Логический элемент "и" с многозначным внутренним представлением сигналов

Изобретение относится к области вычислительной техники, автоматики и может использоваться в различных цифровых структурах и системах автоматического управления, передачи информации. Техническим результатом является повышение быстродействия и создание элементной базы вычислительных устройств, работающих на принципах многозначной линейной алгебры. Устройство содержит источники входных логических сигналов, коммутаторы квантов тока I0, согласованные с первой шиной источника питания, токовые зеркала, вторая шина источника питания. 12 ил.

 

Предлагаемое изобретение относится к области вычислительной техники, автоматики и может использоваться в различных цифровых структурах и системах автоматического управления, передачи информации и т.п.

В различных вычислительных и управляющих системах широко используются логические элементы «И» (ЛЭ), реализованные на основе эмиттерно-связанной логики [1-12], работающие по законам булевой алгебры и имеющие по выходу два логических состояния «0» и «1», характеризующихся низким и высоким потенциалами.

В работе [13], а также монографиях соавтора настоящей заявки [14-15] показано, что булева алгебра является частным случаем более общей линейной алгебры, практическая реализация которой в структуре вычислительных и логических устройств автоматики нового поколения требует создания специальной элементной базы, реализуемой на основе логики с многозначным внутренним представлением сигналов, в которой эквивалентом стандартного логического сигнала является квант тока. Заявляемое устройство относится к этому типу логических элементов.

Ближайшим прототипом заявляемого устройства является логический элемент «И», представленный в патенте US 5.315.176, фиг.2. Он содержит первый 1 и второй 2 источники входных логических сигналов, управляющих состоянием соответствующих первого 3 и второго 4 коммутаторов квантов тока I0, согласованных с первой 5 шиной источника питания, третий 6 и четвертый 7 коммутаторы квантов тока 10, согласованные с первой 5 шиной источника питания, первый 8 аналоговый повторитель сигналов, согласованный со второй 9 шиной источника питания, вход которого соединен с первым 10 токовым выходом первого 3 коммутатора квантов тока I0, второй 11 аналоговый повторитель сигналов, согласованный со второй 9 шиной источника питания, вход которого соединен с первым 12 токовым выходом второго 4 коммутатора квантов тока 10, причем выходы первого 8 и второго 11 аналоговых повторителей сигналов соединены друг с другом.

Существенный недостаток известного логического элемента «И» состоит в том, что он, используя потенциальные двоичные сигналы, обладает усложненной структурой связей, нелинейностью рабочих режимов элементов и критичностью параметров структуры ЛЭ и входных сигналов, что в конечном итоге приводит к снижению его быстродействия.

Основная задача предлагаемого изобретения состоит в создании логического элемента «И», в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов, определяемое состоянием входных потенциальных двоичных сигналов. В конечном итоге это позволяет повысить быстродействие и создать элементную базу вычислительных устройств, работающих на принципах многозначной линейной алгебры [14-15].

Поставленная задача решается тем, что в логическом элементе «И» (фиг.1), содержащем 1 и второй 2 источники входных логических сигналов, управляющих состоянием соответствующих первого 3 и второго 4 коммутаторов квантов тока I0, согласованных с первой 5 шиной источника питания, третий 6 и четвертый 7 коммутаторы квантов тока 10, согласованные с первой 5 шиной источника питания, первый 8 аналоговый повторитель сигналов, согласованный со второй 9 шиной источника питания, вход которого соединен с первым 10 токовым выходом первого 3 коммутатора квантов тока 10, второй 11 аналоговый повторитель сигналов, согласованный со второй 9 шиной источника питания, вход которого соединен с первым 12 токовым выходом второго 4 коммутатора квантов тока I0, причем выходы первого 8 и второго 11 аналоговых повторителей сигналов соединены друг с другом, предусмотрены новые элементы и связи - в качестве первого 8 аналогового повторителя сигналов используется токовое зеркало с дополнительным неинвертирующим входом 13, который соединен со вторым 14 токовым выходом второго 4 коммутатора кванта тока, в качестве второго 11 аналогового повторителя сигналов используется токовое зеркало с дополнительным неинвертирующим входом 15, который соединен с токовым выходом 16 третьего 6 коммутатора кванта тока I0, второй 17 токовый выход первого 3 коммутатора кванта тока I0 соединен с токовым выходом 18 четвертого 7 коммутатора кванта тока I0 и подключен ко входу первого 19 дополнительного токового зеркала, согласованного со второй 9 шиной источника питания, объединенные токовые выходы первого 8 и второго 9 токовых зеркал связаны со входом второго 20 дополнительного токового зеркала, выход которого соединен с выходом первого 19 дополнительного токового зеркала и входом третьего 21 дополнительного токового зеркала, токовый выход которого 22 является токовым выходом устройства, причем первый 1 источник входного логического сигнала связан с управляющим входом третьего 6 коммутатора квантов тока I0, а второй 2 источник входного логического сигнала связан с управляющим входом четвертого 7 входного коммутатора квантов тока I0.

