартовной операции к борту судна-партнера, когда в пределах контуров швартующегося судна и судна-партнера, в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу A (швартующееся судно), An (судно-партнер), другая - в корме B (швартующееся судно), Bn (судно-партнер) (фиг.2) относительно мидель-шпангоута соответствующего судна.

Координаты точек A, B, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек швартующегося судна A(X0A, Y0A), В(X0B, Y0B) и судна-партнера An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном A(ХА, YA), B(XB, YB) и судном-партнером An(XAn, YAn), Bn(XBn,YBn), координаты ЦТ швартующегося судна в связанной с ним подвижной координатной системе G (XG,YG) и судна-партнера в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между ДП швартующихся судов h0 и расстояния между ЦТ швартующихся судов m, рассчитывают:

- координаты центра тяжести швартующегося судна G (X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A n ' ( X A ' n , Y A ' n ) и B n ' ( X B ' n , Y B ' n ) , расположенных на перпендикулярах к ДП судна-партнера, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера G n ' ( X 0 G ' n , Y 0 G ' n ) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера через точки A n ' и B n ' ;

- координаты второй заданной точки P2(X0P2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения dυ/dS=f(υ, C1, C2, C3,…),

где

υ - текущее значение скорости швартующегося судна;

S - путь;

C1, C2, C3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции).

Отличительным признаком предлагаемого способа от указанного выше известного, наиболее близкого к нему, является следующий:

дополнительно текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ = υ x ' , т.е.

S T = υ н υ x ' f ( υ , C 1 , C 2 , C 3 , ) d

где υ x ' - продольная составляющая линейной скорости швартующего судна.

При этом текущие значения параметров уравнения движения швартующегося судна C1, C2, С3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [5], [6];

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку Р1(X0P1, Y0P1) и ЦТ швартующегося судна G(X0G, Y0G). После этого определяют поперечные смещения точек A и B от найденной указанным способом траектории сближения.

Постоянно определяемые значения координат точек A и B, An и Bn позволяют непрерывно вычислять координаты ЦТ швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST - и первой заданной точки P1, а также поперечные смещения dA и dB точек A и B швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB,

где kA, kB - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки P1.

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G(X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G0Р1; Y0G=Y0P1), оно переходит к сближению со второй заданной точкой P2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A n ' ( X A ' n , Y A ' n ) и B n ' ( X B ' n , Y B ' n ) , координаты которых рассчитывают непрерывно. Текущие координаты второй заданной точки P2(X0P2, Y0P2), лежащей на линии A n ' B n ' , вычисляют также непрерывно.

Постоянно определяемые значения координат точек A и B, An и Bn позволяют непрерывно вычислять: координаты точек A n ' и B n ' , ЦТ G швартующегося судна и ЦТ Gn судна-партнера, второй заданной точки Р2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек A и B швартующегося судна от текущего положения траектории сближения, которой является линия A n ' B n ' .

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку P2 по линии A n ' B n ' .

Момент выхода швартующегося судна во вторую заданную точку P2 соответствует равенству координат ЦТ швартующегося судна и второй заданной точки, то есть X0G0Р2, Y0G=Y0P2.

Предлагаемый способ управления судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе, осуществляют следующим образом.

В пределах контуров швартующегося судна и судна-партнера, лежащего в дрейфе, в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу A (швартующееся судно), An (судно-партнер, лежащее в дрейфе), другая - в корме B (швартующееся судно), Bn (судно-партнер, лежащее в дрейфе) (фиг.2) относительно мидель-шпангоута соответствующего судна.

