Вентилятор местного проветривания шахт

Авторы патента:


Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт
Вентилятор местного проветривания шахт

 


Владельцы патента RU 2509894:

Общество с ограниченной ответственностью "Научно-исследовательский и опытно-конструкторский институт "АЭРОТУРБОМАШ" (RU)

Изобретение относится к шахтной, рудничной вентиляции и вентиляторостроению, а именно к осевым вентиляторам для местного проветривания горных выработок шахт. Задачей изобретения является создание вентилятора местного проветривания шахт, имеющего повышенные аэродинамические характеристики (давление, производительность и КПД) и обеспечивающего возможность реверсивного режима работы при изменении направления вращения рабочих колес, понижение массогабаритной характеристики вентилятора. Вентилятор включает два базовых модуля 1-й и 2-й ступеней, сопряженных между собой соединительной корпусной вставкой так, что каждый модуль содержит корпус, электродвигатель, рабочее колесо, установленное непосредственно на валу электродвигателя. Рабочие колеса 1-й и 2-й ступеней выполнены по схеме встречного вращения, цельносварными с неповоротными сдвоенными листовыми лопатками S-образной формы с переменной по радиусу рабочего колеса геометрией, рассчитанной методом «дискретных вихрей», как работающие совместно без спрямляющего аппарата из условия наименьшей акустической мощности (шума) вентилятора, наибольших КПД, давления и производительности. 10 ил.

 

Изобретение относится к горной промышленности, к шахтной, рудничной вентиляции и вентиляторостроению, а именно к осевым вентиляторам для местного проветривания горных выработок шахт.

Из уровня техники известны осевые вентиляторы местного проветривания [«Каталог продукции» Томского электромеханического завода им. В.В. Вахрушева, 2006 г.], содержащие корпус, встроенный во втулку, взрывобезопасный электродвигатель, одно или несколько рабочих колес, закрепляемых на валу электродвигателя, всасывающий коллектор и патрубок для присоединения жесткого или гибкого трубопровода.

Известны также вентиляторы меридионального ускорения, [«Каталог продукции» ОАО Артемовский машиностроительный завод "Вентпром"], содержащие корпус с направляющим и спрямляющим аппаратами, взрывозащищенный электродвигатель, одно или два рабочих колеса, противосрывное устройство, а также коллектор с коком и предохранительной решеткой, салазки. Вентилятор имеет блочно-модульную конструкцию, выполненную по высоконапорным аэродинамическим схемам с меридиональным ускорением потока.

Недостатками известных вентиляторов являются их невысокие аэродинамические характеристики, в том числе создаваемое давление, производительность (подача воздуха), большие массогабаритные характеристики и отсутствие возможности реверсивного режима работы. В указанных вентиляторах рабочие колеса не устанавливаются и не используются по принципу встречного вращения, поэтому они имеют низкие технико-экономические и высокие массогабаритные характеристики.

Наиболее близкими по технической сущности к заявляемому являются вентиляторы местного проветривания, которые могут работать по принципу встречного вращения, например, вентиляторы типа del…GF фирмы "Zitron" [«Вентиляторы местного проветривания» НПО «Энергоинжиниринг», с.24 и 25], включающие два модуля, каждый из которых содержит электродвигатель с размещенным на его валу рабочим колесом с профильными лопатками, которые взяты в качестве прототипа.

Данные вентиляторы имеют недостаточную производительность, давление и КПД, а также не обеспечивают реверсирование режима, т.е. изменение направления подачи воздуха.

Решаемой технической задачей является создание вентилятора местного проветривания шахт, имеющего повышенные аэродинамические характеристики (давление, производительность и КПД), уменьшенные массогабаритные параметры, а также обеспечивающего возможность реверсивного режима работы.

