Способ и устройство для получения водорода из воды (варианты)



Способ и устройство для получения водорода из воды (варианты)
Способ и устройство для получения водорода из воды (варианты)

 

C25B1/02 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2509719:

Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) (RU)

Изобретение относится к области химии. Согласно первому варианту для получения водорода железные стержни изолируют от стенок реактора 1 и подают на них высоковольтный потенциал от трансформатора Тесла 14. Реактор 1 заземляют и заполняют водой до образования разряда между железными электродами и поверхностью воды. Согласно второму варианту плоский горизонтальный охлаждаемый электрод 18 изолируют от стенок реактора 1 и подают на него высоковольтный потенциал от трансформатора Тесла 14. Реактор заземляют, внутри реактора устанавливают вертикально тонкостенные трубы 23 из железа с устройством 24 перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом 18 до образования разряда. Через тонкостенные трубки подают водяной пар. Изобретение позволяет повысить чистоту водорода, снизить затраты энергии. 4 н. и 2 з.п. ф-лы, 2 ил., 2 пр.

 

Изобретение относится к области химической технологии, а более конкретно к способам и устройствам для получения водорода путем экзотермической реакции водяного пара с металлами.

Известен способ и устройство получения водорода электролизом воды, где электролитом служит водный раствор КОН (350-400 г/л), давление в элекролизерах от атмосферного до 4 МПа (Химическая энциклопедия в 5 томах под редакцией Н.П.Кнунянца. - М.: Сов. энциклопедия, 1988 г., т.1, с.401).

Производительность электролизеров в известном способе составляет 4-500 м3/ч, а расход электроэнергии для получения 1 м3 водорода равен 4,0-5,6 кВт/ч.

Недостатком известного способа является большой расход электроэнергии.

Известен способ получения водорода методом конверсии, которым в настоящее время получают более половины промышленного водорода (Путилова И.Н. Курс общей химии. Высшая школа, 1964, с.208). Этот способ включает получение водяного газа (смеси СО и Н2) из кокса и водяного пара при температуре 1000°С (С+H2O=СО-Н2).

Чистый водород получают, используя реакцию СО и H2O в присутствии катализатора Fe2O3 (СО+H2O=CO22). Образующуюся смесь Н2, CO2 и СО растворяют в воде под давлением.

Данный способ, несмотря на относительную дешевизну, многостадиен, экологически ущербен и сложен в управлении.

Известен способ и устройство получения водорода при химической реакции воды (H2O) и алюминия (А1), в результате которой получается водород (Н2) как топливо и гидроокись алюминия (A1OH) как сырье, пригодное для дальнейшей переработки и использовании в промышленных целях: А1+3Н2О=А1(OH)3+1,5H2.

В обычных условиях эта реакция не протекает из-за наличия на поверхности алюминия очень тонкой, но большой плотности оксидной пленки, образующейся почти мгновенно по реакции:

2А1+1,5O2=A12O3.

В известном способе и устройстве используют сплав алюминия и едкого натра, благодаря которому оксидная пленка вокруг алюминия растворяется, и к поверхности алюминия открыт доступ для воды (патенты РФ МПК С01В 3/08, №2407701, опубл. 27.12.2010, №2410325, опубл. 27.01.2011). В качестве растворителя в данном сплаве используется щелочь, а именно едкий натр (NaOH):

2А1+2NaOH+10Н2О=2Na[Al(OH)4(H2O)2]+3Н2.

Недостатком известного способа и устройства является использование химически вредного вещества - щелочи для получения водорода.

Известен способ получения водорода, заключающийся в подаче в реактор металлосодержащих веществ и водной среды и последующем осуществлении взаимодействия металлосодержащих веществ с водной средой, в котором перед подачей в реактор металлосодержащих веществ осуществляют покрытие последних водорастворимой полимерной пленкой, а при осуществлении взаимодействия с водной средой в качестве последней используют водную среду, параметры которой соответствуют параметрам ее сверхкритического состояния для обеспечения возможности создания процесса послойного горения металлосодержащих веществ с выделением водорода. В качестве металлосодержащих веществ используют порошкообразный алюминий, а в качестве водорастворимой полимерной пленки - раствор полиэтиленоксида в диоксане или метиловом спирте, а давление сверхкритического состояния водной среды составляет более 22,12 МПа, температура - более 647,3°К (Мазалов Ю.А. Способ получения водорода. Патент РФ №2165888, опубл. 20.04.2001).

