Способ измерения фазной емкости электросети

Изобретение относится к области электротехники и может быть использовано для измерения емкости между фазами и корпусом (или землей) в любых трехфазных электросетях, например в судовых. Описан способ измерения фазной емкости электросети с изолированной нейтралью, который включает в себя поочередное измерение токов замыкания каждой из фаз и отличается тем, что дополнительно измеряют углы между векторами токов замыкания и векторами возникающих при замыканиях напряжений на нейтрали, используя которые рассчитывают фазные емкости. Способ повышает точность и устраняет ошибки при определении фазных емкостей электросети. 3 ил.

 

Изобретение относится к области электротехники и может быть использовано для измерения емкости между фазами и корпусом (или землей) в любых трехфазных электросетях, например в судовых.

Известен способ измерения емкости (RU №143141 A1, G01R 27/26, опубл. 01.01.1961), заключающийся в осциллографировании процесса разряда емкости через известное сопротивление при помощи пересчетной схемы, преобразующей постоянную времени в величину емкости.

Недостатком способа является его неприменимость для измерения емкости в сети без ее обесточивания, что затрудняет его применение.

Известен способ измерения емкости относительно корпуса судовых электроэнергетических систем (RU №2028633 С1, G01R 27/18, опубл. 09.02.1995), заключающийся в том, что обесточивают систему, включают коммутационные аппараты, проверяют отсутствие гальванических связей с корпусом, закорачивают между собой три фазы главного распределительного щита, после чего включают мост переменного тока между любой удобной точкой токоведущих частей системы и корпусом и производят измерение суммарной емкости системы относительно корпуса.

Недостатком способа является его неприменимость для измерения емкости в электросети без ее обесточивания, а также отсутствие возможности измерения емкости отдельных фаз.

Наиболее близким является способ определения фазных емкостей электросистемы относительно корпуса (Ксенофонтов А.П. Защитные устройства в судовых и береговых электроустановках рыбной промышленности / А.П.Ксенофонтов, Ю.А.Шестопалов, В.Я.Островский. - М., 1984. - 255 с., стр.246), который принят в качестве ближайшего аналога, заключающийся в поочередном замыкании фаз электросети на корпус через амперметр и дальнейшем расчете фазных емкостей по измеренным токам однофазных замыканий на корпус.

Недостатком данного способа является то, что расчет проводится либо по упрощенным выражениям, приводящим к большой погрешности, либо по нелинейной системе уравнений, имеющей несколько решений и требующей применения численных методов, что не исключает ошибки при определении фазных емкостей электросети.

Задача изобретения заключается в повышении точности определения фазной емкости электросети за счет использования дополнительного параметра, который позволяет упростить расчеты, проводимые после измерений.

Для решения поставленной задачи в известном способе, включающем поочередное измерение токов замыкания на землю каждой из фаз, предлагается измерять углы между векторами токов замыкания и векторами возникающих при замыканиях напряжений на нейтрали, по которым известным способом рассчитывать углы между векторами токов замыкания и векторами токов утечки незамыкаемых фаз, используя которые рассчитывать фазные емкости по следующему выражению:

( С A С B С C ) = 1 ω U с ( 0 cos ( α A ) cos ( β A ) cos ( β B ) 0 cos ( α B ) cos ( α C ) cos ( β C ) 0 ) 1 ( I A I B I C ) ,                          ( 1 )

где CA, CB, CC - значения емкостей между каждой из фаз и корпусом (или землей); ω - угловая частота сети; Uc - действующее значение напряжения сети; αA, αB, αC - углы между током замыкания и током утечки отстающей фазы; βA, βB, βC - углы между током замыкания и током утечки опережающей фазы; IA, IB, IC - действующие значения токов замыкания фаз.

На прилагаемых к заявке графических материалах изображены:

- на фиг.1 - схема измерений при реализации способа при использовании для определения угла между вектором тока замыкания и вектором напряжения на нейтрали ваттметра с обмоткой напряжения, включенной между нейтралью и корпусом;

- на фиг.2 - схема измерений при реализации способа при использовании для определения угла между вектором тока замыкания и вектором напряжения на нейтрали ваттметра с обмоткой напряжения, подключаемой поочередно между каждой из незамыкаемых фаз и корпусом;

- на фиг.3 - векторная диаграмма токов и напряжений при замыкании одной из фаз.

На прилагаемых схемах приняты следующие обозначения:

1 - амперметр; 2 - ваттметр; 3 - обмотки электрооборудования; 4 - фазная емкость сети; 5 - электросистема; 6 - вектор тока замыкания; 7 - вектор тока утечки через отстающую фазу от замыкаемой; 8 - вектор тока утечки через опережающую фазу; 9 - вектор напряжения на нейтрали; 10 - вектор напряжения на отстающей фазе после замыкания; 11 - вектор напряжения на опережающей фазе после замыкания; 12 - вектор эдс замыкаемой фазы; 13 - вектор эдс отстающей фазы; 14 - вектор эдс опережающей фазы.

