Изоляционная кассета

Авторы патента:


Изоляционная кассета
Изоляционная кассета
Изоляционная кассета
Изоляционная кассета
Изоляционная кассета

 


Владельцы патента RU 2509951:

РВЕ ПАУЭР АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Изобретение относится к изоляционной кассете, предназначенной для использования в качестве части изоляционной оболочки трубы. Сущность изобретения: Изоляционная кассета в качестве части оболочки устройств парогенератора, находящихся под средним давлением, например, в качестве изоляционного кожуха трубы. Кассета содержит закрытый корпус (5) из металлического листа, который полностью охватывает изоляционный материал-заполнитель. Изоляционный материал-заполнитель содержит аэрогель. Изоляционная кассета имеет приблизительно С-образную форму поперечного сечения и снабжена крепежными средствами. С помощью крепежных средств изоляционные кассеты, выполненные в виде взаимодополняющих друг друга частей, могут быть собраны для образования закрытого кожуха трубы. Техническим результатом изобретения является предупреждение попадания материала, выходящего из изоляционной кассеты, в водяной контур благодаря его физическим свойствам. 19 з.п. ф-лы, 5 ил.

 

Изобретение относится к изоляционной кассете в качестве части оболочки устройств парогенератора, находящихся под средним давлением, например, в качестве изоляционного кожуха трубы, содержащей по существу закрытый корпус из металлического листа, который полностью охватывает изоляционный материал-заполнитель.

Такую изоляционную кассету часто используют для теплоизоляции трубопроводов парогенераторов.

Известные изоляционные кассеты представляют собой кассеты из металлического листа, выполненные в виде получаш и заполненные минеральной ватой, стекловатой или подобными изоляционными материалами. Такие устройства описаны, например, в DE 2923094A. При изолировании холодных и нагреваемых трубопроводов обычным является обеспечение изоляционных материалов с оболочкой, которой защищают изоляционный материал от воздействия климатических условий и механических повреждений. Оболочку изоляции часто выполняют путем обшивки изоляционного материала, например, цинковым листом. В некоторых случая применения, например, в охлаждающих контурах атомных электростанций, была подтверждена пригодность использования закрытых изоляционных кассет, которые полностью охватывают изоляционный материал. В частности, корпус изоляционных кассет из металлического листа предназначен для обеспечения достаточной защиты от механических повреждений изоляционного материала. Однако при авариях на атомных электростанциях, при которых происходит утечка хладагента, может, тем не менее, случиться так, что металлическая обойма разрушается, и изоляционный материал, находящийся в ней, выходит наружу. Например, может возникнуть ситуация, при которой под действием струи, вытекающей из охлаждающего трубопровода, разрушается изоляционная кассета. Изоляционные кассеты описанного выше типа используют, например, для изоляции трубопроводов диаметром приблизительно до 800 мм с внутренним давлением 160 бар при средней температуре около 300°C. Можно легко себе представить, что вытекающая струя из такого трубопровода может создавать относительно большие механические усилия, действующие на изоляционную кассету.

В этом случае теоретически может произойти поломка корпуса изоляционной кассеты из металлического листа, и изоляционный материал будет вымываться из кассеты под действием вытекающей струи хладагента. Вымываемый изоляционный материал может забивать впускные сеточные фильтры насосов, установленных в приямке реактора, в результате чего станет сложно осуществлять ликвидацию аварии.

Стало очевидным, что существует фундаментальная проблема удерживания волокнистых изоляционных материалов с помощью сеток. Лабораторные испытания показали, что волокнистый материал, с одной стороны, сложно удерживать с помощью относительно плотных сеток, а, с другой стороны, при этом возникает большое падение давления на сетках при накоплении волокна на сетках. Это может приводить к разрушению сеток.

Целью, на которой основано изобретение, таким образом, является усовершенствование, в этом отношении, изоляционной кассеты упомянутого ранее типа.