Координаты точек A, B, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м). Используя значения координат точек швартующегося судна A(Х, Y0A), B(Х, Y0B) и судна-партнера, лежащего в дрейфе An(X0An, Y0An), Bn(X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном A(XA, YB, В(XB, YB) и судном-партнером, лежащим в дрейфе An(XAn, YAn) Bn(XBn,YBn), координаты ЦТ швартующегося судна в связанной с ним подвижной координатной системе G(XG,YG) и судна-партнера, лежащего в дрейфе в связанной с ним подвижной координатной системе Gn(X0Gn, Y0Gn), а также значения расстояния между ДП швартующихся судов h0 и расстояния между ЦТ швартующихся судов m, рассчитывают:

- координаты центра тяжести швартующегося судна G(X0G, Y0G) в неподвижной координатной системе;

- координаты центра тяжести судна-партнера, лежащего в дрейфе Gn(X0Gn, Y0Gn) в неподвижной координатной системе;

- координаты точек A n ' ( X A ' n , Y A ' n ) и B n ' ( X B ' n , Y B ' n ) , расположенных на перпендикулярах к ДП судна-партнера, лежащего в дрейфе, восстановленных в точки An и Bn;

- координаты проекции ЦТ судна-партнера, лежащего в дрейфе G n ' ( X 0 G ' n , Y 0 G ' n ) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера, лежащего в дрейфе через точки A n ' B n ' ;

- координаты второй заданной точки P2(X0P2, Y0P2) в неподвижной координатной системе;

- текущее значение длины тормозного пути швартующегося судна рассчитывают с использованием уравнения его движения dυ/dS=f(υ, C1, C2, C3,…),

где

υ - текущее значение скорости швартующегося судна;

S - путь;

C1 C2, C3,… - текущие значения параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции).

Текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером, лежащим в дрейфе, определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ = υ x ' , т.е.

S T = υ н υ x ' f ( υ , C 1 , C 2 , C 3 , ) d

где υ x ' - продольная составляющая линейной скорости швартующего судна.

При этом текущие значения параметров уравнения движения швартующегося судна C1, C2, C3,… в процессе выполнения швартовной операции непрерывно идентифицируют с использованием метода, описанного в работах [5], [6];

- координаты первой заданной точки P1(X0P1, Y0P1) в неподвижной координатной системе.

Зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1(X0P1, Y0P1) и ЦТ швартующегося судна G(X0G, Y0G). После этого определяют поперечные смещения точек A и B от найденной указанным способом траектории сближения.

Непрерывно определяемые значения координат точек A и B, An и Bn позволяют непрерывно вычислять координаты ЦТ швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST - и первой заданной точки P1, а также поперечные смещения dA и dB точек A и B швартующегося судна от текущего положения траектории сближения.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по закону:

α=-kA×dA+kB×dB, где kA, kB - коэффициенты усиления по перечным смещениям носовой и кормовой точек швартующегося судна от текущего положения траектории сближения.

Таким образом, швартующееся судно движется по линии GP1 в направлении точки P1.

В момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G(X0G, Y0G) и координат первой заданной точки P1(X0G, Y0P1) (X0G=X0P1; Y0G=Y0P1), оно переходит к сближению со второй заданной точкой P2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A n ' ( X A ' n , Y A ' n ) и B n ' ( X B ' n , Y B ' n ) , координаты которых рассчитывают непрерывно. Текущие координаты второй заданной точки P2(X0P2, Y0P2), лежащей на линии A n ' B n ' , вычисляют непрерывно.

Непрерывно определяемые значения координат точек A и B, An и Bn позволяют непрерывно вычислять: координаты точек A n ' и B n ' , ЦТ швартующегося судна G и ЦТ судна-партнера, лежащего в дрейфе Gn, второй заданной точки P2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек A и B швартующегося судна от текущего положения траектории сближения, которой является линия A n ' B n ' .

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например руля швартующегося судна, по известному закону. Таким образом, швартующееся судно движется в точку P2 по линии A n ' B n ' .

Моменту выхода швартующегося судна во вторую заданную точку P2 соответствует равенство координат ЦТ швартующегося судна и второй заданной точки, то есть X0G0Р2, Y0G=Y0P2.

В результате применения данного изобретения достигается возможность получения технического результата - соблюдение безопасности выполнения швартовной операции к борту судна-партнера, лежащего в дрейфе.

Список литературы

1. Дмитриев, В.И. Справочник капитана: справочник / В.И. Дмитриев. - Москва: Элмор, 2009. - 797 с: ил.

2. Патент №2422326 Российская Федерация, МПК8 B63H 25/00. Способ управления судном при выполнении им швартовной операции к борту судна-партнера, заявитель и патентообладатель Мурм. гос.техн. ун-т. - 2010116539/11; заявл.26.04.2010; опубл. 27.06.2011.

