Устройство для измерения параметров рельефа поверхности и механических свойств материалов

Изобретение относится к технике контроля и исследования материалов и изделий и может быть использовано для определения параметров рельефа поверхности (линейные размеры, шероховатость), механических (твердость, модуль упругости) и трибологических (коэффициент трения, износостойкость, время жизни покрытий) характеристик материалов с субмикронным и нанометровым пространственным разрешением. Устройство содержит индентор, установленный на упругом элементе, по меньшей мере, два оптических датчика, каждый из которых включает источник оптического излучения и его приемник. Упругий элемент выполнен П-образным, стойки П-образного упругого элемента закреплены на держателе, индентор установлен на перекладине П-образного упругого элемента. П-образный упругий элемент выполнен с возможностью, по меньшей мере, частичного перекрытия потока оптического излучения оптических датчиков и изменения площади перекрытия потока при своем изгибе или содержит установленное на нем приспособление, выполненное с возможностью, по меньшей мере, частичного перекрытия потока оптического излучения оптических датчиков и изменения площади перекрытия потока при своем изгибе. По меньшей мере, один из оптических датчиков выполнен с возможностью контроля изгиба перекладины в плоскости П-образного элемента в процессе измерения, а другой из оптических датчиков - с возможностью контроля изгиба стоек в плоскости П-образного элемента в процессе измерения. Технический результат: повышение качества, достоверности и стабильности измерений, повышение технологичности устройства при его производстве. 6 з.п. ф-лы, 4 ил.

 

Изобретение относится к технике контроля и исследования материалов и изделий и может быть использовано для определения параметров рельефа поверхности (линейные размеры, шероховатость), механических (твердость, модуль упругости) и трибологических (коэффициент трения, износостойкость, время жизни покрытий) характеристик материалов с субмикронным и нанометровым пространственным разрешением.

В настоящее время с развитием нанотехнологий все более актуальной становится задача измерения свойств материалов в нанометровом диапазоне линейных размеров. Для большого перечня материалов и изделий важнейшими параметрами являются качество обработки и структура поверхности, а также механические свойства: твердость, модуль упругости, трещиностойкость, адгезия покрытия, трибологические параметры и др. В частности, эти параметры важны для конструкционных материалов, защитных пленок, медицинских покрытий, поверхностей ответственных деталей, изделий микроэлектроники и микросистемной техники и др. Для измерения перечисленных выше параметров чаще всего применяют приборы следующих типов: сканирующие зондовые микроскопы (СЗМ), нанотвердомеры и трибометры.

СЗМ применяются в основном для исследования рельефа поверхности, а также для изучения свойств тонких приповерхностных слоев. В качестве зондов в СЗМ часто используют кремниевые кантилеверы, производимые по интегральной планарной технологии, с радиусом острия наконечник менее 20 нм. Достоинством таких приборов является высокое пространственное разрешение и хорошее качество получаемых изображений поверхности, недостатком - невозможность измерения механических свойств твердых материалов из-за малой изгибной жесткости зондов и относительно низкого значения твердости материала наконечника.

В нанотвердомерах используют алмазные наконечники (инденторы), что позволяет измерять свойства практически всех известных материалов. В этих приборах с помощью различного типа актюаторов и датчиков осуществляют контролируемое по глубине и силе индентирование материала с последующим вычислением по кривым нагружения и разгрузки твердости и модуля упругости (Юнга) исследуемого материала. Таким образом, реализуется процедура измерительного индентирования (регламентируемая международными стандартами ISO 14577 и ASTM E2546-07). Применяемые сегодня системы для задания и регистрации силы и перемещения позволяют прикладывать нагрузку с шагом меньше микроньютона и контролировать внедрение индентора с разрешением в доли нанометра.

В ряде моделей нанотвердомеров опционально предусмотрен режим сканирования поверхности тем же алмазным индентором, которым проводят индентирование. Таким образом, можно оперативно контролировать состояние образца до и после индентирования, осуществляя сканирование с контролируемой силой прижима индентора к поверхности. Однако особенности конструкции нанотвердомеров не позволяют получать изображения поверхности с качеством, сопоставимым с возможностями СЗМ.