Цель, на которой основано изобретение, достигается посредством использования изоляционной кассеты в качестве части оболочки устройств парогенератора, находящихся под средним давлением, например, в качестве изоляционного кожуха трубы, содержащей по существу закрытый корпус из металлического листа, который полностью охватывает изоляционный материал-заполнитель, причем изоляционная кассета отличается тем, что изоляционный материал-заполнитель содержит аэрогель. Под аэрогелем следует понимать, в общем, и в контексте изобретения, высокопористые твердые вещества, в которых до 95% объема составляют поры. Использование этого материала в качестве материала-заполнителя для изоляционной кассеты обладает преимуществом, заключающимся в том, например, что можно более легко предупредить попадание материала, выходящего из изоляционной кассеты, в водяной контур благодаря его физическим свойствам.

Обеспечиваемый изоляционный материал-заполнитель предпочтительно является неорганическим аэрогелем, являющимся несмачиваемым, плавучим и невоспламеняющимся материалом. Было установлено, что изоляционная кассета, в которой изоляционный материал-заполнитель содержит силикатный аэрогель, является особенно предпочтительной. Такие силикатные аэрогели могут содержать, например, поры диаметром около 20 нм при пористости более 90%. Плотность материала может составлять в диапазоне от 90 до 100 кг/м3. Удельная теплопроводность может составлять, например, до около 0,018 Вт/м·K при температуре 25°C. Такой материал может иметь внутреннюю площадь поверхности от около 600 до 800 м2/г. Материал, таким образом, в основном пригоден для использования в качестве изоляционного материала для целей, описанных выше.

Например, в качестве пригодного силикатного аэрогеля можно использовать материал под торговой маркой «Nanogel», который продается компанией «CABOT Corporation».

В пригодном варианте осуществления изоляционной кассеты согласно изобретению предложено использование изоляционного материала-заполнителя, содержащего аэрогель в виде гранулята, предпочтительно со средним размером гранул от 0 мм до 4 мм. Такой гранулят обладает, в частности, преимуществами, заключающимися в удобстве обращения с ним. Его можно засыпать через соответствующие отверстия для заполнения в кассетах из металлического листа. Изоляционные кассеты могут быть заполнены с обеспечением наибольшей возможной плотности упаковки.

Альтернативно изоляционный материал-заполнитель может содержать по меньшей мере одно формованное из аэрогеля изделие. Такое формованное изделие может быть подогнано к конфигурации предпочтительного стабильного по размерам корпуса из металлического листа. Корпус из металлического листа изоляционных кассет может быть изготовлен, например, из аустенитной стали. В особенно предпочтительном варианте осуществления изоляционной кассеты согласно изобретению предложено использование аэрогеля, являющегося непросвечивающимся. Аэрогель, обработанный соответствующим образом, можно использовать для этой цели. Преимуществом этого является то, что способность отражения инфракрасного излучения используемого уплотнительного материала увеличивается, и, таким образом, улучшается его изоляционное действие.

С этой целью, например, изоляционный материал-заполнитель может содержать графитовый порошок и/или порошок оксида металла. Порошок может, например, находиться в гомогенной смеси с гранулятом аэрогеля. Изоляционный материал-заполнитель может, например, содержать аэрогель и графитовый порошок и/или порошок оксида металла в гомогенной смеси; при этом доля графитового порошка и/или порошка оксида металла составляет от 1,5 до 4,5 масс.%.

Целесообразно, чтобы изоляционная кассета согласно изобретению имела приблизительно С-образную форму поперечного сечения и была снабжена крепежными средствами, с помощь которых можно собирать изоляционные кассеты, выполненные в виде взаимодополняющих друг друга частей для образования по существу закрытого кожуха трубы.

Однако, в пределах объема изобретения, изоляционная кассета может быть приспособлена к любому требующемуся контуру устройства, по которому транспортируют рабочую среду, подлежащего изоляции.