3. Снопков, В.И. Управление судном: учебник / В.И.Снопков. - Москва: Транспорт, 1991. - 359 с.: ил.

4. Цурбан, А.И. Швартовные операции морских судов. / А.И. Цурбан, A.M. Оганов. - М: Транспорт, 1987. - 176 с: ил.

5. Юдин Ю.И. Синтез моделей механизма предвидения для экспертных систем, обеспечивающих безопасную эксплуатацию судна: монография / Ю.И.Юдин. - Мурманск: Изд-во МГТУ, 2007. - 198 с: ил.

6. Юдин, Ю.И. Теоретические основы безопасных способов маневрирования при выполнении точечной швартовки: монография / Ю.И.Юдин, СВ.Пашенцев, Г.И.Мартюк, А.Ю.Юдин. - Мурманск: Изд-во МГТУ, 2009. - 152 с.: ил.

Способ управления судном при выполнении им швартовной операции к борту судна-партнера, лежащего в дрейфе, когда в пределах контуров швартующегося судна и судна-партнера, в их диаметральных плоскостях выбирают по две точки, одна из которых находится в носу A (швартующееся судно), An (судно-партнер), другая - в корме B (швартующееся судно), Bn (судно-партнер) относительно мидель-шпангоута соответствующего судна, координаты точек A, B, An, Bn в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м), используя значения координат точек швартующегося судна A (X0A, Y0A), B (X0B, Y0B) и судна-партнера, лежащего в дрейфе An (X0An, Y0An), Bn (X0Bn, Y0Bn) в неподвижной координатной системе, координаты тех же точек в подвижных системах координат, связанных с швартующимся судном A (XA, YA), B (XB, YB) и судном-партнером, лежащим в дрейфе An (XAn, YAn), Bn (XBn, YBn), координаты ЦТ швартующегося судна в связанной с ним подвижной координатной системе G (XG,YG) и судна-партнера, лежащего в дрейфе в связанной с ним подвижной координатной системе Gn (X0Gn, Y0Gn), а также значения расстояния между ДП швартующихся судов h0 и расстояния между ЦТ швартующихся судов m, рассчитывают:
- координаты центра тяжести швартующегося судна G (X0G, Y0G) в неподвижной координатной системе;
- координаты центра тяжести судна-партнера, лежащего в дрейфе Gn (X0Gn, Y0Gn) в неподвижной координатной системе;
- координаты точек A n ' ( X A ' n , Y A ' n ) и B n ' ( X B ' n , Y B ' n ) , расположенных на перпендикулярах к ДП судна-партнера, лежащего в дрейфе, восстановленных в точки An и Bn;
- координаты проекции ЦТ судна-партнера, лежащего в дрейфе G n ' ( X 0 G ' n , Y 0 G ' n ) в неподвижной координатной системе на траекторию сближения в конечной стадии швартовки, проходящую параллельно ДП судна-партнера, лежащего в дрейфе через точки A n ' и B n ' ;
- координаты второй заданной точки P2 (X0P2, Y0P2) в неподвижной координатной системе;
- текущее значение длины тормозного пути швартующегося судна рассчитывается с использованием уравнения его движения
dυ/dS=f(υ, C1, C2, C3,…),
где υ - текущее значение скорости швартующегося судна;
S - путь;
C1, C2, C3,… - текущие значение параметров уравнения движения швартующегося судна, зависящие от текущих значений параметров, характеризующих текущее состояние загрузки судна и внешней среды (водоизмещения швартующегося судна; параметров посадки корпуса; направления и скорости ветра; параметров волнения; направления и скорости течения; глубины акватории в районе выполнения швартовной операции), отличающийся тем, что текущее значение длины тормозного пути швартующегося судна в процессе его сближения с судном-партнером определяют интегрированием уравнения движения швартующегося судна в пределах от υ=υн до υ = υ x ' , т.е.
S T = υ н υ x ' f ( υ , C 1 , C 2 , C 3 , ) d
где υ x ' - продольная составляющая линейной скорости швартующего судна, при этом текущие значения параметров уравнения движения швартующегося судна C1, C2, C3,… в процессе выполнения швартовной операции непрерывно идентифицируют;
- координаты первой заданной точки P1 (X0P1, Y0P1) в неподвижной координатной системе, зная координаты первой заданной точки и координаты ЦТ швартующегося судна, определяют текущее положение траектории сближения, проходящей через первую заданную точку P1 (X0P1, Y0P1) и ЦТ швартующегося судна G (X0G, Y0G), после этого определяют поперечные смещения точек A и B от найденной траектории сближения, непрерывно определяемые значения координат точек A и B, An и Bn позволяют непрерывно вычислять координаты ЦТ швартующегося судна G, а вместе с непрерывно определяемым текущим значением длины тормозного пути ST - и первой заданной точки P1, а также поперечные смещения dA и dB точек A и B швартующегося судна от текущего положения траектории сближения, возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, швартующееся судно движется по линии GP1 в направлении точки P1 в момент выхода швартующегося судна в первую заданную точку, что соответствует равенству координат ЦТ швартующегося судна G (X0G, Y0G) и координат первой заданной точки P1 (X0G, Y0P1) (X0G=X0P1; Y0G=Y0P1), оно переходит к сближению со второй заданной точкой Р2, при этом текущее положение траектории сближения соответствует положению линии, проходящей через точки A n ' ( X A ' n , Y A ' n ) и B n ' ( X B ' n , Y B ' n ) , координаты которых рассчитывают непрерывно. Текущие координаты второй заданной точки P2(X0P2, Y0P2), лежащей на линии A n ' B n ' , вычисляют непрерывно; непрерывно определяемые значения координат точек A и B, An и Bn позволяют непрерывно вычислять: координаты точек A n ' и B n ' , ЦТ швартующегося судна G и ЦТ судна-партнера, лежащего в дрейфе Gn, второй заданной точки P2 в неподвижной координатной системе, а также поперечные смещения dA и dB точек A и B швартующегося судна от текущего положения траектории сближения, которой является линия A n ' B n ' ; возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, швартующееся судно движется в точку P2 по линии A n ' B n ' ; момент выхода швартующегося судна во вторую заданную точку P2 соответствует равенству координат ЦТ швартующегося судна и второй заданной точки, то есть X0G=X0P2, Y0G=Y0P2.



