Раствор для химического осаждения композиционного покрытия

Изобретение относится к области нанесения композиционных покрытий методом химического осаждения с целью повышения износостойкости стальных изделий и может найти применение в машиностроении, химической промышленности. Раствор для химического осаждения композиционного покрытия содержит компоненты при следующем соотношении, г/л: хлористый никель 15-25, гипофосфит натрия 15-25, натрий уксуснокислый 8-15, порошок наноалмазов с размером частиц от 0,004 до 0,450 мкм 1-20, азотнокислое серебро 0,5-2, 5 %-ный водный раствор поливинилового спирта 0,5-2, суспензия фторопласта Ф-4Д 2-30 и дистиллированная вода до 1 литра. Изобретение обеспечивает повышение трибологических свойств и микротвердости покрытия. 1 табл., 1 пр.

 

Изобретение относится к области нанесения композиционных покрытий методом химического осаждения с целью повышения износостойкости стальных изделий и может найти применение в машиностроении, химической промышленности.

Известен состав электролита для получения гальванического покрытия, содержащий, г/л: хлорид никеля 200-350, сульфат кобальта 8-12, борную кислоту 25-40, хлорамин Б 1,5-4,5, ультрадисперсную алмазную суспензию 0,1-2,3. Технический результат - повышение микротвердости покрытий (патент РФ №2362843, опубл. 19.06.2008 г.).

Недостатком является неравномерность по толщине нанесения покрытия на сталях и сравнительно низкие трибологические свойства.

Наиболее близким по технической сущности известен состав раствора (патент РФ №2357002, опубл. 25.07.2007 г.) для химического осаждения покрытия на изделия, состоящий из следующих компонентов, г/л: сернокислый никель 16-27, гипофосфит натрия 21-24, хлористый аммоний 28-32, аммиак 47-52, натрий лимоннокислый 40-50, наноалмазы 3-15 (размер частиц от 0,004 до 0,450 мкм).

Недостатками данной композиции являются сравнительно низкие триботехнические свойства полученного покрытия, сравнительно низкая микротвердость.

Перед авторами стояла задача повышения триботехнических свойств и микротвердости покрытия при повышенных температурах.

Эта задача решена тем, что в раствор, содержащий соль никеля, натриевую соль органической кислоты (натрий уксуснокислый), гипофосфит натрия, порошок наноалмазов, дополнительно введены азотнокислое серебро, 5% водный раствор поливинилового спирта, суспензия фторопласта Ф-4Д и компоненты взяты в следующем соотношении, г/л:

Никель хлористый - 15-25;

Гипофосфит натрия - 15-25;

Натрий уксуснокислый - 8-15;

Порошок наноалмазов (размер частиц 0,004 до 0,450 мкм) - 1-20;

Азотнокислое серебро - 0,5-2;

5-ный водный раствор поливинилового спирта - 0,5-2;

Суспензия фторопласта Ф-4Д - 2-30;

Дистиллированная вода - до 1 литра.

Наночастицы алмаза представляют собой ультрадисперсный порошок синтезированных детонационных наноалмазов с размером частиц от 0,004 до 0,450 мкм. Введение наноалмазов существенно повышает износостойкость покрытия и микротвердость.

Азотнокислое серебро представляет собой бесцветные прозрачные кристаллы в виде пластинок или белых кристаллических палочек без запаха. Очень легко растворим в воде. Введение порошка способствует снижению коэффициента трения.

Поливиниловый спирт представляет собой синтетический, водорастворимый, термопластичный полимер с химической формулой [-СН2СН(ОН)СН2СН(ОН)-]n. Для стабилизации раствора, а также для поддержания в растворе частиц наноалмазов во взвешенном состоянии в течение всего процесса осаждения покрытия используют 5%-ный водный раствор поливинилового спирта.

Суспензия фторопласта Ф-4Д представляет собой взвесь частиц, выпускаемую по ТУ 6-05-1246-81. Введение суспензии фторопласта Ф-4Д способствует снижению коэффициента трения.

Равномерность распределения частиц порошка наноалмазов в покрытии достигалась тщательным перемешиванием всех компонентов раствора.

Состав и количество всех компонентов, входящих в раствор для химического осаждения композиционного покрытия, подбирали экспериментально в соответствии с методами химического наноконструирования.

Пример получения покрытия химическим осаждением.

Раствор для химического осаждения покрытия готовят следующим образом: в дистиллированную воду, нагретую до 55-60°С, при тщательном перемешивании (до полного растворения компонентов) последовательно вводят расчетное количество никеля хлористого, натрия уксуснокислого, порошка наноалмазов, азотнокислого серебра, 5%-ного водного раствора поливинилового спирта, приготовленного заранее, и суспензии фторопласта Ф-4Д. Полученный раствор подвергают ультразвуковой обработке и затем его нагревают до 80-85°С и добавляют в него расчетное количество гипофосфита натрия. Перед загрузкой деталей в ванну температуру раствора для химического осаждения композиционного покрытия доводят до 90-92°С. Процесс химического осаждения композиционного покрытия проводят при температуре раствора 90-92°С и рН 4,8-5.

