Способ генерирования гидратированных ионов и устройство для его осуществления

Изобретения могут быть использованы для улучшения микроклимата, сохранения комфортной концентрации ионов в помещении, а также для больничных палат, лечебных комплексов, рабочих помещений и кабинетов, жилых комнат. В способе генерирования гидратированных ионов в камере 3 контролируют давление пара и температуру. Температуру устанавливают в зависимости от давления пара в соответствии с формулой

T=72-4p2+32p,

где Т - температура в градусах Цельсия, р - давление в камере в барах. Устройство для генерирования гидратированных ионов содержит процессор 11 и датчики 10 и 9 температуры и давления соответственно, установленные в камере 3. Выходы датчиков 9, 10 соединены с входами процессора 11, выход которого подключен к корректору влажности пара 2. Техническим результатом изобретения является обеспечение степени сухости пара, равной единице, что обеспечивает повышение надежности и эффективности генерирования гидратированных ионов. 2 н.п. ф-лы, 1 ил.

 

Предлагаемые изобретения относятся к технике получения гидратированных ионов и могут быть использованы для улучшения микроклимата, сохранения комфортной концентрации ионов в помещении, а также для больничных палат, лечебных комплексов, рабочих помещений и кабинетов, жилых комнат. Кроме того, изобретения могут использоваться для борьбы с вредными проявлениями статического электричества.

Известен способ генерации заряженного аэрозоля (Ситников А.Г. Образование и эволюция неравновесного аэрозоля в газе атмосферного давления под воздействием коронно-стримерного электрического разряда. Автореферат диссертации на соискание ученой степени кандидата физ.-мат. наук, Томск, 2006, с.10), заключающийся в том, что в системе электродов возбуждают коронно-стримерный разряд и подают в зону разряда газ, содержащий ненасыщенный пар углеводородной примеси. В зоне разряда инициируется процесс образования аэрозоля, который поступает в буферную аэрозольную камеру и через выходной штуцер - в основную аэрозольную камеру. Устройство, осуществляющее известный способ, содержит высоковольтный импульсный генератор, соединенный с системой электродов коаксиальной линией. Система электродов состоит из заземленного цилиндрического корпуса и высоковольтного электрода, состоящего из параллельных проволочек. Источник пара содержит насос, регулировочные вентили и барботер с жидким углеводородом.

Недостатком способа и устройства является сложность и высокая стоимость установки, обусловленные использованием дорогостоящего рабочего носителя (CO2) и криогенных установок для обеспечения низких температур. Это затрудняет широкое использование известного способа и устройства.

Наиболее близким к предлагаемому способу является способ генерирования заряженных аэрозольных образований, заключающийся в том, что производят водяной пар, подают его в камеру с выходным соплом, в котором создают коронный разряд, и выпускают заряженное аэрозольное облако через сопло (В.Н. Болотов, Ю.В. Ткач. Спектральные характеристики искровых разрядов в искусственных заряженных аэрозольных образованиях/Электромагнитные явления, т.3, №2 (10), 2003 г., с.237-238).

Наиболее близким к предлагаемому устройству является генератор заряженного аэрозоля, осуществляющий известный способ и содержащий парогенератор, камеру с выходным профилированным соплом, установленную в заземленном электростатическом экране. По оси сопла установлен игольчатый электрод острием в критическом сечении сопла, который соединен с источником высокого напряжения отрицательной полярности. Парогенератор, представляющий собой прямоточный котел, соединен с камерой устройства через подогреваемый паропровод, являющимся корректором влажности пара. (В.Н. Болотов, Ю.В. Ткач. Спектральные характеристики искровых разрядов в искусственных заряженных аэрозольных образованиях/Электромагнитные явления, т.3, №2 (10), 2003 г., с.237-238).

Недостатком известного способа и устройства является низкая эффективность генерирования гидратированных ионов и низкая надежность работы устройства. В том случае, когда поступающий пар перегрет (обладает степенью сухости пара х≥1), образующиеся ионы пара имеют высокую подвижность, осаждаются на стенках сопла или в ближней к соплу зоне экрана и во внешнюю зону поступают в ограниченном количестве (ток переноса генератора гидратированных ионов чрезвычайно мал).