В ряде современных нанотвердомеров для решения задачи визуализации поверхности используют дополнительные модули СЗМ, что приводит к значительному удорожанию прибора и усложнению процедуры измерений формы отпечатков, образовавшихся в процессе наноиндентирования.

Для проведения трибологических исследований (измерения коэффициента трения и износостойкости) нанотвердомеры оснащаются датчиками боковой силы, измеряющими силу, приложенную к индентору по оси, параллельной плоскости образца. Одновременный контроль нормальной и тангенциальной нагрузки на индентор позволяет измерить так называемую «тангенциальную» твердость в процессе проведения испытания царапанием (склерометрия) и коэффициент трения в процессе испытания на износостойкость.

В связи с этим актуальной является задача создания устройства, позволяющего исследовать рельеф поверхности с нанометровым пространственным разрешением, измерять механические свойства материалов методами индентирования и царапания, а также определять трибологические параметры.

Такое устройство должно быть оснащено датчиками нормальной и тангенциальной сил для контроля нагрузки, приложенной к индентору, и иметь возможность работать в режиме мягкого контакта с поверхностью без ее разрушения, необходимом для построения трехмерных изображений поверхности с высоким разрешением.

Одним из возможных подходов для решения задачи создания сканирующего нанотвердомера является использование специального зонда, работающего в режиме резонансных колебаний при определении контакта наконечника с поверхностью и сканировании поверхности, и применение датчиков, регистрирующих изгиб данного зонда в двух перпендикулярных направлениях и измеряющих нормальное и тангенциальное статическое усилие, возникающее при осуществлении индентирования, царапания и истирания исследуемого материала.

Известно используемое в сканирующих зондовых атомно-силовых микроскопах устройство для измерения статического изгиба зонда в виде консольной балки (кантилевера) (RU №2279151 С1, 27.06.2006).

В данном известном устройстве так называемая дефлекторная схема позволяет достаточно точно измерять угол изгиба кремниевого кантилевера длиной менее 100 мкм, используемого в сканирующих зондовых микроскопах и тем самым определять силу, с которой игла кантилевера давит на поверхность материала.

Однако при увеличении размера и жесткости кантилевера чувствительность дефлекторной схемы резко падает, поэтому ее применение в СЗМ, использующих пьезорезонансные зонды размером более 10 мм, не позволяет обеспечить требуемую точность при измерении усилия и глубины индентирования.

Известна конструкция шторного оптического датчика, основанная на перекрытии светового потока подвижным объектом (RU №2087876 С1, 20.08.1997).

Таким датчикам, реагирующим на изменение интенсивности регистрируемого фотоприемником светового потока, свойственна надежность конструкции и простота юстировки. Применяя в качестве источников излучения полупроводниковые светодиоды, а в качестве приемников излучения полупроводниковые фотодиоды, можно изготовить миниатюрный оптический модуль, регистрирующий линейное перемещение стержня с алмазным индентором на конце, используемого для измерения механических свойств. Динамический диапазон регистрируемых смещений у такого датчика сверху ограничен величиной линейной апертуры используемого пучка оптического излучения, а снизу - шумами светового излучения и электронной схемы, используемой для регистрации оптического излучения.

Наиболее близким к заявленному является устройство для измерения параметров рельефа поверхности и механических свойств материалов, содержащее упругий элемент в виде консольно закрепленного пьезоэлектрического стержня, индентор, размещенный на свободном конце стержня, держатель, в котором укреплен другой конец стержня, оптический датчик, состоящий из источника и приемника оптического излучения, причем упругий элемент размещен между источником и приемником оптического излучения таким образом, что он перекрывает часть потока оптического излучения с возможностью изменения количества излучения, попадающего на приемник излучения, при своем изгибе, схему возбуждения, схему детектирования (RU №2442131 С1, 10.02.2012 г.)