Недостатком известного способа является необходимость использования ультрадисперсного порошка алюминия с размером частиц 0,2 мкм, а также высокое давление и большая температура в реакторе, что увеличивает затраты энергии и создает проблемы безопасности при осуществлении процесса.

Наиболее близким по технической сущности и числу общих признаков является способ, принятый в качестве прототипа и заключающийся в реакционном взаимодействии водяного пара с раскаленным железом (Путилова И.Н. и др. Курс общей химии. Изд. «Высшая школа», 1964 г., с.209).

Реакция выглядит следующим образом:

4H2O+3Fe=Fe3O4+4H2.

Недостатком известного способа является ограниченность его использования в промышленности из-за больших затрат энергии и сложности технологического процесса.

Задачей, на решение которой направлен предлагаемый способ и устройство, является безопасное, экологически чистое получение водорода путем одностадийной реакции с возможностью регенерации исходного сырья.

Технический результат от использования заключается в реализации прямого окисления металлосодержащего вещества без предварительного его нагревания, требующего энергозатрат и использования растворов щелочи в воде.

Вышеуказанный технический результат достигается за счет того, что в способе получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом железные стержни изолируют от стенок реактора и подают на них высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют и заполняют водой до образования холодноплазменного высокочастотного разряда между железными электродами и поверхностью воды и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.

В варианте способа получения водорода в качестве железных стержней используют множество игольчатых электродов из железа диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.

В способе получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом плоский горизонтальный охлаждаемый электрод изолируют от стенок реактора и подают на электрод высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют, внутри реактора устанавливают вертикальные тонкостенные трубы из железа с устройством перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом до образования холодноплазменного высокочастотного разряда, подают через тонкостенные трубки водяной пар и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.

В устройстве получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащем реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, куски железа выполнены в виде стержней, которые изолированы от стенок заземленного реактора, соединены с высоковольтным выводом высокочастотного резонансного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц и установлены вертикально над поверхностью воды на регулируемом расстоянии от воды 10-500 мм, для инициирования холодноплазменного разряда между стержнями и поверхностью воды.

В варианте устройства получения водорода железные стержни выполнены в виде игольчатых электродов диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.

В устройстве получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащем реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, в верхней части реактора установлен плоский горизонтальный охлаждаемый электрод, который изолирован от стенок реактора и соединен с высоковольтным выводом резонансного высокочастотного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц, реактор снабжен устройством заземления и содержит вертикально установленные, тонкостенные трубы диаметром 5-50 мм, которые удалены на расстояние 10-500 мм от плоского электрода, тонкостенные трубки соединены с парогенератором для подачи водяного пара и снабжены устройством перемещения вдоль оси реактора.

Способ и устройство для получения водорода из воды иллюстрируется фиг.1, фиг.2.

На фиг.1 представлена блок-схема способа и устройства для получения водорода нагревом в парах воды с помощью холодноплазменного разряда игольчатых электродов из железа, на фиг.2 - блок-схема способа и устройства для получения водорода с нагревом тонкостенных труб из железа в парах воды с помощью холодноплазменного разряда.

На фиг.1 устройство для получения водорода выполнено в виде реактора 1, который имеет корпус 2 с устройством заземления 3, проходным изолятором 4 с электрическим выводом 5, который внутри реактора 1 соединен с плоским электродом 6, на котором закреплены вертикально множество игольчатых электродов 7 из железа диаметром 1-10 мм. Плоский электрод 6 установлен горизонтально в верхней части реактора 1 на изоляторах 8. Реактор 1 содержит патрубок 9 для подачи воды 10, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления, содержащих окислы железа. Электрический ввод 5 соединен с высоковольтным выводом 13 трансформатора Тесла 14. Низковольтная обмотка 15 трансформатора Тесла 14 вместе с емкостью 16 образует последовательный резонансный контур, который соединен с высокочастотным источником питания 17.