Изобретение пояснено ниже посредством описания приведенного в качестве примера варианта осуществления, проиллюстрированного на чертежах, на которых изображено:

на фиг. 1 - схематический вид трубопровода, охваченного изоляционными кассетами согласно изобретению;

на фиг. 2 - вид сверху по II-II на фиг. 1;

на фиг. 3 - продольное сечение III-III на фиг. 2;

на фиг. 4 - вид в разобранном состоянии альтернативного варианта осуществления изоляционной кассеты согласно изобретению; и

на фиг. 5 - изоляционная кассета, представленная на фиг. 4, в собранном состоянии.

На фиг. 1 показана часть 1 трубопровода высокотемпературного трубопровода, по которому транспортируют среду, находящуюся под давлением. Часть 1 трубопровода охвачена изоляционными кассетами 2 согласно изобретению, где изоляционные кассеты 2, имеющие в каждом случае профиль поперечного сечения С-образной формы, и две взаимно дополняющие изоляционные кассеты 2 собраны в каждом случае с помощью крепежных средств 3 для образования закрытой трубообразной изоляционной оболочки 4. В качестве крепежных средств можно использовать, например, известные откидные крепежные средства вилочного типа. Каждая изоляционная кассета 2 состоит из склепанного или сваренного корпуса 5 из металлического листа, предпочтительно изготовленного из аустенитного стального листа. Корпус из металлического листа закрыт по всей окружности и с торцевых сторон 6, и заполнен изоляционным материалом-заполнителем 7. В варианте осуществления изоляционные кассеты 2, показанные на фиг. 1-3, содержат изоляционный материал-заполнитель в виде гранулята силикатного аэрогеля. Здесь гранулят содержит гранулы, имеющие средний размер от 0 до 4 мм, изготовленные из силикагеля, модифицированного окисью триметилсилила, использованного в качестве основного компонента. Этот гранулят обладает пористостью более 90%, содержит поры диаметром около 20 нм, обладает объемной плотностью, составляющей в диапазоне от 90 до 100 кг/м3, и удельной теплопроводностью, составляющей около 0,18 Вт/м·K при температуре 25°C. Удельная площадь поверхности составляет от 600 до 800 м2/г. Аэрогель является невоспламеняющимся, несмачиваемым и плавучим.

Гранулят вводят в изоляционные кассеты через отверстия 8, выполненные в торцевых стенках последней. Отверстия 8 затем закрывают крышками 9. Крышки 9 могут быть приварены, привинчены или приклепаны.

На фиг. 4 и 5 показан дополнительный, приведенный в качестве примера вариант осуществления изоляционной кассеты 2 согласно изобретению. Изоляционный материал-заполнитель 7 выполнен в виде формованного изделия 10, конфигурация которого подогнана к конфигурации стабильного по размерам корпуса 5 из металлического листа.

Формованное изделие 10 вставляют по плотной посадке в корпус 5 из металлического листа, торцевая сторона 6 которого закрыта выполненной соответствующим образом крышкой 9.

Свойства аэрогеля, либо в виде гранулята, либо в виде формованного изделия 10, улучшены с точки зрения его способности отражения инфракрасного излучения, т.е. улучшены его изоляционные свойства в отношении теплового излучения, посредством окрашивания. Например, может быть предусмотрено напыление графитового порошка и/или порошка оксида металла на формованное изделие 10. Гранулят может быть смешан с графитовым порошком и/или порошком оксида металла, где доля графитового порошка и/или порошка оксида металла может составлять от 1 до 4 масс.%.