Недостатком данного известного устройства является то, что такая конструкция позволяет измерять только нормальную силу, приложенную к индентору в направлении изгиба стержня, и не позволяет контролировать тангенциальную (боковую) силу, приложенную вдоль стержня. Кроме того, при изгибе стержня в процессе прикладывания нагрузки происходит поворот индентора и смещение его вершины параллельно оси стержня, что приводит к дополнительной погрешности измерений при индентировании и необходимости применения специальных методов коррекции перемещения индентора. Применение для изготовления упругого элемента пьезоматериала ухудшает стабильность и разрешающую способность устройства из-за присущих пьезоматериалам свойств нелинейности, ползучести и гистерезиса при деформации.

Техническим результатом предложенного изобретения является устранение указанных недостатков, повышение качества, достоверности и стабильности измерений, повышение технологичности устройства при его производстве.

Указанный технический результат достигается за счет того, что устройство для измерения параметров рельефа поверхности и механических свойств материалов, содержащее индентор, установленный на упругом элементе, содержит, по меньшей мере, два оптических датчика, каждый из которых включает источник оптического излучения и его приемник, упругий элемент выполнен П-образным, стойки П-образного упругого элемента закреплены на держателе, индентор установлен на перекладине П-образного упругого элемента, П-образный упругий элемент выполнен с возможностью, по меньшей мере, частичного перекрытия потока оптического излучения оптических датчиков и изменения площади перекрытия потока при своем изгибе или содержит установленное на нем приспособление, выполненное с возможностью, по меньшей мере, частичного перекрытия потока оптического излучения оптических датчиков и изменения площади перекрытия потока при своем изгибе, при этом, по меньшей мере, один из оптических датчиков выполнен с возможностью контроля изгиба перекладины в плоскости П-образного элемента в процессе измерения, а другой из оптических датчиков - с возможностью контроля изгиба стоек в плоскости П-образного элемента в процессе измерения.

Кроме того, устройство снабжено, по меньшей мере, двумя оптическими датчиками, состоящими из источника оптического излучения и его приемника - первой парой, выполненными с возможностью контроля изгиба перекладины в плоскости П-образного упругого элемента, и, по меньшей мере, двумя оптическими датчиками - второй парой - с возможностью контроля изгиба стоек в плоскости П-образного упругого элемента, приспособление для перекрытия потока оптического излучения выполнено в виде прямоугольной шторки и установлено на перекладине П-образного упругого элемента, а оптические датчики установлены таким образом, что каждая из противоположных горизонтальных сторон прямоугольной шторки пересекает поток оптического излучения каждого из датчиков первой пары, а каждая из противоположных вертикальных сторон прямоугольной шторки пересекает поток оптического излучения каждого из датчиков второй пары.

Кроме того, устройство снабжено схемой возбуждения и подключенным к схеме возбуждения пьезоэлементом, а также схемой детектирования, подключенной к датчикам контроля изгиба перекладины.

Кроме того, П-образный упругий элемент может быть выполнен из металла или металлического сплава.

Кроме того, П-образный упругий элемент может быть выполнен из металла или металлического сплава, выбранного из следующего ряда: дюралюминий, латунь, бронза, титан, сталь.

Кроме того, П-образный упругий элемент может быть выполнен из кристаллического материала.

Кроме того, П-образный упругий элемент может быть выполнен из кремния.

Устройство иллюстрируется следующими чертежами.

На фиг.1 показана общая схема устройства с П-образным упругим элементом и присоединенным пьезоэлементом; на фиг.2 показано устройство с подключенными схемами возбуждения и детектирования; на фиг.3 представлены зависимости перемещения сканера по Z, нормальной и тангенциальной силы, а также перемещения сканера по Х от времени в процессе индентирования и царапания, на фиг.4 приведено изображение поверхности вольфрама после индентирования и царапания, полученное сканированием в колебательном режиме работы устройства.

Устройство содержит П-образный упругий элемент 1, включающий стойки 2 и перекладину 3. Стойки 2 закреплены на держателе 4, на перекладине 3 установлен индентор 5.

На перекладине 3 П-образного упругого элемента 1 установлена шторка 6 прямоугольной формы.