На фиг.2 реактор 1 имеет плоский охлаждаемый электрод 18 в верхней части реактора, закрепленный горизонтально на изоляторах 19 на крышке 20 реактора 1. Охлаждение плоского электрода 18 производится через патрубки для входа 21 и выхода 22 охлаждающей жидкости. В нижней части реактора установлены вертикально тонкостенные трубы 23 из железа диаметром 5-50 мм с устройством перемещения 24 вдоль вертикальной оси реактора 1.

На фиг.2 показаны две тонкостенные трубы 23, которые перемещают в цилиндрических уплотняющих устройствах 25, установленных на нижнем фланце 26 реактора 1. Трубы 23 соединены с водяным парогенератором 27 с помощью трубопровода 28 для подачи пара в реактор 1, толщина труб составляет 1-10 мм. Расстояние между трубами 23 и плоским электродом 18 регулируется и составляет Н=5-50 мм.

Способ и устройство для получения водорода из воды реализуется следующим образом. Реактор на фиг.1 заполняют водой 10 через патрубок 9 таким образом, чтобы расстояние между концами игольчатых электродов 7 и поверхностью воды 10 составляло h1=5-50 мм и при работе устройства поддерживалось на заданном уровне. При подаче потенциала на Фиг.1 от высоковольтного вывода 13 трансформатора Тесла 14 на игольчатые электроды 7 между электродами и поверхностью воды 10 возникает зона холодноплазменного разряда, при этом концы игольчатых электродов 7 нагревают до температуры 600-700°С и происходит интенсивное выделение пара из воды 10. Происходит реакция водного окисления железных игольчатых электродов 7 с выделением водорода: 4Н2О+3Fe=F3O4+4Н2. Из 1 кг железа получается 1,07 м3 водорода. (1).

Скорость реакции окисления игольчатых электродов 7 в воде и выделения водорода регулируется изменением потенциала высоковольтного вывода 13 трансформатора Тесла 14 и изменением расстояния h1 между поверхностью воды 10 и концами игольчатых электродов 7.

Кроме реакции водного окисления железа происходит электролиз воды, что увеличивает выход водорода из реактора 1.

Устройство на фиг.2 работает следующим образом. При подаче высокого напряжения на плоский электрод 18 между электродом 18 и тонкостенными трубами 23 возникает холодноплазменный разряд и стенки труб 21 нагревают до температуры 600-700°С. Водяной пар из парогенератора 27 по трубопроводу 28 поступает через тонкостенные трубы 23 в зону холодноплазменного разряда, где происходит реакция (1) водного окисления железа с выделением водорода. Одновременно происходит плазменный электролиз паров воды с образованием дополнительного количества водорода.

Устройство перемещения 24 поддерживает зазор между трубами 23 и электродом 18.

Примеры осуществления способа и устройства получения водорода из воды

Пример 1. Реактор 1 (фиг.1) выполнен в виде цилиндрической емкости из нержавеющей стали диаметром 300 мм и высотой 500 мм с толщиной стенок 0,6 мм. Внутри корпуса реактора 1 на изоляторах 8 установлен плоский электрод с шестью игольчатыми электродами из железа диаметром 5 мм. Расстояние от поверхности воды 10 до h1=40 мм, напряжение на высоковольтном выводе 13 трансформатора Тесла 14 составляет 40 кВ, частота 20 кГц, температура на концах игольчатых электродов 7 700°С, выход водорода 2 м3/ч.

Пример 2. Реактор 1 (фиг.2) имеет диаметр 400 мм, высоту 800 мм. В нижней части реактора вертикально установлено 10 труб 23 диаметром 15 мм с толщиной стенок 2 мм. Расстояние между концами труб 23 и плоским электродом 18h2=25 мм. Напряжение на электроде 18 30 кВ, частота 25 кГц. Температура на выходе стенок труб 23 составляет 700°С, выход водорода 4 м3/ч.

Образующиеся в результате реакции (1) оксиды железа могут быть легко восстановлены до железа при взаимодействии с синтез-газом.

Использование предложенного способа позволит снизить энергозатраты при производстве водорода, повысить управляемость и небезопасность процесса, а также осуществлять регенерацию исходного сырья. Изобретение может быть использовано в промышленности для получения водорода и на транспорте. При добавке водорода в количестве 5% к топливу количество вредных примесей в выхлопе двигателя внутреннего сгорания снижается в 10 раз, повышается КПД двигателя и снижается расход топлива на 8-10%. Использование водорода как 100% топлива в двигателе Стерлинга, газотурбинном двигателе или в топливных элементах позволяет исключить вредные выбросы.