Перемешивание осуществляют с помощью магнитной мешалки с числом оборотов 10-40 об/мин.

Для подтверждения работоспособности и эффективности предлагаемого раствора были подготовлены шесть растворов для химического осаждения композиционного покрытия (см. таблицу). Осаждение металлопокрытия велось на образцах из стали 40Х.

Подготовка поверхности стальных образцов перед осаждением композиционного покрытия стальных образцов осуществлялась следующим образом: обезжиривание венской известью, травление в 10-20%-ном растворе соляной кислоты при температуре 25-30°С в течение 30-60 секунд и промывка проточной водой.

Термообработка композиционного покрытий проводилась при температуре 360°С в течение 1 часа.

Испытание трибологических свойств полученного композиционного покрытия и покрытия, полученного из раствора прототипа, проводилось на возвратно-поступательной машине трения, скорость перемещения V=0,04 м/с, Р=5 МПа при температуре +23°С±2° и 100°С±2°. Смазочная среда масло МП-601. В качестве контртела использовались образцы из стали ШХ15.

Количественный состав и физико-механические свойства испытуемых композиций приведены в таблице.

Состав раствора (г/л) и физико-механические свойства Заявленный раствор Прототип
1 2 3 4 5 6
Никель хлористый 15 20 20 25 21 15
Натрия гипофосфит 15 20 15 25 25 15
Натрий уксуснокислый 8 8 10 15 15 10
Наноалмазы 1 7 10 15 15 20 3-15
Азотнокислое серебро 0,5 2 1 1,5 1,5
Поливиниловый спирт 0,5 2 1,5 2 2 1,5
Суспензия фторированного полимера 2 10 15 30 20 25
рН раствора 4,8-5 4,8-5 4,8-5 4,8-5 4,8-5 4,8-5 8,0-9,0
Температура раствора,°С 90-92 90-92 90-92 90-92 90-92 90-92 90-92
Коэффициент трения при+23°С±2° 0,1 0,12 0,11 0,090 0,1 0,09 0,14
Износ, мг/час при+23°С±2° 0,1 0,2 0,1 0,15 0,1 0,15 0,4
Коэффициент трения при+100°С±2° 0,09 0,11 0,1 0,08 0,09 0,08 0,13
Износ, мг/час при+100°C±2° 0,14 0,2 0,17 0,14 0,08 0,15 0,36
Микротвердость, кгс/мм2 720 860 980 1020 1050 1120 460-792

Как видно из результатов, представленных в таблице, композиционное покрытие, полученное путем химического осаждения из разработанного нами раствора, обладает более низким коэффициентом трения, повышенной износостойкостью и высокой микротвердостью, что, следовательно, увеличивает ресурс работы изделий при работе в условиях повышенных температур.

Изделия с покрытием, полученным метод химического осаждения из разработанного нами раствора, испытаны на опытном производстве ФГУП ОКТБ «ОРИОН».

На основании вышеизложенного, а также с учетом проведенного патентно-информационного поиска считаем, что разработанный нами «Раствор для получения композиционного покрытия» отвечает требованиям для признания его изобретением: новизна, изобретательский уровень, промышленная применимость, и может быть защищен патентом Российской Федерации.

Раствор для химического осаждения композиционного покрытия, содержащий соль никеля, натриевую соль органической кислоты, гипофосфит натрия и порошок наноалмазов, отличающийся тем, что он дополнительно содержит азотнокислое серебро, 5 %-ный водный раствор поливинилового спирта, суспензию фторопласта Ф-4Д, при этом компоненты взяты в следующем соотношении, г/л:

никель хлористый 15-25
гипофосфит натрия 15-25
натрий уксуснокислый 8-15
порошок наноалмазов
с размером частиц от 0,004 до 0,450 мкм 1-20
азотнокислое серебро 0,5-2
5 %-ный водный раствор поливинилового спирта 0,5-2
суспензия фторопласта Ф-4Д 2-30
дистиллированная вода до 1 литра



 

Похожие патенты:
Изобретение относится к области нанесения композиционных никель-фосфорных покрытий на стальные изделия методом химического осаждения и может быть использовано в машиностроительной промышленности.
Изобретение относится к получению светопоглощающего покрытия и может быть использовано при изготовлении элементов оптико-электронных приборов, систем пассивной термической защиты космических аппаратов, шторок телескопов и солнечных коллекторов.

Изобретение относится к области нанесения металлических покрытий и может быть использовано при химическом никелировании стальных деталей. .
Изобретение относится к получению покрытий для защиты поверхностей от коррозии. .
Изобретение относится к нанесению покрытий на металлические изделия, в частности к получению композиционного покрытия на металлических изделиях методом химического осаждения.
Изобретение относится к машиностроению и может быть использовано для получения химических покрытий на деталях из материалов, которые работают в условиях повышенного износа, высоких давлений, температур, в присутствии агрессивных сред.