Схема логического элемента «И» - прототипа показана на чертеже фиг.1. На чертеже фиг.2 представлена схема заявляемого устройства в соответствии с формулой изобретения.

На чертеже фиг.3 приведен вариант построения первого 8 и второго 11 токовых зеркал.

На чертежах фиг.4 и фиг.5 показаны варианты практической реализации второго 20 и третьего 21 дополнительных токовых зеркал.

На чертеже фиг.6 представлена схема первого 14 дополнительного токового зеркала.

На чертеже фиг.7 представлен фрагмент практической реализации коммутаторов квантов тока (3, 4, 6, 7).

Схема фиг.8 характеризует другой вариант построения коммутаторов квантов тока 3, 4, 6, 7.

На чертеже фиг.9 показана схема заявляемого ЛЭ в среде моделирования «МС9».

На чертеже фиг.10 приведены временные диаграммы сигналов схемы фиг.9 (входные - потенциальные, выходной - токовый).

На чертеже фиг.11 представлены временные диаграммы сигналов схемы фиг.11 в момент включения выходного тока.

На чертеже фиг.12 показаны временные диаграммы сигналов схемы фиг.11 в момент выключения выходного тока.

Логический элемент «И» с многозначным внутренним представлением сигналов фиг.2 содержит первый 1 и второй 2 источники входных логических сигналов, управляющих состоянием соответствующих первого 3 и второго 4 коммутаторов квантов тока I0, согласованных с первой 5 шиной источника питания, третий 6 и четвертый 7 коммутаторы квантов тока 10, согласованные с первой 5 шиной источника питания, первый 8 аналоговый повторитель сигналов, согласованный со второй 9 шиной источника питания, вход которого соединен с первым 10 токовым выходом первого 3 коммутатора квантов тока I0, второй 11 аналоговый повторитель сигналов, согласованный со второй 9 шиной источника питания, вход которого соединен с первым 12 токовым выходом второго 4 коммутатора квантов тока I0, причем выходы первого 8 и второго 11 аналоговых повторителей сигналов соединены друг с другом. В качестве первого 8 аналогового повторителя сигналов используется токовое зеркало с дополнительным неинвертирующим входом 13, который соединен со вторым 14 токовым выходом второго 4 коммутатора кванта тока, в качестве второго 11 аналогового повторителя сигналов используется токовое зеркало с дополнительным неинвертирующим входом 15, который соединен с токовым выходом 16 третьего 6 коммутатора кванта тока I0, второй 17 токовый выход первого 3 коммутатора кванта тока I0 соединен с токовым выходом 18 четвертого 7 коммутатора кванта тока I0 и подключен ко входу первого 19 дополнительного токового зеркала, согласованного со второй 9 шиной источника питания, объединенные токовые выходы первого 8 и второго 9 токовых зеркал связаны со входом второго 20 дополнительного токового зеркала, выход которого соединен с выходом первого 19 дополнительного токового зеркала и входом третьего 21 дополнительного токового зеркала, токовый выход которого 22 является токовым выходом устройства, причем первый 1 источник входного логического сигнала связан с управляющим входом третьего 6 коммутатора квантов тока I0, а второй 2 источник входного логического сигнала связан с управляющим входом четвертого 7 входного коммутатора квантов тока I0.