1. Способ получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом, отличающийся тем, что железные стержни изолируют от стенок реактора и подают на них высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют и заполняют водой до образования холодноплазменного высокочастотного разряда между железными электродами и поверхностью воды и осуществляют реакцию: 3Fe+4H2O=Fе3O4+4Н2 в зоне холодноплазменного разряда.

2. Способ получения водорода по п.1, отличающийся тем, что в качестве железных стержней используют игольчатые электроды из железа диаметром 1-10 мм, установленные на общем проводящем электроизолированном от стенок реактора основании.

3. Способ получения водорода путем реакционного взаимодействия в реакторе водяного пара с раскаленным железом, отличающийся тем, что плоский горизонтальный охлаждаемый электрод изолируют от стенок реактора и подают на электрод высоковольтный потенциал от трансформатора Тесла с напряжением 1-500 кВ при частоте 1-500 кГц, реактор заземляют, внутри реактора устанавливают вертикально тонкостенные трубы из железа с устройством перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом до образования холодноплазменного высокочастотного разряда, подают через тонкостенные трубки водяной пар и осуществляют реакцию: 3Fe+4H2O=Fe3O4+4H2 в зоне холодноплазменного разряда.

4. Устройство получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащее реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, отличающееся тем, что куски железа выполнены в виде стержней, которые изолированы от стенок заземленного реактора, соединены с высоковольтным выводом высокочастотного резонансного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц и установлены вертикально над поверхностью воды на регулируемом расстоянии от воды 10-500 мм, для инициирования холодноплазменного разряда между стержнями и поверхностью воды.

5. Устройство получения водорода по п.4, отличающееся тем, что железные стержни выполнены в виде игольчатых электродов диаметром 1-10 мм, установленных на общем проводящем электроизолированном от стенок реактора основании.

6. Устройство получения водорода из воды путем реакционного взаимодействия водяного пара с раскаленным железом, содержащее реактор с патрубками для подвода воды и отвода продуктов реакции и куски железа с устройством нагрева, отличающееся тем, что в верхней части реактора установлен плоский горизонтальный охлаждаемый электрод, который изолирован от стенок реактора и соединен с высоковольтным выводом резонансного высокочастотного трансформатора Тесла с напряжением 1-100 кВ и частотой 1-100 кГц, реактор снабжен устройством заземления и содержит вертикально установленные тонкостенные трубы диаметром 5-50 мм, которые удалены на расстояние 10-500 мм от плоского электрода, тонкостенные трубки соединены с парогенератором для подачи водяного пара и содержат устройство перемещения вдоль оси реактора.



 

Похожие патенты:

Изобретение относится к технологическому оборудованию, предназначенному для использования в производстве озонаторных установок. Электрод озонаторной установки представляет собой полую цельнопаяную конструкцию, состоящую из двух одинаковых мембран с диэлектрическим барьером на внешней поверхности; внешнего и внутреннего проставочных колец, определяющих высоту электрода; теплообменной насадки, размещенной в полости электрода для повышения эффективности охлаждения его рабочих поверхностей при синтезе озона; штуцеров для подвода и отвода теплоносителя, диаметрально расположенных на внешнем кольце.

Изобретение относится к технологическим процессам обработки металлов, а более конкретно к устройствам для выполнения газопламенных работ типа пайки, сварки, резки металлов c использованием электрохимических способов получения гремучего газа для выполнения этих работ.

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и кислорода с установленными на них датчиками давления водорода и кислорода, электрически связанных с блоком управления, клапанов выдачи водорода и кислорода из установки, расположенных на линиях водорода и кислорода, каждый ресивер снабжен линией заправки воды, линией слива воды и датчиком количества воды, при этом на линиях заправки и слива воды установлены клапаны, а датчики количества воды и клапаны на линиях слива воды электрически связаны с блоком управления.

Изобретение относится к технологии электрохимических производств, в частности к конструкции электролизеров для получения водорода и озон-кислородной смеси, и может найти применение для нужд энергетики (охлаждение водородных генераторов на ТЭЦ, ГРЭС и АЭС), электроники (очистка поверхности полупроводниковых пластин).
Изобретение относится к медицине, а именно к эндокринологии и физиотерапии, и может быть использовано для лечения абдоминального ожирения. Для этого осуществляют криомассаж проблемных зон криопакетом объемом 300-500 мл при температуре -21--23°C со стабильной вибрацией по 5-10 с двукратно по 3-5 минут с паузой между циклами 1-2 минуты.