В случае, когда пар в камере оказывается влажным (степень сухости пара х≤1), проходной изолятор 5 внутри камеры покрывается пленкой жидкости, теряются его изоляционные свойства, возникает проводимость по поверхности изолятора, напряжение падает, коронный разряд прекращается и вынос ионов отсутствует. Даже если предпринять меры к увеличению прочности изоляционной конструкции, наличие жидкой дисперсной фазы в сопле с коронным разрядом приводит к экранированию зоны короны и генератор не выносит гидратированные ионы во внешнюю зону, т.е. генератор перестает эффективно работать.

Задача изобретений - повышение надежности и эффективности генерирования гидратированных ионов. Технический результат состоит в обеспечении степени сухости пара равной единице.

Поставленная задача решается тем, что в способе генерирования гидратированных ионов, заключающемся в том, что производят водяной пар, подают его в камеру с выходным соплом, в котором создают коронный разряд и выпускают гидратированные ионы через сопло, контролируют давление пара и температуру в камере, причем температуру устанавливают в зависимости от давления пара в соответствии с формулой Т=72-4р2+32р, где Т - температура в градусах Цельсия, р - давление в камере в барах.

Устройство для генерирования гидратированных ионов, включающее источник водяного пара, соединенный через корректор влажности с камерой, соосно сочлененной с экранирующим электростатическим экраном, профилированным соплом с игольчатым электродом, установленным по оси сопла острием в критическом сечении сопла и подключенным через проходной изолятор к источнику высокого напряжения, содержит процессор и датчики температуры и давления, установленные в камере, причем выходы датчиков соединены с входами процессора, выход которого подключен к корректору влажности пара.

Степень сухости пара х=1 обеспечивается тем, что температуру в камере устанавливают в зависимости от давления пара в соответствии с формулой

Т=72-4р2+32р, найденной эмпирическим путем, где Т -температура в градусах Цельсия, р - давление в камере в барах.

Введение датчиков давления и температуры пара в камере обеспечивает контроль этих параметров, а введение процессора позволяет управлять степенью сухости пара и устанавливать ее равной единице в соответствии с вышеуказанной формулой.

На рисунке представлена схема устройства для генерирования гидратированных ионов.

Устройство содержит источник водяного пара 1, соединенный через корректор пара 2 с камерой 3. Высоковольтный вывод от источника высокого напряжения 4 через проходной изолятор 5 подключен к игольчатому электроду 6, установленному по оси профилированного сопла 7 камеры 3 острием в критическом сечении сопла. Электростатический экран 8 соосно сочленен с соплом 7. В камеру вмонтированы датчик давления пара 9 и датчик температуры 10, выходы которых подключены к процессору 11, выход которого подключен к корректору влажности пара. На выходе генератора образуется пар с потоком ионов 12. Источник пара 1 может быть выполнен электродным или в виде котла перегретого пара, а корректор влажности 2 - в виде электрического пароперегревателя или в виде дросселя.

Способ генерирования гидратированных ионов осуществляется следующим образом. Источник пара 1 вырабатывает пар, который через корректор влажности пара 2 подается в камеру устройства 3. На игольчатом электроде 6, возникает коронный разряд при подаче к нему высокого напряжения от источника питания 4 проводником через проходной изолятор 5. Пар, истекающий из сопла 7, заряжается в коронном разряде и во внешней зоне генератора возникает поток 12 гидратированных ионов (молекул воды). С помощью датчика давления 9 и датчика температуры 10 осуществляется контроль давления и температуры пара в камере 3. Показания датчиков 9 и 10 поступают в процессор 11, который управляет работой корректора влажности 2, в результате чего температура в камере устанавливается в соответствии с формулой Т=72-4р2+32р, где Т - температура в градусах Цельсия, р - давление в камере в барах.

При этом в камере 3 устанавливается степень сухости пара х=1, что обеспечивает необходимую подвижность гидратированных ионов. Ионы не осаждаются на стенках сопла 7 и в ближней к соплу зоне на электростатическом экране 8, в то же время в сопле не образуется дисперсная жидкая фаза, и заряженные в коронном разряде ионы выносятся во внешнюю зону генератора. Генератор эффективно работает и его ток переноса практически соответствует току коронного разряда в сопле.

Таким образом повышается эффективность генерирования гидратированных ионов и надежность работы генератора.

1. Способ генерирования гидратированных ионов, заключающийся в том, что производят водяной пар, подают его в камеру с выходным соплом, в котором создают коронный разряд и выпускают гидратированные ионы через сопло, отличающийся тем, что в камере контролируют давление пара и температуру, причем температуру устанавливают в зависимости от давления пара в соответствии с формулой T=72-4p2+32p, где Т - температура в градусах Цельсия, р - давление в камере в барах.