Вариант построения первого 8 и второго 11 токовых зеркал, представленный на чертеже фиг.3, содержит транзисторы 24, 25 и 26.

Практическая реализация второго 20 и третьего 21 дополнительных токовых зеркал (чертежи фиг.4, фиг.5) содержит транзисторы 27 и 28 (фиг.4), а также транзисторы 32, 33, 34 (фиг.5).

Схема первого 14 дополнительного токового зеркала, показанная на чертеже фиг.6, содержит транзисторы 29, 30, 31.

Представленный на чертеже фиг.7 фрагмент практической реализации коммутаторов квантов тока 3, 4, 6, 7 содержит транзисторы 35, 36 и p-n переход 37.

Показанный на чертеже фиг.8 вариант построения коммутаторов квантов тока 3, 4, 6, 7 содержит транзисторы 38, 39, источник опорного тока 40 и вспомогательный источник напряжения 41.

Рассмотрим работу предлагаемой схемы ЛЭ фиг.2.

Синтез логической функции «2-И» производится на основе ее многозначного аналога, описываемого выражением

x 1 &x 2 = min ( x 1 , x 2 ) | k = 2 = | x 1 + x 2 | | x 1 x 2 | 2 ,                 (1)

где k - значность логики, x1, x2 - входные логические сигналы.

Входной токовый сигнал x1 формируется из потенциального входного сигнала x1 с помощью коммутаторов квантов тока 3 и 6 на выходах 10, 16 и 17. Аналогично, входной токовый сигнал x2 формируется из потенциального входного сигнала x2 с помощью коммутаторов квантов тока 4 и 7 на выходах 12, 14 и 18.

При разомкнутом состоянии ключей S выходы коммутаторов тока 3, 4, 6 и 7 отключены от источников опорного тока I0. При замкнутом состоянии ключей кванты тока поступают на входы токовых зеркал 8 и 11.

Реализация модуля суммы, соответствующей выражению (1), производится монтажным сложением токовых сигналов с выходов 17 и 18 токовых зеркал 3 и 7. Она может быть равна «0» (отсутствие обоих квантов тока), «1» (наличие одного из квантов тока) или «2» (наличие обоих квантов тока). С помощью токового зеркала 19 эта сумма представляется отсутствием, либо одним или двумя квантами вытекающего тока.

Модуль разности в выражении (1) реализуется формированием разностных сигналов (x2-x1) и (x1-x2), поступающих с выходов 10 и 14 коммутаторов тока 3 и 4 на входы токового зеркала 8 и с выходов 12 и 16 коммутаторов тока 4 и 6 на входы токового зеркала 11. При одинаковых значениях сигналов значения выходных квантов тока токовых зеркал 8 и 11 равны «0», при разных значениях - на выходе одного из токовых зеркал 8 или 11 формируется квант тока 10. Монтажная сумма эти разностей, равная «0» или кванту тока 10, поступает на вход токового зеркала 20, с помощью которого она представляется в виде «втекающего» кванта тока I0.

Разность модулей суммы и разности в выражении (1) реализуется монтажным объединением квантов токов с выходов зеркал 19 и 20. Токовое зеркало 21 производит деление на «2» полученной разности квантов тока. Результат реализации выражения (1) поступает на вход токового зеркала 21, с выхода 22 которого снимается выходной сигнал устройства.

Резистор 23 служит для наблюдения выходного сигнала в процессе моделирования.