Изобретение относится к способу увеличения производительности разложения воды. Способ включает разложение воды под действием резонансного электромагнитного поля и характеризуется тем, что разложение воды происходит под действием двух резонансных контуров, в которых вектора напряженностей электрического поля первого контура и напряженности магнитного поля второго контура также как вектор напряженности электрического поля второго контура и вектор напряженности магнитного поля первого контура действуют на воду одновременно.

Изобретение относится к зарядным устройствам аккумуляторов водорода и может быть использовано для зарядки указанных аккумуляторов водородом. Зарядное устройство для водородных аккумуляторов из гидрида металлов с высокой степенью пассивирования (алюминий, титан, магний), выполнено из стабилизированного источника электрического тока (1), проводов (2), электролизера (3) и аккумуляторов (4) водорода на основе гидрида алюминия (титана или магния) (5), при этом в электролизере (3) расположен электролит (6) из угольной кислоты H2CO3 в дистиллированной воде, который полностью покрывает два стоящих отдельно друг от друга аккумулятора (4) без внешних корпусов со свободным проникновением электролита (6) в структуру аккумулятора (4) из гидрида металла (5), причем один аккумулятор (4) подсоединен к катоду (7), а второй аккумулятор (8) - к аноду (9), причем на крышке (10) зарядного устройства расположена вертикальная труба (11) с клапаном сброса (12) излишнего давления, создаваемого продуктами электролиза.
Описан способ получения графитовых электродов с покрытием, преимущественно из благородного металла, для электролитических процессов, в частности для электролиза соляной кислоты, в котором поверхность графитового электрода покрывают водным раствором соединения благородного металла, а затем графитовый электрод подвергают термообработке в присутствии восстанавливающих и/или в основном не содержащих кислорода газов при температуре от 200 до 450°С.
Предложен катод для выделения водорода в электролитической ячейке, содержащий металлическую основу и покрытие, состоящее из чистого оксида рутения. Предлагаемый катод обеспечивает улучшение рабочих характеристик и увеличение срока службы электролизера при неустойчивом и периодическом снабжении энергии, таком как от солнечных батарей; также описан способ нанесения покрытия на металлическую основу.

Изобретение относится к электрохимическому способу синтеза полианилина, легированного металлом, включающему приготовление раствора с концентрацией компонентов: серная кислота 0,5-1,5 моль/дм3, анилин 0,1-0,4 моль/дм3, соли переходных металлов 0,1-1,0 моль/дм3, проведение электролиза при температуре 10-30°С с использованием рабочего электрода и вспомогательного электрода, при этом на стадии приготовления раствора дополнительно вводят 0,1-0,5 моль/дм3 аминоуксусной кислоты или 0,1-0,5 моль/дм3 динатриевой соли этилендиаминтетрауксусной кислоты, в качестве солей переходных металлов применяют сульфаты переходных металлов, в качестве рабочего и вспомогательного электродов используют электроды из нержавеющей стали, электролиз проводят при постоянной плотности тока 1-10 мА/см2, а после стадии электролиза полученный полианилин, легированный металлом, обрабатывают щелочным раствором с рН 8-10.

Изобретение относится к способу и установке для получения синтез-газа (S) из твердых частиц (C) углерода, причем указанные частицы (C) углерода получают посредством пиролиза, газификация частиц (C) углерода происходит в результате непрямого нагрева частиц (C) углерода в присутствии технологического газа (P) в том же самом пространстве реактора, где находятся частицы (C) углерода, при этом непрямой нагрев осуществляют с помощью теплового излучения от горелок (Br1-Brn), расположенных в реакторе (1), а синтез-газ (S), образовавшийся во время газификации, выпускают из указанного пространства.

Изобретение может быть использовано для систем подъема затонувших объектов, в средствах дистанционного экстренного перекрытия нефте- и газопроводов, в средствах выброса и распыления специальных жидкостей при нейтрализации аварийных выделений газов и веществ на производствах, приведения в действие различных пневматических устройств, для средств пожаротушения.

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы.