Изобретение относится к машиностроению и может быть использовано для химического никелирования широкого класса матриц из стали, чугуна и алюминия. .
Изобретение относится к области нанесения металлических покрытий и может быть использовано при химическом никелировании стальных деталей, которые могут быть использованы в химической промышленности, машиностроении.
Изобретение относится к химическому осаждению аморфных магнитных пленок Co-Р, например, на полированное стекло и может быть использовано в вычислительной технике в головках записи и считывания информации, в датчиках магнитных полей, в управляемых сверхвысокочастотных (СВЧ) устройствах: фильтрах, амплитудных и фазовых модуляторах и т.д.
Изобретение относится к химико-термической обработке порошковых сталей и может быть использовано в машиностроении для поверхностного упрочнения изделий из порошковых сталей.
Изобретение относится к химико-фармацевтическим производствам и медицинской технике и может быть использовано при изготовлении полифункциональных биологически активных конструкций для фиксации перевязочных средств и предметов.
Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для профилактики гнойно-воспалительных осложнений при использовании аппаратов внешней фиксации в процессе лечения пациентов в травматологии и ортопедии.
Изобретение относится к травматологии и ортопедии и может быть применимо для хирургического лечения деформирующего артроза голеностопного сустава. Удаляют хрящи с суставных поверхностей берцовых и таранной костей.

Изобретение относится к способам получения тонкослойных детекторов заряженных частиц, основанных на явлениях термостимулированной и/или оптически стимулированной люминесценции.

Изобретение относится к электролитическим методам обработки поверхности металлических материалов и может быть использован в стоматологическом протезировании. Способ заключается в получении биосовместимого покрытия на стоматологических имплантатах, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиаиатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, при этом оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне; в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемых деталей, изделия другой партии - к клеммам вспомогательного электрода; а электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества в граммах на литр состава: гидроксид калия КОН - 2, гидроксида натрия NaOH - 1, гидрофосфата натрия Na2HРО4×12H2О - 5, жидкое стекло nNa2O·mSiO2 (М=3,2) - 5, метасиликат натрия Na2SiO3×9H2O - 8, нанодисперсный гидроксиапатит - 0,5÷5, причем отклонения от указанных концентраций компонентов электролита не превышают ±10%.

Изобретение относится к области неорганической химии, а именно к композиции для получения сенсорных покрытий на основе водных суспензий наночастиц диоксида олова.

Изобретение может быть использовано в магнитной наноэлектронике для магнитных регистрирующих сред с высокой плотностью записи, для магнитных сенсоров, радиопоглощающих экранов, а также в медицине.

Изобретение относится к области катализа. Описан катализатор для переработки тяжелых фракций нефти, в котором активный компонент, выбираемый из соединений никеля, или кобальта, или молибдена, или вольфрама или любой их комбинации нанесен на неорганический пористый носитель, состоящий из оксида алюминия, диоксидов кремния, титана или циркония, алюмосиликатов или железосиликатов, или любой их комбинации, отличающийся тем, что указанный катализатор содержит макропоры, образующие регулярную пространственную структуру макропор, причем доля макропор размером более 50 нм составляет не менее 30% в общем удельном объеме пор указанного катализатора.
Изобретение относится к медицине, а именно к экспериментальным исследованиям в онкологии, и может быть использовано для оценки противоопухолевого действия наночастиц (НЧ) металлов.

Изобретение может быть использовано при создании эффективных устройств для отображения алфавитно-цифровой и графической информации. Актуальность создания алфавитно-цифровых дисплеев нового поколения обусловлена растущим потоком визуальной информации и прогрессом в компьютерной технике.

Использование: для определения кристаллической фазы в аморфных пленках наноразмерной толщины. Сущность заключается в том, что выполняют бомбардировку поверхности пучком ионов и регистрацию интенсивности отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с энергией менее 100 эВ и регистрируют энергетический спектр отраженных ионов в диапазоне энергий, больше энергии первичных ионов, затем по энергиям пиков парного соударения в полученном спектре определяют типы атомов в одном верхнем монослое атомов, по наличию пика с энергией, равной энергии бомбардирующих ионов, судят о наличии кристаллической фазы на аморфной или аморфизованной поверхности, в том числе в пленке наноразмерной толщины, а по отношению величин указанного пика без потерь энергии к пику или пикам парного соударения определяют поверхностную концентрацию кристаллической фазы на аморфной или аморфизованной поверхности. Технический результат: уменьшение глубины анализируемого слоя до субнаноразмерных величин, повышение достоверности результатов анализа и повышение совместимости аппаратуры для реализации способа с другими методами анализа и технологическим оборудованием. 2 ил.
Наверх