Устройство содержит, по меньшей мере, два датчика 7 и 8, выполненные с возможностью контроля изгиба перекладины 3 в плоскости П-образного упругого элемента, и, мо меньшей мере, два датчика 9 и 10, выполненные с возможностью контроля изгиба стоек 2 в плоскости П-образного упругого элемента.

Каждый из датчиков 7, 8, 9, 10 включает источники 11, 12, 13, 14 оптического излучения и его приемники 15, 16, 17, 18 соответственно.

Оптические датчики установлены таким образом, что каждая из противоположных горизонтальных стороны прямоугольной шторки 6 пересекает поток оптического излучения каждого из датчиков 7 и 8 (частично перекрывая его), а каждая из противоположных вертикальных сторон прямоугольной шторки 6 пересекает поток оптического излучения каждого из датчиков 9 и 10 (частично перекрывая его).

Кроме того, устройство снабжено схемой возбуждения 19 и схемой детектирования 20. К устройству присоединен пьезоэлемент 21, подключенный к схеме возбуждения 19. Сигнал от датчика 7 и 8 подан на схему 20 детектирования.

П-образный упругий элемент 1 может быть выполнен из металла или металлического сплава, выбранного из следующего ряда: дюралюминий, латунь, бронза, титан, сталь.

П-образный упругий элемент 1 может быть выполнен также из кристаллического материала, например из кремния.

Устройство работает следующим образом.

Для индентирования индентор 5 вводят в контакт с исследуемой поверхностью, при нагружении поверхности по нормали (в вертикальном направлении) на инденторе 5 возникает нормальная (вертикальная) сила, перекладина 3 П-образного упругого элемента 1 изгибается, при этом изменяется площадь перекрытия светового потока оптических датчиков 7 и 8. По разностному сигналу оптических датчиков 7 и 8 измеряют величину изгиба перекладины 3 П-образного упругого элемента 1 и нормальную силу, приложенную к индентору 5.

Для проведения царапания или измерения трибологических свойств поверхности перемещают устройство вдоль поверхности образца, контролируя нормальную силу, приложенную к индентору 5 по изгибу горизонтальной перекладины 3 П-образного упругого элемента 1. На инденторе 5 возникает тангенциальная (боковая) сила, при этом стойки 2 П-образного упругого элемента 1 изгибаются, изменяя площадь перекрытия светового потока оптических датчиков 9 и 10, по разностному сигналу которых измеряют величину бокового изгиба упругого элемента и тангенциальную (боковую) силу.

Для реализации колебательного (резонансного) режима контроля контакта индентора с поверхностью с помощью схемы 19 возбуждения инициируют колебания по толщине пьезоэлемента 21, которые возбуждают колебания перекладины 3 П-образного упругого элемента 1. При этом сигнал оптического датчика 7 и датчика 8 изменяется в соответствии с частотой и амплитудой этих колебаний. При контакте индентора 5 с поверхностью изменяется частота (фаза) и амплитуда колебаний перекладины 3, эти изменения измеряются схемой детектирования 20. Постоянный контакт с поверхностью в процессе сканирования осуществляется путем поддержания постоянной частоты (фазы) или амплитуды сигнала, измеренного схемой детектирования 20.

Устройство предлагаемой конструкции было использовано для исследования процессов пластической деформации и силы трения при царапании образца из вольфрама алмазным индентором. Устройство использовалось в составе сканирующего зондового микроскопа - нанотвердомера.

Образец помещали на предметный стол прибора, устройство крепили к трехкоординатному позиционеру (сканеру). С помощью микропозиционера с приводом от шагового двигателя сканер с закрепленным на нем устройством подводили к поверхности образца до касания индентора 5 с поверхностью. Затем с помощью сканера перемещали устройство по нормали к поверхности образца, производя нагружение поверхности индентором 5 (индентирование). При этом фиксировали разностный сигнал оптических датчиков 7 и 8, который был предварительно откалиброван в единицах силы - Ньютонах (Н). Нагружение проводили до достижения сигналом оптических датчиков значения, соответствующего 25 мН. После этого устройство перемещали вдоль образца, производя царапание. При этом фиксировали разностный сигнал оптических датчиков 9 и 10. Затем устройство отводили от поверхности. Записанные сигналы соответствовали значениям нормальной и тангенциальной силы, приложенной к индентору 5 в процессе индентирования и царапания. Кривые зависимостей перемещения сканера по Z, нормальной и тангенциальной силы, а также перемещения сканера по Х от времени в процессе индентирования и царапания приведены на фиг.3.