Изобретение относится к технологиям малотоннажной утилизации непромышленных газов в газовой промышленности. Изобретение касается малотоннажной установки по утилизации ресурсов малых месторождений природного газа, состоящей из последовательно соединенных очистительного модуля, теплообменника предварительного нагрева, теплообменника-рекуператора для тепловой обработки сырья, реактора плазмохимического синтеза для образования водородно-сажевой смеси, теплообменника-рекуператора для закалки, теплообменника-охладителя для охлаждения смеси, циклона для выделения и подачи в рукавный фильтр для сбора с последующей подачей в гранулятор и конденсатор, гранулятора для гранулирования частиц сажи при увлажнении водой из конденсатора и последующей подачи в сушильный барабан, конденсатора для подачи воды в гранулятор и конденсации воды с подачей водородной смеси в компрессор, сушильного барабана для осушки и выделения, компрессора для сжатия водорода и подачи в мембранный блок для обогащения и последующего выделения.

Изобретение относится к отрасли переработки нефти и газа и может быть использовано для получения синтетических жидких углеводородов и метанола на установке, интегрированной в объекты промысловой подготовки газовых, газоконденсатных и нефтяных месторождений.

Изобретение относится к способу производства синтез-газа. Способ производства синтез-газа включает: риформинг углеводорода в присутствии пара и одного или более первых катализаторов в первой реакционной зоне с получением выходящего потока, содержащего часть углеводорода, моноксид углерода, диоксид углерода и водород при первой температуре, при этом первая реакционная зона может включать одну или более содержащих катализатор трубок; непрямой нагрев выходящего потока от первой температуры до второй температуры; и риформинг выходящего потока при второй температуре в присутствии одного или более окислителей, и одного или более вторых катализаторов в условиях, достаточных для получения синтез-газа, имеющего температуру примерно 1030°C или выше, включающего водород, моноксид углерода, диоксид углерода и меньше чем примерно 5 моль.% метана на сухое вещество, при этом синтез-газ используют для нагрева выходящего потока непрямым образом от первой температуры до второй температуры.

Изобретение относится к области катализаторов. Описан катализатор, предназначенный для применения в реакции высокотемпературного сдвига, в своей активной форме содержащий смесь цинк-алюминиевой шпинели и оксида цинка в комбинации со щелочным металлом, выбранным из группы, включающей Na, K, Rb, Cs и их смеси, указанный катализатор обладает молярным отношением Zn/Al, находящимся в диапазоне от 0,5 до 1,0, и содержанием щелочного металла, находящимся в диапазоне от 0,4 до 8,0 мас.% в пересчете на массу окисленного катализатора.

Изобретение относится к области химии. Для получения водорода проводят реакцию паровой каталитической конверсии углеродсодержащей жидкости с получением продуктов реакции, содержащих водород.

Изобретение относится к разработке катализаторов для осуществления термохимической конверсии углеводородных и кислородсодержащих топлив за счет тепла отходящих газов двигателей внутреннего сгорания, являющихся составной частью гибридных силовых установок.

Изобретение относится к области химии. Устройство для получения водорода из воды, состоящее из корпуса, в котором размещен реактор, где закреплены электроды с приложенным к ним электрическим напряжением, отличающееся тем, что рабочие электроды выполнены сетчатыми цилиндрами из алюминиевых сплавов, вставленными друг в друга с зазором и образующими пакет, причем снизу пакета вставлена форсунка, подключенная к насосу высокого давления, связанного с нагревательной емкостью, установленной на выпускной коллектор автомобиля, которая вместе с пакетом подключена к источнику высокого прерывистого напряжения, а пакет сетчатых цилиндров-электродов установлен в разгонном высоковольтном электрическом поле между электродами, подключенными к источнику высоковольтного поля.

Изобретение относится к области химии. Способ получения водорода включает получение синтез-газа в установке парового риформинга углеводородной загрузки, паровую конверсию полученного синтез-газа с получением потока водорода, содержащего метан и диоксид углерода, улавливание диоксида углерода, присутствующего в потоке, улавливание и возврат на паровой риформинг метана, CO и CO2, присутствующих в потоке водорода. Изобретение позволяет повысить чистоту водорода и использовать примеси в процессе парового риформинга. 14 з.п. ф-лы, 12 ил., 2 пр.
Наверх