Указанная задача решается тем, что согласно изобретению вентилятор местного проветривания шахт выполняют из двух сопряженных соединительной корпусной вставкой базовых модулей 1-й и 2-й ступеней, таких, что каждый модуль содержит корпус, электродвигатель и рабочее колесо, соответственно 1-й и 2-й ступени, установленные на валу электродвигателей, при этом рабочие колеса 1-й и 2-й ступеней рассчитывают и устанавливают по принципу встречного вращения и выполняют с цельносварными неповоротными сдвоенными листовыми лопатками S-образной формы с переменной по радиусу рабочего колеса геометрией, рассчитываемыми методом «дискретных вихрей» как работающие совместно без спрямляющего аппарата из условия наименьшей акустической мощности (шума) вентилятора, наибольших КПД, давления и производительности.

Двухступенчатый вентилятор местного проветривания, выполненный по схеме встречного вращения рабочих колес, показан на фиг.1.

На фиг.2 и 3 показана компоновка базовых модулей соответственно первой и второй ступеней вентилятора с входными коробками для подвода питания электродвигателей и транспортными салазками.

На фиг.4 и 5 приведены сечения 1-1 базовых модулей первой и второй ступеней вентилятора с рабочими колесами и электродвигателями.

На фиг.6 и 7 показана геометрия и взаимное расположение лопаток рабочих колес, содержащих S-образные сдвоенные листовые лопасти, и ребра связи втулки вентилятора с его корпусом для первой и второй ступеней вентилятора.

На фиг.8 показано сечение II-II взаимного расположения рабочих колес первой и второй ступеней вентилятора, содержащих S-образные сдвоенные листовые лопасти с направлениями их вращения при нормальной и реверсивной работе, а также с направлениями подачи воздуха.

На фиг.9 показана конструкция рабочих колес с указанными направлениями их вращения: ωн - нормальная работа, ωp - реверсивный режим, и подачи воздуха: Qн - нормальная работа, Qp - реверсивный режим.

На фиг.10 приведены расчетные аэродинамические характеристики реверсивного вентилятора встречного вращения диаметром 1200 мм при частотах вращения рабочих колес от 750 до 1500 об/мин.

Где: 1 - модуль первой ступени вентилятора; 2 - модуль второй ступени вентилятора; 3 - рабочее колесо первой ступени вентилятора; 4 - рабочее колесо второй ступени вентилятора; 5 - вал электродвигателя первой ступени вентилятора; 6 - вал электродвигателя второй ступени вентилятора; 7 - корпус и втулка первой ступени вентилятора; 8 - корпус и втулка второй ступени вентилятора; 9 - плоские ребра, соединяющие между собой корпус и втулку соответствующей ступени вентилятора; 10 - входной короб соответствующей ступени вентилятора; 11 - транспортные салазки; 12 - неповоротные сдвоенные листовые лопатки рабочего колеса соответствующей ступени вентилятора; 13 - корпусная вставка.

Двухступенчатый вентилятор местного проветривания, выполненный по схеме встречного вращения рабочих колес (фиг.1, 2, 3, 4, 5), содержит два базовых модуля с рабочими колесами: модуль первой ступени 1 с рабочим колесом 3 и модуль второй ступени 2 с рабочим колесом 4, соединенных корпусной вставкой 13. Рабочие колеса первой и второй ступеней вентилятора размещены соответственно на валах электродвигателей 5 и 6 первой и второй ступеней вентилятора, установленных во втулках 7 и 8 первой и второй ступеней вентилятора. Корпус и втулка, 7 и 8, каждого базового модуля соединены между собой плоскими ребрами 9. В компоновку каждого базового модуля входит входная коробка 10 для подвода питания электродвигателей и транспортные салазки 11.

Рабочие колеса 3 и 4 выполнены цельносварными с неповоротными сдвоенными листовыми лопатками 12 (фиг.6, 7) S-образной формы специальной геометрии, рассчитанными методом «дискретных вихрей» как в прямом QH, так и в реверсивном -QP режимах работы на повышенные аэродинамические характеристики вентилятора из условия наименьшей акустической мощности (шума).

Конструкция рабочих колес с цельносварными неповоротными сдвоенными листовыми лопатками S-образной формы, с переменной по радиусу рабочего колеса геометрией, в двухступенчатом исполнении вентилятора, работающего по принципу встречного вращения, позволяет увеличить его производительность, давление и КПД на 15÷20%, обеспечить реверсивность режима за счет изменения направления вращения (фиг.4, 5, 6, 7, 8, 9), а также снизить массогабаритные характеристики вентилятора.