Как видно из приведенного описания, реализация логической функции «2-И» здесь производится формированием алгебраической суммы квантов тока и выделением определенных значений этой суммы токов. Все элементы приведенной схемы работают в активном режиме, предполагающем отсутствие насыщения в процессе переключений, что повышает общее быстродействие схемы. Кроме того, использование многозначного внутреннего представления сигналов повышает информативность линий связи, что уменьшает их количество. Использование стабильных значений квантов тока, а также определение выходного сигнала разностью этих токов обеспечивает малую зависимость функционирования схемы от внешних дестабилизирующих факторов (девиация питающего напряжения, радиационное и температурное воздействия, синфазная помеха и др.).

Показанные на чертежах фиг.10, фиг.11, фиг.12 результаты моделирования подтверждают указанные свойства заявляемых схем.

Таким образом, рассмотренные схемотехнические решения логического элемента «2-И» характеризуются многозначным состоянием внутренних сигналов и двоичным представлением сигнала на его токовом выходе и могут быть положены в основу вычислительных и управляющих устройств, использующих многозначную линейную алгебру, частным случаем которой является булева алгебра.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Авторское свидетельство СССР SU 892729

2. Патентная заявка WO 2004/112247

3. Патент US 4.001.603

4. Патент US 4.359.653

5. Патент US 6.157.693, фиг.5

6. Патент US 5.216.295

7. Патент US 3.758.791, фиг.5

8. Патент US 4.593.211

9. Патент US 4.347.446

10. Патент US 4.516.039, фиг.5

11. Патент US 4.970.416

12. Патент US 4.605.871, фиг.2

13. Малюгин В. Д. Реализация булевых функций арифметическими полиномами. // Автоматика и телемеханика, 1982. №4. С.84-93.

14. Чернов Н.И. Основы теории логического синтеза цифровых структур над полем вещественных чисел. // Монография. - Таганрог: ТРТУ, 2001. - 147 с.

15. Чернов Н.И. Линейный синтез цифровых структур АСОИУ. // Учебное пособие Таганрог.- ТРТУ, 2004 г., 118 с.

Логический элемент «И» с многозначным внутренним представлением сигналов, содержащий первый (1) и второй (2) источники входных логических сигналов, управляющих состоянием соответствующих первого (3) и второго (4) коммутаторов квантов тока I0, согласованных с первой (5) шиной источника питания, третий (6) и четвертый (7) коммутаторы квантов тока I0, согласованные с первой (5) шиной источника питания, первый (8) аналоговый повторитель сигналов, согласованный со второй (9) шиной источника питания, вход которого соединен с первым (10) токовым выходом первого (3) коммутатора квантов тока I0, второй (11) аналоговый повторитель сигналов, согласованный со второй (9) шиной источника питания, вход которого соединен с первым (12) токовым выходом второго (4) коммутатора квантов тока I0, причем выходы первого (8) и второго (11) аналоговых повторителей сигналов соединены друг с другом, отличающийся тем, что в качестве первого (8) аналогового повторителя сигналов используется токовое зеркало с дополнительным неинвертирующим входом (13), который соединен со вторым (14) токовым выходом второго (4) коммутатора кванта тока, в качестве второго (11) аналогового повторителя сигналов используется токовое зеркало с дополнительным неинвертирующим входом (15), который соединен с токовым выходом (16) третьего (6) коммутатора кванта тока I0, второй (17) токовый выход первого (3) коммутатора кванта тока I0 соединен с токовым выходом (18) четвертого (7) коммутатора кванта тока I0 и подключен ко входу первого (19) дополнительного токового зеркала, согласованного со второй (9) шиной источника питания, объединенные токовые выходы первого (8) и второго (9) токовых зеркал связаны со входом второго (20) дополнительного токового зеркала, выход которого соединен с выходом первого (19) дополнительного токового зеркала и входом третьего (21) дополнительного токового зеркала, токовый выход которого (22) является токовым выходом устройства, причем первый (1) источник входного логического сигнала связан с управляющим входом третьего (6) коммутатора квантов тока I0, а второй (2) источник входного логического сигнала связан с управляющим входом четвертого (7) входного коммутатора квантов тока I0.