 

Похожие патенты:

Изобретение относится к водному транспорту и может быть использовано при управлении траекторией движения судна, выполняющего сложное маневрирование. Способ определения демпфирующих составляющих нормальной гидродинамической силы и момента включает определение текущего значения абсциссы центра вращения, угловой скорости судна, демпфирующих составляющих нормальной гидродинамической силы и ее момента.

Изобретение относится к судовождению. Способ включает измерение параметров движения и угловой скорости, их последующее сравнение с программными значениями данных параметров движения и формирование управляющего сигнала на рулевой привод в функции данных рассогласований и скорости судна.

Используют кормовую А и носовую F точки в диаметральной плоскости судна. В точки А и F устанавливают акселерометры и измеряют продольные и поперечные ускорения точек А и F.

Изобретение относится к области судовождения, в частности к системам автоматического управления движением судна. .

Изобретение относится к области судостроения и касается средств активного управления судном, а более конкретно - подруливающих устройств. .

Изобретение относится к технике управления движением подводных аппаратов. .

Изобретение относится к водному транспорту и может быть использовано для стабилизации положения танкера при погрузке нефтепродуктов относительно нефтяного терминала в открытом море.

Изобретение относится к судовым установкам, оборудованным газотурбинными агрегатами. .

Изобретение относится к оборудованию судов и может быть использовано в средствах активного управления движением судов, в том числе в подруливающих устройствах (ПУ).

Изобретение относится к области автоматизации управления процессом проектирования законов управления и структуры систем управления судов и кораблей с использованием вычислительных средств.