Для повышения аэродинамических характеристик и КПД как в прямом QH, так и в реверсивном -QP режимах работы вентилятора, за счет устранения потерь давления в лопаточных венцах спрямляющих аппаратов вентилятор выполнен по схеме встречного вращения рабочих колес первой и второй ступеней, что существенно упрощает конструкцию вентилятора и позволяет уменьшить его массогабаритные характеристики за счет исключения из устройства промежуточного спрямляющего аппарата. При этом производительность реверсивного режима - QP при одновременном изменении направления вращения рабочих колес 1-й и 2-й ступеней вентилятора с ω на -ω достигает 90% производительности прямого режима QH, при этом также уменьшается закрученность воздушного потока за вторым рабочим колесом, что приводит к росту КПД вентилятора, достигающего 0,85.

Для предотвращения возможности контактного искрения при задевании концов стальных лопаток рабочих колес о корпус вентилятора соединительная корпусная вставка 13 с внутренней стороны в плоскостях вращения рабочих колес покрывается листами из алюминиевого или латунного сплава, а также может оснащаться глушителем шума.

Вентилятор местного проветривания шахт работает следующим образом.

При нормальной работе электродвигатели ступеней вентилятора вращаются в направлениях ω, с частотой, например, для диаметра рабочего колеса, равного 1200 мм, в пределах 750÷1500 об/мин. Для регулирования его производительности частота вращения рабочих колес ω может регулироваться в указанных пределах, при этом его производительность будет изменяться в пределах (фиг. 10) от 13 м3/с до 38 м3/с. При реверсировании режима вентилятора (см. фиг.10 «Реверс») путем изменения направления вращения рабочих колес ступеней вентилятора на обратные до -ω=750÷1500 об/мин вентилятор обеспечит изменение направления подачи воздуха (см. фиг.7 «Реверс»), при этом его производительность в реверсивном режиме достигает 85-90% от производительности нормального режима.

На фиг.10 приведены аэродинамические характеристики реверсивного вентилятора BM3-2(1)-1200SP, полученные расчетным путем на базе результатов стендовых испытаний вентилятора с S-образными лопатками, диаметром рабочего колеса 700 мм, где обозначено: ω и -ω - направление вращения для прямой и реверсивной работы вентилятора; QH, -QP - производительность при работе вентиляторов в нормальном и реверсивном режимах работы; Rmax, Rmin - максимальное и минимальное сопротивления воздуховода (вентиляционной сети), на которые работает вентилятор; PS и ηS - статическое давление и статический КПД работы вентилятора.

Для диапазона частот вращения при нормальной прямой работе вентилятора в пределах ω=750÷1500 об/мин, при реверсивной работе («реверс») в пределах -ω=-750÷-1500 об/мин. При этом в режиме прямой (нормальной) работы на сети от Rmin до Rmax, обеспечивает производительность от 13 м3/с до 38 м3/с в реверсивном режиме от -12 м3/с до -37 м3/с, и давление (разрежение) от -50 даПа до 280 даПа, при КПД в пределах 073 до 0,85, что по производительности и КПД в прямой работе больше, чем у прототипа, на 15-20%, который по своей конструкции не имеет режима реверсивной работы.

Таким образом, вентилятор местного проветривания, выполненный по схеме встречного вращения рабочих колес с S-образными сдвоенными листовыми лопатками специальной геометрии, обеспечивает возможность реверсирования режима, а также повышает на 15÷20% производительность, давление и КПД в сравнении с аналогами при тех же массогабаритных характеристиках, что очень важно для повышения безопасности и производительности труда при ведении горных работ. Выполнение вентиляторов местного проветривания в реверсивном исполнении позволит в несколько раз сократить время проветривания тупиковых забоев после взрывных работ и, следовательно, увеличить производительность и безопасность труда в шахте.