2. Устройство для генерирования гидратированных ионов, включающее источник водяного пара, соединенный через корректор влажности с камерой, соосно сочлененной с экранирующим электростатическим экраном, профилированным соплом с игольчатым электродом, установленным по оси сопла острием в критическом сечении сопла и подключенным через проходной изолятор к источнику высокого напряжения, отличающееся тем, что содержит процессор и датчики температуры и давления, установленные в камере, причем выходы датчиков соединены с входами процессора, выход которого подключен к корректору влажности пара.



 

Похожие патенты:

Изобретение относится к средствам распыливания жидкости и может быть использовано для вакцинации животных и при аэрозольной дезинфекции производственных помещений.

Изобретение относится к области ветеринарии, медицинской техники и сельского хозяйства, в частности к получению высокодисперсных аэрозолей. .

Изобретение относится к устройствам распыления жидкости в технологических процессах, требующих высокого качества распыления, например: для защиты объектов сельскохозяйственной и лесохозяйственной деятельности человека, борьбы с дикорастущими наркосодержащими растениями (гербицидная обработка) путем создания в атмосфере облака монодисперсных капель физиологически активных препаратов.

Изобретение относится к системе распыления жидкости и может быть использовано для увеличения выходной мощности двигателя. .

Изобретение относится к области противопожарной техники и предлагает способ и устройство для тушения нефти и нефтепродуктов, горючих (ПК) и легковоспламеняющихся жидкостей (ЛВЖ) в резервуарах вертикальных стальных (РВС) и резервуарах вертикальных стальных с фиксированной крышей и понтоном (РВСП).

Изобретение относится к устройствам пожаротушения, а именно к роботизированным установкам пожаротушения. .

Изобретение относится к области электроники и может быть использовано при изготовлении изделий с полупроводниковыми переходами "р", "n" типа для микроэлектроники и солнечной энергетики.

Изобретение относится к области хранения, транспортировки или применения жидких, газообразных взрывоопасных или потенциально взрывоопасных веществ. .

Изобретение относится к области физики аэродисперсных систем, а именно к устройствам для получения субмикронных аэрозолей иодида щелочных металлов, и может быть использовано в системах кондиционирования воздуха и создания целебного микроклимата помещений, а также в медицине при лечении заболеваний, при которых показаны ингаляции атмосферного воздуха, содержащего гигроскопичный субмикронный аэрозоль иодидов щелочных металлов.

Изобретение относится к аэрозолирующим устройствам, предназначенным для дезинфекции закрытых помещений различного назначения, транспорта, контейнеров и иных емкостей, а также расположенных в них приборов, материалов и пр.

Изобретение относится к сельскому хозяйству, в частности к агропочвоведению, и может быть использовано для воспроизводства дождя в лабораторных и полевых условиях. Портативная лабораторно-полевая дождевальная установка включает горизонтальную раму с панелью, емкость для воды, фильтр, подающий и напорный водоводы с вентилем, дождеватель, состоящий из последовательно закрепленных ниппеля, толстой гибкой трубки с хомутами, втулки и закрепленного в ней пучка тонких гибких трубок. Емкость для воды закреплена выше рамы на вертикальных стойках с подвесной скобой. Между напорным водоводом и ниппелем установлен поплавковый механизм, состоящий из корпуса с закрепленной на нем сбоку на дренажной трубке резиновой грушей с дренажным отверстием и последовательно установленных в нем гнезда иглы, иглы и поплавка с направителем. Каплеобразующие концы тонких гибких трубок дождевателя закреплены на горизонтальной панели по спирали Архимеда с одинаковым шагом. Техническим результатом изобретения является повышение равномерности и стабильности распределения дождя по площади полива и упрощение конструкции установки. 4 з.п. ф-лы, 3 ил.