Перечень позиций, указанных на чертежах:

1 - Часть трубопровода

2 - Изоляционная кассета

3 - Крепежные средства

4 - Изоляционная оболочка

5 - Корпус из металлического листа

6 - Торцевые стороны

7 - Изоляционный материал-заполнитель

8 - Отверстия

9 - Крышка

10 - Формованное изделие

1. Изоляционная кассета (2) в качестве части оболочки устройств парогенератора, находящихся под средним давлением, например в качестве изоляционного кожуха трубы, содержащая, по существу, закрытый корпус (5) из металлического листа, который полностью охватывает изоляционный материал-заполнитель (7), отличающаяся тем, что изоляционный материал-заполнитель (7) содержит аэрогель, при этом изоляционная кассета (2) имеет приблизительно С-образную форму поперечного сечения и снабжена крепежными средствами (3), с помощью которых изоляционные кассеты (2), выполненные в виде взаимодополняющих друг друга частей, могут быть собраны для образования, по существу, закрытого кожуха трубы.

2. Изоляционная кассета по п.1, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит неорганический аэрогель.

3. Изоляционная кассета по п.1 или 2, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит силикатный аэрогель.

4. Изоляционная кассета по п.1 или 2, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит аэрогель в виде гранулята, предпочтительно содержащего гранулы, имеющие средний размер от 0 до 4 мм.

5. Изоляционная кассета по п.3, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит аэрогель в виде гранулята, предпочтительно содержащего гранулы, имеющие средний размер от 0 до 4 мм.

6. Изоляционная кассета по любому из пп.1, 2 или 5, отличающаяся тем, что изоляционный материал-заполнитель содержит по меньшей мере одно формованное изделие (10) из аэрогеля.

7. Изоляционная кассета по п.3, отличающаяся тем, что изоляционный материал-заполнитель содержит по меньшей мере одно формованное изделие (10) из аэрогеля.

8. Изоляционная кассета по п.4, отличающаяся тем, что изоляционный материал-заполнитель содержит по меньшей мере одно формованное изделие (10) из аэрогеля.

9. Изоляционная кассета по п.6, отличающаяся тем, что формованное изделие (10) согласовано с конфигурацией предпочтительно стабильного по размерам корпуса из металлического листа.

10. Изоляционная кассета по п.7 или 8, отличающаяся тем, что формованное изделие (10) согласовано с конфигурацией предпочтительно стабильного по размерам корпуса из металлического листа.

11. Изоляционная кассета по любому из пп.1, 2, 5, 7-9, отличающаяся тем, что аэрогель обладает повышенной способностью отражения инфракрасного излучения.

12. Изоляционная кассета по п.3, отличающаяся тем, что аэрогель обладает повышенной способностью отражения инфракрасного излучения.

13. Изоляционная кассета по п.4, отличающаяся тем, что аэрогель обладает повышенной способностью отражения инфракрасного излучения.

14. Изоляционная кассета по п.6, отличающаяся тем, что аэрогель обладает повышенной способностью отражения инфракрасного излучения.

15. Изоляционная кассета по п.10, отличающаяся тем, что аэрогель обладает повышенной способностью отражения инфракрасного излучения.

16. Изоляционная кассета по п.11, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит графитовый порошок и/или порошок оксида металла.

17. Изоляционная кассета по любому из пп.12-15, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит графитовый порошок и/или порошок оксида металла.

18. Изоляционная кассета по п.11, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит аэрогель и графитовый порошок и/или порошок оксида металла в виде гомогенной смеси, причем доля графитового порошка и/или порошка оксида металла составляет от 1,5 до 4,5 мас.%.

19. Изоляционная кассета по любому из пп.12-16, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит аэрогель и графитовый порошок и/или порошок оксида металла в виде гомогенной смеси, причем доля графитового порошка и/или порошка оксида металла составляет от 1,5 до 4,5 мас.%.

20. Изоляционная кассета по п.17, отличающаяся тем, что изоляционный материал-заполнитель (7) содержит аэрогель и графитовый порошок и/или порошок оксида металла в виде гомогенной смеси, причем доля графитового порошка и/или порошка оксида металла составляет от 1,5 до 4,5 мас.%.



 

Похожие патенты:

Изобретение относится к области теплоизоляции трубопроводов и позволяет повысить механическую прочность покрытия. Способ включает подготовку подлежащей теплоизоляции поверхности очисткой ее от продуктов коррозии, нанесение теплоизоляционного слоя и полимеризацию полученного покрытия.