 

Похожие патенты:

Изобретение относится к автоматике и аналоговой вычислительной технике и может быть использовано в системах аналоговой вычислительной техники как средство предварительной обработки информации.

Изобретение относится к логическим полупроводниковым К-МОП интегральным схемам. .

Изобретение относится к вычислительной технике. .

Изобретение относится к вычислительной технике и может быть использовано для реализации как логических, так и арифметических операций с дискретными и аналоговыми значениями нулей и единиц.

Изобретение относится к области вычислительной техники и может быть использовано для реализации КМДП логических устройств конвейерного типа. .

Изобретение относится к цифровой технике и может использоваться для выполнения логической функции инвертирования в троичных устройствах. .

Изобретение относится к вычислительной технике и может быть использовано для реализации как логических, так и арифметических операций с дискретными и аналоговыми значениями нулей и единиц.

Изобретение относится к электронике, автоматике, измерительной и вычислительной технике и может быть использовано в высокоскоростных аналоговых и цифровых устройствах, в частности в электронных вычислительных машинах (ЭВМ) с элементами искусственного интеллекта.

Изобретение относится к области вычислительной техники и может быть использовано в МДП интегральных схемах при реализации логических устройств. .

Изобретение относится к вычислительной технике для реализации логических и арифметических операций с дискретными и аналоговыми значениями нулей и единиц. .

Изобретение относится к области вычислительной техники, автоматики и может быть использовано в различных цифровых структурах и системах автоматического управления, передачи информации. Техническим результатом является повышение быстродействия и создание элементной базы вычислительных устройств, работающих на принципах многозначной линейной алгебры. Устройство содержит входные логические источники тока, токовые зеркала, шины источника питания. 10 ил.

Изобретение относится к области вычислительной техники, автоматики и может использоваться в различных системах автоматического управления, передачи информации. Техническим результатом является повышение быстродействия и создание элементной базы вычислительных устройств, работающих на принципах многозначной линейной алгебры. Устройство содержит входные коммутаторы кванта тока I0, управляемые источниками входных логических напряжений, токовые зеркала, входы которых соединены с соответствующими токовыми выходами входных коммутаторов квантов тока I0, источник опорного тока, каскад экстракции выходного логического токового сигнала устройства. 7 з.п. ф-лы, 12 ил.

Изобретение относится к области вычислительной техники и может быть использовано для реализации каскадных логических устройств конвейерного типа. Техническим результатом является уменьшение потребляемой мощности. Тактируемый логический элемент И-ИЛИ содержит предзарядовый транзистор 1 p-типа, тактовый транзистор 2 n-типа, тактовый транзистор 3 p-типа, логический транзистор 4 p-типа и логический блок 5, содержащий ключевые цепи 6-7, включенные параллельно между выходом 8 логического блока 5 и тактовой шиной 9. Каждая ключевая цепь состоит из последовательно соединенных транзисторов n-типа, затворы которых подключены к логическим входам 10 элемента. 1 ил.

Изобретение относится к высокочастотной измерительной технике и может быть использовано для создания специализированных вычислительных структур и построения на их основе контроллеров для создания критичных систем управления железнодорожным транспортом. Техническим результатом является повышение надежности работы за счет обеспечения перехода элемента в безопасное состояние в случае попадания на вход смеси сигналов при коротком замыкании в аппаратном устройстве. Устройство содержит смеситель, полосовые фильтры, вычислители огибающей сигнала, аналоговые ключи, сумматоры, пороговые элементы, сумматор по модулю два, элементы И. 1 ил.

Изобретение относится к высокочастотной измерительной технике и может быть использовано для создания специализированных вычислительных структур и построения на их основе контроллеров для создания критичных систем управления железнодорожным транспортом. Техническим результатом является повышение надежности работы за счет обеспечения перехода элемента в безопасное состояние в случае попадания на вход смеси сигналов при коротком замыкании в аппаратном устройстве. Устройство содержит смесители, фильтр верхних частот, сумматоры, полосовые фильтры, вычислители огибающей сигнала, вычитатели, пороговые элементы, аналоговые ключи. 1 ил.