Изобретение относится к способам и оборудованию для распыления жидкости в технологических процессах, требующих высокого качества распыления при диспергировании и нанесении пестицидов и (или) других физиологически активных веществ, в том числе бактериальных и вирусных препаратов, и может быть использовано в лесном и сельском хозяйствах, животноводстве, здравоохранении и других областях жизнедеятельности человека. В способе создания мелкодисперсного облака распыла жидкости впрыск осуществляется в сечение сопла со сверхкритическим перепадом давлений сверхзвукового потока через две щелевые форсунки, расположенные по оси движения сжатого воздуха в двух диспергаторах. Устройство для осуществления способа оснащено встроенной системой дистанционного управления и контроля технологического процесса с датчиком перепада давлений сверхзвукового потока, метеостанцией и видеокамерами. Кроме того, устройство оснащено дизельным двигателем с одноступенчатым мультипликатором в качестве привода компрессора, воздуховодом, регулятором расхода жидкости и расходомером. Также устройство оснащено электрической и пневматической системами, выполненными автономными. Воздуховод состоит из двух колен с возможностью их вращения относительно друг друга в вертикальной плоскости и вокруг вертикальной оси в горизонтальной плоскости. Воздуховод сообщает компрессор с двумя диспергаторами. Расходомер служит для изменения дисперсного состава облака распыла. Техническим результатом изобретения является обеспечение возможности получения высокой степени однородности мелкодисперсного облака распыла жидкости, широкого диапазона регулирования дисперсности, высокой производительности, экологичности, универсальности применения. 2 н.п. ф-лы, 1 ил.

Способ дискретного получения ламинарной компактной струи жидкости относится к области гидравлической струйной техники (гидравлическая ветвь флюидики), где использование электроники невозможно или затруднительно ввиду высоких температур или радиации, которые вызваны потребностями ракетной и атомной техники в легких, малогабаритных, устойчивых к воздействию вибраций, ускорений в устройствах управления. Цель изобретения: разработка управляемого во времени процесса вытекания ламинарной компактной струи жидкости для построения управляющих устройств флюидики, содержащих дискретные логические и вычислительные элементы. Предлагаемый способ позволяет реализовать управляемую во времени дискретность получения ламинарной компактной струи жидкости. 1 з.п. ф-лы, 2 ил.

Изобретение предназначено для распыления жидкостей в химической, пищевой и других отраслях промышленности и может быть использовано при проведении процесса высушивания растворов, при организации реакционных и массообменных процессов. Щеточный распылитель жидкости содержит устройство загрузки, направляющую поверхность и приводной барабан. На поверхности барабана размещены радиальные эластичные элементы. Эластичные элементы расположены рядами, чередующимися в окружном направлении барабана. В соседних рядах эластичные элементы имеют различную длину. Направляющая поверхность имеет криволинейную форму и снабжена устройством вертикального перемещения. Техническим результатом изобретения является обеспечение возможности получения практически монодисперсного распыла высокого качества с равномерным распределением капель по сечению аппарата. 2 ил.

Изобретение относится к области диспергирования сухих порошков, а именно к устройствам для получения аэрозолей сухих порошков, и может быть использовано в пищевой и химической промышленности. Генератор сухих аэрозолей содержит корпус, на внутренней поверхности днища которого по центру расположен осевой стержень со свободно вращающимся перемешивающим магнитным элементом. Внутренний объем корпуса условно поделен на две части. Нижняя часть служит для осуществления активной фазы непрерывного процесса помола сухого материала и перевода его в тонкодисперсную аэрозольную форму. Верхняя часть служит для осуществления процесса накопления создаваемого тонкодисперсного аэрозоля и вывода его в выходной магистральный канал через выходной патрубок корпуса и пневмомагистраль. Нижняя часть корпуса включает в себя днище и нижний конус с расширяющейся стенкой, переходящей в нижний конус центральной обечайки с сужающейся стенкой. Диаметр днища превышает длину перемешивающего магнитного элемента. Верхняя часть корпуса включает в себя верхний расширяющийся конус центральной обечайки, переходящий в верхний сужающийся конус и горловину. Техническим результатом изобретения является обеспечение активного перемешивания смеси «порошок-помольные шары» и поддержание ее в состоянии «кипящего» слоя за счет вращающегося электромагнитного поля. размещен сверху на активной поверхности формирователя вращающегося электромагнитного поля. 12 з.п. ф-лы, 1 ил.