Затем с помощью схемы 19 возбуждения посредством пьезоэлемента 21 инициировали колебания перекладины 3 П-образного упругого элемента 1, измеряя при этом амплитуду и частоту колебаний при помощи схемы 20 детектирования. Подводили устройство к поверхности образца, контролируя касание по изменению амплитуды и частоты колебаний. Амплитуда колебаний перекладины 3 П-образного упругого элемента 1 при этом была порядка 100 нм, частота - 2,5 кГц. Касание фиксировали по изменению частоты колебаний на 0,5 Гц. Проводили построчное сканирование области царапины, поддерживая постоянной частоту колебаний. По сигналам перемещений сканера строили 3-мерное изображение рельефа поверхности.

Сигналы каждой пары датчиков вычитаются один из другого, тем самым обеспечивается компенсация постоянных составляющих засветки фотоприемников, а также 2-кратное усиление изменения сигналов, соответствующих нормальному и тангенциальному изгибу (дифференциальное включение).

Для реализации колебательного, в том числе резонансного, режима контроля контакта с поверхностью к устройству добавляется схема возбуждения и схема детектирования, а также крепится пьезоэлемент, подключенный к схеме возбуждения, а разностный сигнал оптических датчиков изгиба перекладины подключен к схеме детектирования.

Изобретение позволит повысить качество (в частности, разрешающую способность), достоверность и стабильность измерений, а также оптимизировать конструкцию и повысить ее технологичность при производстве.

Изобретение позволит измерить нормальную (вертикальную) и тангенциальную (боковую) силы, приложенные к индентору, а также обеспечивает контроль контакта с поверхностью в колебательном (резонансном) режиме для реализации сканирования рельефа поверхности.

1. Устройство для измерения параметров рельефа поверхности и механических свойств материалов, содержащее индентор, установленный на упругом элементе, отличающееся тем, что оно содержит, по меньшей мере, два оптических датчика, каждый из которых включает источник оптического излучения и его приемник, упругий элемент выполнен П-образным, стойки П-образного упругого элемента закреплены на держателе, индентор установлен на перекладине П-образного упругого элемента, П-образный упругий элемент выполнен с возможностью, по меньшей мере, частичного перекрытия потока оптического излучения оптических датчиков и изменения площади перекрытия потока при своем изгибе или содержит установленное на нем приспособление, выполненное с возможностью, по меньшей мере, частичного перекрытия потока оптического излучения оптических датчиков и изменения площади перекрытия потока при своем изгибе, при этом, по меньшей мере, один из оптических датчиков выполнен с возможностью контроля изгиба перекладины в процессе измерения в плоскости П-образного элемента, а другой из оптических датчиков - с возможностью контроля изгиба стоек в плоскости П-образного элемента в процессе измерения.

2. Устройство по п.1, отличающееся тем, что оно снабжено, по меньшей мере, двумя оптическими датчиками, состоящими из источника оптического излучения и его приемника - первой парой, выполненными с возможностью контроля изгиба перекладины в плоскости П-образного упругого элемента, и, по меньшей мере, двумя оптическими датчиками - второй парой - с возможностью контроля изгиба стоек в плоскости П-образного упругого элемента, приспособление для перекрытия потока оптического излучения выполнено в виде прямоугольной шторки и установлено на перекладине П-образного упругого элемента, а оптические датчики установлены таким образом, что каждая из противоположных горизонтальных сторон прямоугольной шторки пересекает поток оптического излучения каждого из датчиков первой пары, а каждая из противоположных вертикальных сторон прямоугольной шторки пересекает поток оптического излучения каждого из датчиков второй пары.