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в различных цифровых структурах и системах автоматического управления, передачи и обработки цифровой информации и т.п. Технический результат - повышение быстродействия устройств преобразования информации. Многозначный сумматор по модулю k содержит три токовых входов, три выходных транзисторов с объединенными базами, два источника напряжения смещения, три выходных транзисторов другого типа проводимости с объединенными базами, пять токовых зеркал, две шины источника питания. 4 ил.

Изобретение относится к области информационно-вычислительных сетей и может быть использовано при проектировании сетей связи следующего поколения (NGN). Технический результат заключается в повышении производительности информационно-вычислительных сетей и в увеличении скорости передачи в каналах связи путем преобразования входного потока информационно-вычислительных сетей с произвольным законом распределения интервалов времени между пакетами в заданный закон распределения, в частности в пуассоновский. Объектом преобразования является одномерная плотность распределения интервалов времени между пакетами входного потока. Устройство осуществлено на элементах вычислительной техники: логических элементах И и ИЛИ, буферной памяти, счетчика, счетного триггера, вычислительного устройства. Устройство отличается от известных тем, что можно произвольный входной поток пакетов преобразовать в закон с заданной функцией распределения интервалов времени между пакетами. 3 ил.

Изобретение относится к способам испытаний информационно-управляющих систем (ИУС), которые должны формировать необходимые управляющие команды в зависимости от условий обстановки, которые определяются поступающими на вход ИУС информационными сигналами, путем формирования и использования необходимых и достаточных испытательных тестов, сформированных по результатам математического планирования эксперимента. Технический результат заключается в обеспечении автоматизации процесса испытаний ИУС. Технический результат достигается за счет проверки логики работы информационно-управляющих систем, которая включает формирование совокупности необходимых и достаточных испытательных тестов, а также контроль допустимых отклонений времени формирования выходного сигнала для проверки соответствия ИУС заданным требованиям, и формирования минимального числа последовательностей входных сигналов для испытаний ИУС, проверка на которых гарантирует правильную работу ИУС, как и полная совокупность последовательностей входных сигналов для испытаний ИУС. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к вычислительной технике и может быть использовано для построения средств автоматики и функциональных узлов систем управления. Технический результат заключается в обеспечение реализации для любого количества аргументов булевых функций вида X1~…~Xn, X1⊕…⊕Xn, симметричных булевых функций с прямым и инверсным вхождением аргументов в конъюнкцию. Технический результат достигается за счет многофункционального логического устройства, которое содержит информационные входы, входы задания ранга, вход задания количества переменных, два настроечных входа, выход устройства, сумматор, элемент РАВНОЗНАЧНОСТЬ, схему сравнения, элемент НЕ и мультиплексор. 1 ил., 3 табл.

Изобретение относится к области вычислительной техники и может быть использовано для реализации логических устройств на КМДП транзисторах. Технический результат заключается в упрощении устройства. Многовходовой логический элемент И содержит предзарядовый 1 и логический 2 транзисторы p-типа, тактовый 3 и дополнительный 4 транзисторы n-типа и ключевую цепь 5, состоящую из последовательно соединенных логических транзисторов n-типа, затворы которых подключены к логическим входам 6 устройства, первый вывод 7 ключевой цепи 5 соединен с затвором логического транзистора 2 p-типа, который включен между выходом 8 устройства и шиной питания 9, второй вывод 10 ключевой цепи 5 соединен с затвором тактового транзистора 3 n-типа, который включен между выходом устройства и шиной земли 11, дополнительный транзистор 4 n-типа, затвор которого соединен с выходом 8 устройства, включен между первым 7 и вторым выводами 10 ключевой цепи, предзарядовый транзистор 1, затвор которого соединен с выходом 8 устройства, включен между первым выводом 7 ключевой цепи 5 и шиной питания 9, а второй 10 вывод ключевой цепи 5 подключен к тактовой шине 12. 1 ил.
Наверх