Изобретение относится к управлению движущимся судном при его позиционировании в заданной точке плоскости в заданном направлении. Используют поперечные смещения двух разнесенных по длине объекта точек и продольные отклонения условной точки. Условная точка расположена в диаметральной плоскости (ДП) судна. Заданное направление судна совпадает с направлением ДП судна при его положении на поверхности воды, соответствующем минимальному внешнему силовому воздействию факторов окружающей среды (ветер, волнение, течение). Текущее положение разнесенных по длине судна точек на плоскости в любой заданный момент времени определяют с использованием спутниковой навигационной системы. Текущее положение условной точки рассчитывают с использованием значений текущих координат носовой и кормовой точек судна. Используют заданную точку. Заданная точка расположена на заданной линии. Формируют дополнительный сигнал управления по закону δS=kSdS, где kS - коэффициент усиления по продольному смещению заданной точки от линии, перпендикулярной заданной линии и проходящей через условную точку. Реализация изобретения заключается в обеспечении удержания позиционирующего судна на заданной линии и в заданной точке, расположенной на заданной линии. 5 ил.

Изобретение относится к водному транспорту. Способ управления заключается в том, что текущее положение траектории сближения определяют в виде прямой линии, которая проходит через две заданные точки на плоскости, текущее положение которых на плоскости в любой заданный момент времени рассчитывают с использованием значений текущих координат носовой и кормовой точек судна-партнера, стоящего на якоре, заданного расстояния между бортами швартующихся судов, заданного положения швартующегося судна относительно судна-партнера, стоящего на якоре, в конечной стадии швартовки и текущего значения длины тормозного пути швартующегося судна, необходимого для перехода его от исходной скорости движения к скорости, равной скорости течения в районе места якорной стоянки судна-партнера в конкретных условиях плавания. Для обеспечения безопасности швартовной операции сближение выполняют в три этапа. На первом этапе сближения швартующееся судно выходит в первую условную точку, на втором этапе - во вторую условную точку, а на третьем этапе сближается с судном-партнером, стоящим на якоре, на расстояние, позволяющее крепить швартовные тросы. Повышается безопасность выполнения судном швартовной операции. 4 ил.

Изобретение относится к управлению судном при следовании по заданной траектории и касается автоматического управления рулём или другим рулевым средством управления, которым оборудовано судно. Управление осуществляют по величинам поперечных смещений носовой А и кормовой В точек. Точки А и В разнесены по длине судна в его диаметральной плоскости (ДП). Производят выработку управляющего сигнала и в зависимости от его величины определяют скорость перекладки руля. При этом необходимо соблюдать ограничение - угол перекладки руля не должен превышать его максимальное значение, характерное для конкретного рулевого устройства. Повышена точность удержания судна на заданной траектории, улучшено качество управления и исключена вероятность потери управляемости. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области судовождения, в частности к системам автоматического управления движением судна. Устройство для формирования траектории перевода судна на параллельный курс содержит: задатчик абсолютной величины максимально допустимого сигнала управления, датчик продольной скорости, вычислитель критических параметров траектории перевода судна на параллельный курс, задатчик расстояния смещения параллельного курса от текущего курса, вычислитель изменения путевого угла Δϕ, минимального радиуса Rm допустимого оптимального полиноминального отрезка (ДОЭПО), длины L прямого отрезка между двумя ДОЭПО, датчик координат центра масс судна, вычислитель набора параметров граничных точек первого ДОЭПО, датчик путевого угла, вычислитель выходных параметров элементарных отрезков, задатчик абсолютной величины максимально допустимого сигнала управления, вычислитель набора параметров граничных точек первого ДОЭПО, вычислитель выходных параметров элементарных отрезков. На выходе вычислителя выходных параметров элементарных отрезков формируется траектория перевода судна на параллельный курс, состоящая из двух ДОЭПО или состоящая из трех элементарных отрезков. Достигается повышение безопасности перевода судна на параллельный курс. 12 ил.

Изобретение относится к системам управления движением подводных аппаратов. Устройство содержит движители вертикального и горизонтального перемещений, телекамеру, установленную с возможностью поворота, датчики угла поворота, сумматоры, источники опорного сигнала, пороговые элементы, синусные и косинусные функциональные преобразователи, блоки умножения и деления, усилители, ключи, логические элементы, датчики расстояния и команд, многоуровневый релейный элемент, блоки взятия модуля. Достигаемый технический результат заключается в автоматическом выборе требуемой скорости вращения движителей подводных аппаратов с учетом направлений этих вращений, при которых ни один из движителей не входит в режим насыщения независимо от направления их вращения. 1 ил.