3. Устройство по п.1 или 2, отличающееся тем, что оно снабжено схемой возбуждения и подключенным к схеме возбуждения пьезоэлементом, а также схемой детектирования, подключенной к датчикам контроля изгиба перекладины.

4. Устройство по п.1, отличающееся тем, что П-образный упругий элемент может быть выполнен из металла или металлического сплава.

5. Устройство по п.4, отличающееся тем, что П-образный упругий элемент может быть выполнен из металла или металлического сплава, выбранного из следующего ряда: дюралюминий, латунь, бронза, титан, сталь.

6. Устройство по п.1, отличающееся тем, что П-образный упругий элемент может быть выполнен из кристаллического материала.

7. Устройство по п.6, отличающееся тем, что П-образный упругий элемент может быть выполнен из кремния.



 

Похожие патенты:

Изобретение относится к способам определения механических свойств материалов путем вдавливания индентора в поверхность образца с заданной нагрузкой, а именно к способам определения статического модуля упругости Юнга.

Изобретение относится к технике испытания твердых материалов на микротвердость. .

Изобретение относится к устройствам для исследования или анализа материалов путем определения их твердости и может быть использовано для определения физико-механических характеристик растущих деревьев, пиломатериалов, деревянных строительных конструкций и т.п.

Изобретение относится к технике контроля и исследования материалов и изделий и может быть использовано для определения параметров рельефа поверхности и механических характеристик материалов с субмикронным и нанометровым пространственным разрешением.

Изобретение относится к области сельского хозяйства и может быть использовано для оценки твердости почвы. .

Изобретение относится к горному делу, в частности к устройствам для определения механических свойств горных пород. .

Изобретение относится к способам определения показателей механических свойств монолитных образцов, в том числе образцов горных пород, и может быть использовано при определении сцепления образцов как из искусственных, так и природных материалов.

Изобретение относится к технике контроля материалов и изделий и может быть использовано для измерения параметров рельефа поверхности и механических характеристик материалов с субмикронным и нанометровым пространственным разрешением.

Изобретение относится к строительству и машиностроению. .

Изобретение относится к определению механических характеристик однородных покрытий, а именно к определению модуля упругости покрытий посредством вдавливания в поверхность материала цилиндрического индентора, и может быть использовано для определения модуля упругости покрытий на подложках из различных материалов. Сущность: вдавливают в покрытие с известной толщиной цилиндрический индентор. Определяют в соответствии с показаниями прибора, регистрирующего связь между вдавливающей силой и осадкой индентора, модуль жесткости системы покрытие-подложка, далее рассчитывают значение отношения модуля жесткости системы к модулю упругости подложки и с помощью известных способов нахождения значения функции по заданной неявной зависимости определяют модуль упругости покрытия из формулы. Технический результат: повышение точности определения модуля упругости покрытия. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области физики и может быть использовано для исследования и/или анализа материалов путем определения их физических или химических свойств. Определение осуществляют по механическим и структурным характеристикам. При этом дополнительно определяют величину микротвердости перлита и при микротвердости менее 240 HV и не превышающей 50 HV разности значений по микротвердости между перлитом и ферритом принимают решение о пригодности стали для обработки путем холодной пластической деформации. Достигается повышение информативности и надежности определения. 4 ил.