Изобретение относится к теплоизоляционной технике, в частности к тепловой изоляции оборудования атомных электростанций. Блочная съемная тепловая изоляция содержит расположенные последовательно по длине теплоизолируемого оборудования и состыкованные между собой одинаковые секции из N одинаковых теплоизоляционных блоков, состыкованных между собой, по расположенным под углом φ=2π/N продольным боковым стенкам.

Изобретение относится к области машиностроения. .

Изобретение относится к области машиностроения и направлено на совершенствование гибких газоводов, работающих в условиях высоких температур порядка 1000-2000°С и переменных давлений в диапазоне 2-10 МПа.
Изобретение относится к промышленности строительных материалов и может быть использовано в качестве защитно-механического покрытия монолитной тепловой изоляции бесканальных тепловых сетей.

Изобретение относится к холодильной технике, а более конкретно к устройствам холодильных шкафов бытовых холодильных приборов, и может найти применение при производстве бытовых холодильников и морозильников, а так же витринных шкафов - холодильников, холодильных и морозильных камер.

Изобретение относится к теплоизоляционной технике. .

Изобретение относится к гибкой теплоизолированной трубе для бесканальной прокладки. .
Изобретение относится к технике защиты металлических поверхностей, к теплоизоляционной и антикоррозионной защите трубопроводов тепловых сетей. .
Изобретение относится к теплоизоляции магистральных и технологических нефтепроводов и нефтепродуктопроводов, а именно к способу теплоизоляции запорно-регулирующей арматуры (ЗРА) малых диаметров. Способ теплоизоляции ЗРА малых диаметров включает разработку и изготовление теплоизоляции из пеностекла с защитной оболочкой индивидуально под каждый вид арматуры с учетом ее геометрических размеров и особенностей конструкции, при этом теплоизоляция содержит две или более части, скрепляемые при помощи элементов крепления, обеспечивающих доступ для проведения технического обслуживания и ремонта арматуры, герметичность соединения частей теплоизоляции обеспечивается установкой герметизирующих прокладок из вспененного каучука, при этом на внутреннюю поверхность теплоизоляционного слоя, контактирующего с арматурой, наносится антиабразив для защиты ее антикоррозионного покрытия. Технический результат заключается в создании защищенной от внешних воздействий пожаробезопасной теплоизоляции запорно-регулирующей арматуры малых диаметров, обеспечивающей возможность ее технического обслуживания и ремонта.1 табл.,1 ил.

Группа изобретений относится к области транспортного машиностроения. Трехмерный структурированный металлический лист для использования в автомобильных тепловых экранах имеет множество углублений или выпуклостей. Все выпуклости выступают в одном и том же направлении, нормальном к поверхности гладкого листового материала, определяющей нейтральную плоскость n, на одно и то же расстояние h от этой нейтральной плоскости. Множество выпуклостей совместно образуют регулярную сеть. Каждая выпуклость пересекается с двумя другими выпуклостями, чтобы образовать соединение. Тепловой экран для транспортного средства содержит слой упомянутого трехмерного структурированного металлического листа с множеством углублений или выпуклостей. Достигается повышение жесткости трехмерного структурированного металлического листа. 2 н. и 6 з.п. ф-лы, 14 ил.