Группа изобретений относится к способу автоматического управления судном по курсу и интеллектуальной системе автоматического управления судном по курсу. Способ заключается в том, что в качестве модели объекта управления используют нейросетевую модель объекта управления. Для настройки настраиваемых параметров алгоритма нечеткой логики получают и идентифицируют данные движения судна по курсу и данные управляющих воздействий, определяют данные критериальных признаков движения судна по идентифицированным данным движения судна по курсу и данным управляющих воздействий с использованием базы знаний поведения судна по курсу, выбирают нейросетевую модель объекта управления на базе определенных данных критериальных признаков движения судна, определяют данные настраиваемых параметров алгоритма нечеткой логики в соответствии с выбранной нейросетевой моделью объекта управления. Интеллектуальная система содержит регулятор на нечеткой логике, эмулятор для корректировки управляющего воздействия, прямые и обратные связи между объектом управления, регулятором на нечеткой логике и эмулятором. Эмулятор выполнен в виде нейросетевого эмулятора. Нейросетевой эмулятор включает нейросетевой классификатор, блок нейросетевой модели объекта управления и блок оптимизации. Нейросетевой классификатор содержит базу знаний поведения судна по курсу. Технический результат заключается в обеспечении высокого быстродействия процессов управления и эффективной фильтрации случайных возмущений системы. 2 н. и 12 з.п. ф-лы, 6 ил., 3 табл.

Изобретение относится к судостроению, а именно к подруливающим устройствам судов. Подруливающее устройство содержит два винта, установленные в гондоле на стойке обтекателей в сквозном канале, и приводной двигатель, а также снабжено дополнительными стойками, расположенными на обтекателях по краям гондолы. Достигается повышение эффективности работы в проточной части подруливающего устройства, увеличение КПД устройства, уменьшение расхода энергии, затрачиваемой на приведение в движение винтов подруливающего устройства. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области судовождения, а именно к автоматическому управлению движением судна по заданному маршруту. Отказоустойчивая система автоматического управления движением судна содержит датчик руля, датчик угловой скорости, датчик скорости хода, датчик угла курса, задатчик угла курса, сумматор, рулевой привод. Датчик руля подключен к первому входу сумматора, ко второму входу которого подключен задатчик угла курса. Выход сумматора подключен к входу рулевого привода. Также система дополнительно имеет датчик угла курса, два фильтра оценки угла курса и два фильтра оценок угловой скорости, блок среднего значения оценки угловой скорости и блок среднего значения угла курса, два датчика поперечной скорости судна и два фильтра оценки поперечной скорости судна, блок среднего значения оценки поперечной скорости судна, датчик оборотов подруливающего устройства, регулятор, привод подруливающего устройства и датчик угловой скорости. Достигается формирование отказоустойчивого автоматического управления движением судна. 1 ил.

Изобретение относится к системам управления движением подводных аппаратов. Устройство содержит установленные на подводном аппарате (1) движители вертикального (2) и горизонтального (3) перемещений, телекамеру (4), выполненную с возможностью поворота, датчик (5) положения угла поворота телекамеры, первый (6), второй (7) и третий (8) нелинейные функциональные преобразователи, блок (9) управления движителями, датчик (10) расстояния, вручную коммутируемый ключ (11), пороговый элемент (12), электронно-управляемый переключатель (13). Повышается надежность и точность подхода подводного аппарата к обнаруженному объекту. 1 ил.

Изобретение относится к системам управления и может быть использовано при разработке систем управления подводными аппаратами, обеспечивающими их ориентацию и перемещение по заданной траектории с заданной траекторией скоростью, или в заданную точку по требуемой траектории без предъявления требований к траекторией скорости, или в заданную точку с нулевой конечной скоростью. Технический результат заключается в обеспечении возможности управления движением подводного аппарата. Технический результат достигается за счет того, что в устройство управления подвижным объектом дополнительно введены судовой пункт управления, два приемопередатчика с антеннами, гидролокатор с антенной и блок пересчета координат, при этом объектом управления является подводный аппарат, большая часть оборудования установлена на судовом пункте управления. 1 ил.
Наверх