Изобретение относится к исследованию материалов путем определения их химических или физических свойств, в частности к исследованию прочностных свойств твердых материалов путем приложения к ним механических усилий, а именно путем измерения высоты отскакивания ударного тела. Сущность: при нанесении удара по боковой поверхности трубопровода результат измерения увеличивают на величину поправки, которую определяют путем произведения относительной разности величин информативных параметров, измеренных на отрезке образцовой трубы такого же типоразмера при нанесении ударов в торец отрезка и по его боковой поверхности, на фактическую твердость трубопровода, измеренную на его боковой поверхности, деленного на информативный параметр твердости от удара в торец отрезка, с соблюдением условия одного направления продольной оси прибора, для всех случаев использования прибора на действующем трубопроводе и на отрезке образцовой трубы. Измерения пересчитывают в значения статической твердости по Бринеллю, в соответствии с таблицами из комплекта прибора. Технический результат: повышение точности измерения твердости. 2 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам для исследования и анализа свойств материалов путем определения величины сопротивления их просверливанию и может быть использовано для определения физико-механических характеристик древесины растущих деревьев, пиломатериалов, деревянных строительных конструкций различного назначения. Устройство содержит буровое сверло с электродвигателем его вращения, размещенные на каретке, установленной на направляющих с возможностью возвратно-поступательного движения, переднюю стенку, ограничители смещения бурового сверла в радиальном направлении и датчик частоты вращения выходного вала электропривода подачи каретки, связанный с программно-аппаратным комплексом. Кроме того, устройство снабжено датчиком тока электродвигателя вращения бурового сверла и штоками, при этом ограничители перемещения бурового сверла в радиальном направлении выполнены в виде пластин, размещенных между упомянутыми кареткой и передней стенкой с возможностью перемещения по направляющим, каждая из упомянутых пластин жестко соединена с концами по меньшей мере двух штоков, противоположные концы которых соединены с упомянутой кареткой с помощью ограничителя, а датчик тока электродвигателя вращения бурового сверла связан с упомянутым программно-аппаратным комплексом. Использование изобретения позволяет повысить точность измерений, а также снизить вес и габариты конструкции устройства. 2 ил.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины ионно-лучевым распылением включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом и с изменением процентного соотношения фаз металл-керамика в покрытии от нуля до максимума, после чего определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз. На основании полученных данных создают искусственную нейронную сеть, проводят ее обучение. Затем проводят тестирование полученной нейросетевой модели путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, факторов нейросетевой модели в виде экспериментально измеренных величин, включающих микротвердость металлического покрытия (Нм), микротвердость керамического покрытия (Нк) и концентрацию металлической фазы в композите (Ск) с последующим определением при помощи полученной нейросетовой модели ее выходного параметра в виде значения микротвердости нанокомпозитного покрытия (Н) и сравнением полученного теоретического значения с исходными экспериментальными данными. Затем вводят в упомянутую искусственную нейронную сеть значения микротвердости для металлической и керамической фаз без примесей и процентное соотношение упомянутых фаз в получаемом покрытии и при помощи искусственной нейронной сети определяют значение микротвердости получаемого нанокомпозитного покрытия металл-керамика при введенном соотношении металлической и керамической фаз. В частных случаях осуществления изобретения после сравнения полученного теоретического значения микротвердости нанокомпозитного покрытия (Н) с исходными экспериментальными данными проводят корректировку полученной нейросетевой модели. Обеспечивается повышенная износостойкость с одновременным снижением себестоимости покрытия и высокая стабильность определяемых параметров, используемых для нанесения покрытия. 1 з.п. ф-лы, 4 ил.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения нанокомпозитных покрытий металл-керамика с требуемым значением микротвердости включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значение микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума. Затем определяют полученные значения микротвердости покрытия при заданном соотношении указанных фаз. На основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, после чего вводят в упомянутую искусственную нейронную сеть данные о химическом составе металлической и керамической фаз, процентном соотношении указанных фаз в получаемом покрытии, и при помощи искусственной нейронной сети определяют значения микротвердости получаемого нанокомпозитного покрытия металл-керамика при введенном соотношении металлической и керамической фаз. В частных случаях осуществления изобретения значение микротвердости для нанокомпозитного покрытия определяют путем пересчета микротвердости для массивного образца посредством введения переводного коэффициента. Обеспечивается повышенная износостойкость с одновременным снижением себестоимости покрытия и высокая стабильность определяемых параметров, используемых для нанесения покрытия. 