Устройство и способ предназначены для формирования секций трубной изоляции из минеральной ваты. Устройство содержит участок отверждения секций трубной изоляции из минеральной ваты, содержащий одну или более форм (31, 32), цилиндрических со стороны внутренней поверхности, при этом участок отверждения секций трубной изоляции из минеральной ваты дополнительно содержит сердечники (51, 52), установленные по одному внутри каждой формы или выполненные с возможностью установки в нее и извлечения из нее, причем для каждой формы (31, 32) предусмотрены первые элементы для нагревания формы, по меньшей мере, по ее внутренней поверхности, и вторые элементы для воздействия на секции трубной изоляции из минеральной ваты, установленные в формах, с помощью микроволнового излучения, причем указанные вторые элементы представляют собой генераторы (61, 62), служащие для передачи микроволновой энергии к каждой форме посредством проводящих модулей (11, 12) и переходных элементов (21, 22), при этом указанные сердечники выполнены из материала, нагревающегося под воздействием микроволнового излучения. Технический результат - сокращение потребляемой энергии и повышение качества продукции. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к теплоизоляции магистральных и технологических нефтепроводов и нефтепродуктопроводов. Способ включает операции измерения геометрических размеров вантуза, при этом проектируют и изготавливают индивидуально под конструкцию вантуза в заводских условиях кожух из двух или более частей тонколистовой оцинкованной стали, на кожух устанавливают с помощью мастики теплоизоляционный слой из пеностекла, швы теплоизоляционного слоя, установленного на части кожуха, соединяют с применением герметизирующих материалов, на поверхность пеностекла, контактирующего с вантузом, наносят антиабразив для защиты антикоррозионного покрытия вантуза, при помощи замков, металлических стяжек с замками и самонарезающих винтов соединяют части кожуха с теплоизоляционным слоем. Технический результат заключается в обеспечении сохранения температуры продукта, перекачиваемого через вантуз, в трассовых условиях с обеспечением возможности доступа к вантузу, в том числе, для технического обслуживания и ремонта. 2 ил.

Изобретение относится к криогенной технике. Теплоизоляционная система содержит изоляцию и внешний кожух. Также система содержит находящийся в тепловом контакте с криогенным оборудованием теплообменник-вымораживатель. Выход теплообменника-вымораживателя направлен вовнутрь теплоизоляции, а на вход теплообменника-вымораживателя поступает воздух из окружающей среды. Влага в теплообменнике-вымораживателе из воздуха в процессе работы конденсируется и вымораживается и затем удаляется назад в окружающую среду в процессе работы оборудования или при его отогреве. Достигается сохранение постоянного значения теплоизоляционной эффективности криогенного оборудования в течение длительного времени и, как следствие, увеличение срока службы криогенного оборудования. 6 з.п. ф-лы, 3 ил.

Изобретение относится к способу производства теплоизоляционной композиции, включающему введение в композицию жидкого стекла связующее наполнителей в виде стеклянных микросфер, углеродистых микроволокон с фибриллами, красителей. Способ характеризуется тем, что в поверхностно-активную жидкость - олеиновую кислоту, взятую в объеме 13,5-15,2% от объема композиции, вводят наночастицы магнетита размером от 10-20 нанометров, покрытые поверхностно-активным веществом - олеиновой кислотой объемом 8-10% от объема композиции, накладывают вращающееся электромагнитное поле силой 700-800 кА/м, затем после начала вращения смеси поверхностно-активного вещества - олеиновой кислоты и наночастиц магнетита вводят жидкое стекло 10-15% от объема композиции, после чего вводят стеклянные микросферы в количестве 20-25% от объема композиции и осуществляют 5000-6000 оборотов в минуту вращающегося магнитного поля (в течение 3-4 минут при частоте вращения магнитного поля 1500 оборотов в минуту), после чего во вращающуюся смесь поверхностно-активного вещества - олеиновой кислоты, наночастиц магнетита, жидкого стекла вводят стеклянные микросферы 30-35% от объема композиции и осуществляют не менее 10000 оборотов в минуту вращающегося электромагнитного поля (не менее 7 минут при частоте вращения магнитного поля 1500 об/мин), затем в смесь поверхностно- активного вещества - олеиновой кислоты вводят углеродистые микроволокна с фибриллами в объеме 5-7% от объема композиции, красители 2-3% от объема композиции и вводится жидкое стекло до заданного объема композиции и осуществляется наложение вращающегося электромагнитного поля не менее 15000 оборотов в минуту (не менее 10 минут при частоте вращения магнитного поля 1500 об/мин). Использование настоящего изобретения позволяет повысить равномерность распределения стеклянных микросфер и различных наполнителей по всему объему композиции и устранение их взаимного контакта. 1 ил.