Вентилятор местного проветривания шахт, включающий два базовых модуля 1-й и 2-й ступеней вентилятора, сопряженных между собой соединительной корпусной вставкой так, что каждый модуль содержит корпус, электродвигатель, рабочее колесо, установленное непосредственно на валу электродвигателя, отличающийся тем, что рабочие колеса 1-й и 2-й ступеней выполнены по схеме встречного вращения, цельносварными с неповоротными сдвоенными листовыми лопатками S-образной формы с переменной по радиусу рабочего колеса геометрией, рассчитанной методом «дискретных вихрей», как работающие совместно без спрямляющего аппарата из условия наименьшей акустической мощности (шума) вентилятора, наибольших КПД, давления и производительности.



 

Похожие патенты:

Изобретение относится к биротативным винтовентиляторам, расположенным на выходе из газотурбинного двигателя, и обеспечивает при его использовании повышение надежности за счет организации эффективного охлаждения силового кольца задней подвески и корпуса задней опоры винтовентилятора.

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. .

Изобретение относится к авиационному двигателестроению, конкретно к вентиляторам авиационных газотурбинных двигателей. .

Изобретение относится к авиационному двигателестроению, конкретно к вентиляторам авиационных газотурбинных двигателей. .

Изобретение относится к области компрессоростроения и теплоэнергетики и может быть использовано, например, в газотурбинных установках с осевым многоступенчатым компрессором в способе повышения эффективности работы осевого многоступенчатого компрессора путем впрыска воды в не менее, чем две ступени сжатия, обеспечивающем максимальное повышение кпд компрессора при минимальном расходе воды за счет определения с помощью математического выражения для подсчета кпд компрессора, учитывающего паросодержание и энтальпию паров воды в воздухе за компрессором, оптимального, достаточного для этого повышения количества впрыскиваемой в ступени воды на предварительной стадии работы компрессора.

Изобретение относится к газотурбинным двигателям, а более конкретно к их компрессорам. .

Изобретение относится к компрессорам газотурбинных двигателей наземного и авиационного применения. .

Изобретение относится к компрессорам газотурбинных двигателей авиационного и наземного применений. .

Изобретение относится к области горного дела и может быть использовано при проходке горных выработок. Техническим результатом изобретения является повышение надежности и удобства обслуживания трубопровода.

Изобретение относится к области горного дела и может быть использовано при проветривании ортов или штреков на погрузочно-доставочных горизонтах рудных шахт. .

Изобретение относится к горной промышленности и может быть использовано при определении динамической работы перемещения тела. .

Изобретение относится к вентиляционным трубам для горных выработок. .

Изобретение относится к горной промышленности и может быть применено для проветривания подземных тупиковых выработок рудников и угольных шахт, опасных по газовому фактору.

Изобретение относится к способам подогрева воздуха, подаваемого в подземные горные выработки, и может быть применено как при нагнетательной, так и всасывающей схемах проветривания.

Изобретение относится к горной промышленности, а именно к способам вентиляции при подземной разработке свиты высокогазоносных пластов угля. .

Изобретение относится к горной промышленности и может быть применено в шахтной рудничной вентиляции. .

Изобретение относится к горной промышленности, а именно к шахтной вентиляции транспортных тоннелей. Техническим результатом является расширение функциональных возможностей установки, повышение ее надежности и возможности быстрого монтажа и перестановки на новое место эксплуатации. Установка включает рабочий и резервный вентиляторы, каждый из которых имеет электродвигатель, коллектор и переходник, совмещенную входную коробку с поворотной заглушкой, перекрывающей вход к рабочему или резервному вентиляторам, и поворотную створку, перекрывающую выходы рабочего или резервного вентилятора в воздухоподающий канал. Над блоком вентиляторов с вентиляторами, установленными на выкатных тележках, размещен в шумопоглощающем теплоизолированном контейнере блок подготовки воздуха, в трех унифицированных воздухозаборниках которого установлены системы шумопоглощения с поворотными лядами, имеющего систему кондиционирования, выполненную в виде фреонового воздухоохладителя и электрического калорифера, позволяющих охлаждать или подогревать воздух в зависимости от температуры окружающей среды. Воздухоподающий канал блока вентиляторов снабжен противопожарным клапаном на входе в скважину. 6 ил.
Наверх