1 з.п. ф-лы, 4 ил.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз характеризуется тем, что определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума. Затем определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз. На основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, после чего проводят тестирование полученной нейросетевой модели путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, факторов нейросетевой модели в виде экспериментально измеренных величин, включающих микротвердость металлического покрытия (Нм), микротвердость керамического покрытия (Нк) и концентрацию металлической фазы в композите (См), с последующим определением при помощи полученной нейросетовой модели ее выходного параметра в виде значения микротвердости нанокомпозитного покрытия (Н), и сравнения полученного теоретического значения с исходными экспериментальными данными. Затем вводят в упомянутую искусственную нейронную сеть данные о химическом составе металлической и керамической фаз, их процентном соотношении в получаемом покрытии и, при помощи искусственной нейронной сети, определяют значения микротвердости получаемого нанокомпозитного покрытия металл-керамика по соотношению металлической и керамической фаз. В частных случаях осуществления изобретения после сравнения полученного теоретического значения микротвердости нанокомпозитного покрытия (Н) с исходными экспериментальными данными проводят корректировку полученной нейросетевой модели. Обеспечивается повышенная износостойкость с одновременным снижением себестоимости покрытия и высокая стабильность определяемых параметров, используемых для нанесения покрытия. 1 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может использоваться в сельском хозяйстве для исследования физико-механических свойств почвы, в частности твердости почвы. Устройство содержит корпус, закрепленный на стойке, плунжер, который одним торцом жестко скреплен с наконечником, а другим торцом упирается в упругий элемент, закрепленный в корпусе. На упругом элементе зафиксированы тензометрические датчики. Плунжер целиком размещен в направляющей конусообразной крышке и установлен в последней посредством втулки и эластичной защитной вставки. Плунжер не контактирует с почвой, а наконечник расположен за пределами корпуса устройства и контактирует с почвой только своей рабочей поверхностью. Технический результат: повышение достоверности измерения, обеспечение возможности дифференциального измерения твердости почвы, то есть измерения в определенном слое, а также снижение тягового усилия, необходимого для перемещения устройства в процессе измерения. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области определения остаточного напряжения путем инструментального индентирования. Сущность: осуществляют приложение к образцу одноосного напряжения, двуосного напряжения и одинакового по всем направлениям напряжения, а затем выполнение инструментального индентирования с использованием индентора, вычисление наибольшей глубины вдавливания индентора в ненапряженном состоянии образца путем подстановки в формулу для вычисления максимальной глубины вдавливания индентора в ненапряженном состоянии фактической глубины контакта в ненапряженном состоянии, полученной из фактической глубины контакта индентора, и максимальной глубины вдавливания индентора и результирующей глубины отпечатка индентора при приложении максимального вдавливающего усилия L0, найденных из зависимости глубины вдавливания индентора от вдавливающего усилия, полученной путем инструментального индентирования, получение кривой зависимости глубины вдавливания индентора от вдавливающего усилия в ненапряженном состоянии путем подстановки вычисленной указанным образом максимальной глубины вдавливания индентора в ненапряженном состоянии образца в формулу, связывающую глубину вдавливания индентора и вдавливающее усилие, и вычисления разности ΔL усилий между усилием L1, соответствующим максимальной глубине вдавливания индентора на кривой зависимости глубины вдавливания индентора от вдавливающего усилия в ненапряженном состоянии, и максимальным вдавливающим усилием L0, и вычисление остаточного напряжения в образце путем подстановки вычисленной разности ΔL усилий в формулу для вычисления остаточного напряжения. Технический результат: возможность определять остаточное напряжение в образце даже при отсутствии состояния без остаточного напряжения. 3 н. и 8 з.п. ф-лы, 27 ил.

Изобретение относится к способам определения механических свойств материалов путем вдавливания индентора в поверхность образца с заданной нагрузкой, а именно к способам определения статического модуля упругости Юнга (ниже модуль упругости). Сущность: совместно используют экспериментальное вдавливание индентора и компьютерное моделирование вдавливания индентора методом конечных элементов, определяют модуль упругости частицы, соответствующей нулевой разнице расчетной и экспериментальной глубин проникновения индентора, определяют модуль упругости этой же частицы по методике Оливера-Фарра. Сравнивают значение модуля упругости, полученное расчетом по методике Оливера-Фарра со значением, полученным из этапа численных исследований, определяют среднее арифметическое значение модуля упругости исследуемой частицы. Технический результат: возможность определения модуля упругости материала микро- и наночастиц произвольной формы. 2 ил.
Наверх