Изобретение относится к области машиностроения и направлено на разработку способа сборки гибких газоводов, работающих в условиях высоких температур и переменных давлений. Гибкий газовод содержит подвижный телескопический узел в виде металлических оболочек, сопряженных по цилиндрическим поверхностям с уплотнительным кольцом, и эластичный шарнир. Способ сборки основан на фланцевом соединении металлических оболочек с одной стороны и телескопическим соединением с другой. Первоначально газовод фиксируют от радиальных и осевых перемещений торцовыми упорами и прикладывают осевую нагрузку. Это позволяет обеспечить неподвижность эластичного шарнира и предотвратить его разрушение на этапе сборки. Затем газовод соединяется с ответным телескопическим узлом, а с противоположной стороны с ответным фланцевым узлом. После этого проводят испытания на герметичность газовода и снимают осевое усилие. Задачей изобретения является разработка способа сборки газовода, при котором исключается разрушение эластичного шарнира, тем самым повышается надежность работы газовода. 2 н.п. ф-лы, 1 ил.
Изобретение относится к жидкой фенольной смоле, предназначенной для введения в проклеивающий состав для минеральных волокон, которая содержит главным образом феноло-формальдегидные конденсаты и феноло-формальдегид-глициновые конденсаты. Изобретение относится также к способу получения вышеуказанной смолы, к проклеивающему составу, содержащему смолу, и к изоляционным материалам на основе минеральных волокон, проклеенных посредством указанного проклеивающего состава. 4 н. и 12 з.п. ф-лы, 2 табл., 9 пр.

Группа изобретений относится к области машиностроения, в частности газоводам систем подачи газов при повышенных температурах и переменных давлениях в условиях ограниченных пространств расположения источников газа и его потребителей. Газовод представляет пространственно-изогнутую конструкцию с внутренней герметизирующей оболочкой из теплостойкой резины и наружной силовой оболочкой из прорезиненной легкодеформируемой ткани, соединенных между собой с образованием уплотнительных буртов на концах, прижимаемых фланцами к местам присоединения при применении. Сущность способа изготовления заключается в формировании герметизирующей и силовой оболочек из композиционных материалов, в оформлении их соединения с образованием уплотнительных буртов на концах газовода и деформировании исходной цилиндрической заготовки до требуемых размеров и формы. Достигается повышение надежности и технологичности конструкции, а также расширение области применения за счет придания газоводу любой требуемой формы. 2 н. и 2 з.п. ф-лы, 5 ил.
Изобретение относится к пенопласту на основе фенольных смол и его применению. Пенопласт изготавливается по меньшей мере с применением следующих стадий: а) изготовление преполимера путем конденсации по меньшей мере фенольного соединения и формальдегида в соотношении 1:1,0-1:3,0 с применением 0,15-5 мас.% от количества используемого сырья основного катализатора при температуре от 50 до 100°C с получением коэффициента преломления реакционной смеси 1,4990-1,5020, измеренного при 25°C в соответствии с DIN 51423-2; б) добавка от 5 до 40 мас.% от количества используемого сырья по меньшей мере одного натурального полифенола при температуре от 50 до 100°C; в) добавка от 2 до 10 мас.% от количества используемого сырья одного или нескольких эмульгаторов и их смесей; г) добавка от 2 до 10 мас.% от количества используемого сырья одного или нескольких порообразователей и их смесей; д) добавка от 10 до 20 мас.% от количества используемого сырья отвердителя и е) отверждение. Результатом является создание основанного на биологическом материале термореактивного пенопласта с улучшенными свойствами, в частности улучшенными огнезащитными свойствами, при, по существу, неизменных свойствах пенопласта. 2 н. и 8 з.п. ф-лы, 6 пр.
Наверх