Изобретение относится к генераторам пневматического типа, может быть использовано для создания аэрозолей жидких вакцин и лекарственных препаратов для аэрозольной дезинфекции производственных помещений. В устройстве узел пульверизации расположен в распределительном корпусе и выполнен с жидкостными трубками, укрепленными в головке и входящими соосно в патрубки для воздуха, которые установлены в корпусе. Жидкость подается в головку посредством одной трубки, в которой имеется отверстие под винт для регулирования производительности путем перекрытия проходного сечения этой трубки. Техническим результатом изобретения является повышение эксплуатационной надежности и обеспечение возможности регулирования производительности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области ветеринарии, медицинской техники и сельского хозяйства, в частности для получения высокодисперсных аэрозолей. В генераторе для получения высокодисперсных аэрозолей внутри неподвижной цилиндрической полости имеется подвижный цилиндр. Обе цилиндрические поверхности имеют совместимые регулируемые отверстия для воздушного потока, направленного перпендикулярно аэродисперсному потоку в противоположной цилиндрической стенке. Подвижный цилиндр имеет дополнительное проходное сечение для создания разреженного давления от вращающегося потока в зоне вхождения выхода жидкостного патрубка. Техническим результатом изобретения является повышение работоспособности и обеспечение возможности тонкого регулирования как производительности, так и дисперсного состава аэрозоля. 2 з.п. ф-лы, 1 ил.

Изобретение относится к изготовлению дырчатых пластин аэрозольных устройств. Изготовление заготовки аэрозолеобразующей дырчатой пластины для ингаляционного распылителя лекарственного средства включает обеспечение матрицы из проводящего материала, нанесение на матрицу защитного покрытия в виде набора столбиков, гальванизацию областей вокруг столбиков, удаление защитного покрытия с получением заготовки из нанесенного гальваническим образом материала с образующими аэрозоль отверстиями в местах, где были столбики защитного покрытия, и удаление заготовки с матрицы. Указанные столбики имеют глубину в диапазоне от 5 до 40 мкм, ширину в плоскости матрицы в диапазоне от 1 до 10 мкм и плотность в диапазоне от 111 до 2500 мм-2. При этом за указанными стадиями нанесения защитного покрытия и гальванизации следует по меньшей мере один последующий цикл нанесения защитного покрытия и гальванизации поверх указанного нанесенного гальваническим образом материала для увеличения толщины заготовки. Общую толщину заготовки в по меньшей мере одном последующем цикле доводят до значения более 50 мкм. По меньшей мере один последующий цикл обеспечивает после удаления защитного покрытия области, по меньшей мере некоторые из которых перекрывают множество образующих аэрозоль отверстий, и нанесенный гальваническим образом материал, который закрывает некоторые из образующих аэрозоль отверстий. Указанный по меньшей мере один последующий цикл выполняют в соответствии с необходимым расходом через дырчатую пластину. В результате обеспечивается увеличение производительности распылителя. 7 н. и 18 з.п. ф-лы, 14 ил., 1 табл.

Изобретение относится к области ветеринарии, медицинской техники и сельского хозяйства и может быть использовано для вакцинации животных. Техническим результатом является обеспечение регулирования размера получаемых частиц. Автоматизированный дисковый генератор монодисперсного аэрозоля, предназначенный для создания монодисперсного аэрозоля заданной дисперсности, содержит блок питания, блок генератора с диском, блок аналого-цифрового преобразователя, соединительный кабель и персональный компьютер. 6 ил.

Изобретение относится к области струйной техники и может быть использовано в литейном производстве, строительной технике и дизайне. Струйно-центробежное устройство для получения потоков крупнозернистых суспензий содержит сосуд с жидкостью, кран, подающий жидкость в канал с фильтром, сальником, связанным с вращающимся каналом и патрубком. На выходном торце патрубка выполнено калиброванное отверстие, расположенное на удалении от оси вращения с образованием струи, сформированной калиброванным отверстием. Фильтр смонтирован в донной части сосуда в виде сетки с размерами ячеек, меньших относительно диаметра калиброванного отверстия. В устройстве применен прерыватель потока в виде клапана, смонтированного после сальника на торце вращаемого канала, выходящего в камеру, из которой выведено два одинаковых противоположно расходящихся канала, соединенных под прямым углом с горизонтальными выводящими каналами, связанными посредством гибких шлангов с патрубками при изменяемом угле их наклона относительно оси вращения канала. Управление клапаном, изготовленным в виде упругого цилиндрического стержня, жестко вмонтированного в цилиндрическую направляемую аксиальной каналу втулкой оправку, скользящую в пазах тяги, осуществляют тягой с заданием определенной величины возвратно-поступательного хода оправки с отверстиями, выполненными в ней для выхода патрубков. Угол наклона между патрубками задают посредством связки, обеспечивающей равенство расстояний от их отверстий до оси вращения канала. Техническим результатом изобретения является устранение потерь используемого материала в периодах пауз его использования и расширение применимости устройства для подачи потоков крупнозернистых суспензий. 3 ил.
Наверх