Повышение точности и простоты определения емкости достигается за счет того, что благодаря измерениям угла между вектором тока замыкания и вектором напряжения на нейтрали удается определить углы между током замыкания и токами утечки незамыкаемых фаз. Это значительно упрощает дальнейший расчет фазных емкостей сети, заключающийся в вычислении линейной системы уравнений, имеющей единственное решение.

На фиг.1 и 2 изображены варианты подключения измерительных приборов при реализации способа. В варианте, изображенном на фиг.1, для проведения измерений амперметр 1 включается между фазой и корпусом, а ваттметр 2 включается токовой обмоткой последовательно с амперметром и обмоткой напряжения между нейтралью сети и корпусом.

В варианте, изображенном на фиг.2, амперметр 1 включается между фазой и корпусом, а ваттметр 2 включается токовой обмоткой последовательно с амперметром, а обмоткой напряжения сначала включается между одной из незамыкаемых фаз и корпусом, затем включается между второй из незамыкаемых фаз и корпусом. В дальнейшем оба показания ваттметра складываются и делятся на три.

По измеренным значениям тока и активной мощности по известному выражению можно определить угол между вектором тока замыкания и вектором напряжения на нейтрали при замыкании i-й фазы:

ϕ i = arccos ( P i U i I i ) ,                                                    ( 2 )

где Pi - активная мощность при замыкании i-й фазы; Ui - фазное напряжение сети; Ii - ток замыкания i-й фазы (Основы теории цепей. Учебник для вузов / Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. - 4-е изд. - М., «Энегрия», 1975. - 752 с.; стр.135).

Как видно из векторной диаграммы, изображенной на фиг.3, вектор тока замыкания образует треугольник с векторами токов утечки каждой из незамыкаемых фаз 7 и 8. При этом векторы токов утечки незамыкаемых фаз 7 и 8 всегда сдвинуты по отношению к вектору напряжения замыкаемой фазы на углы 2 π 3 и π 3 . Исходя из этого углы в рассматриваемом треугольнике могут быть найдены следующим образом: между вектором тока замыкания и вектором тока утечки отстающей фазы 8

α i = ϕ i π 3 ,                                                           ( 3 )

а между вектором тока замыкания и вектором тока утечки опережающей фазы 7

β i = π 3 α i .                                                                ( 4 )

Представив модуль вектора тока замыкания как сумму проекций на него векторов токов утечки незамыкаемых фаз, которые в свою очередь линейно зависят от емкости этих фаз, можно составить систему линейных уравнений для замыкания каждой фазы. Решением этой системы будут емкости каждой из фаз.

Пример реализации способа показан на фиг.1 и фиг.2. Фазные емкости сети имеют следующие значения: CA=2 мкФ; CB=8 мкФ; CC=4.5 мкФ. Напряжение сети 230 В. Частота сети 50 Гц.

Показания приборов при измерении по варианту, изображенному на фиг.1:

амперметр - IA=1.133 А; IB=0.596 А; IC=0.947 А;

ваттметр - PA=34.36 Вт; PB=24.54 Вт; PC=58.9 Вт.

Расчеты, проведенные по выражению (2), дают следующие величины:

φA=80.8°; φB=77.48°; φC=109.1°.

Откуда по выражениям (3) и (4):

αA=20.8°; αB=17.48°; αC=49.1°;

βА=39.18°; βB=42.52°; βC=10.89°.

Подставив эти значения в выражение (1), получим следующие величины фазных емкостей: CA=1 мкФ; CB=8 мкФ; CC=4.5 мкФ.

Проведя измерения по схеме, изображенной на фиг.2, получим следующие показания приборов:

Амперметр - IA=1.133 А; IB=0.596 А; IC=0.947 А;

ваттметр - PAB=132.52 Вт; PAC=-235.6 Вт (замыкание фазы А);

PBA=-132.52 Вт; PBC=58.9 Вт (замыкание фазы В);

PCA=235.6 Вт; PCB=58.9 Вт (замыкание фазы С).

Суммы показаний ваттметра, полученных при замыкании каждой из фаз, разделенные на три:

PA=34.36 Вт; PB=24.54 Вт; PC=58.9 Вт.

Как видно, исходные данные расчета совпадают с предыдущим вариантом реализации способа. Поскольку дальнейшие вычисления аналогичны приведенным выше, то и результат получается такой же.

Использование способа, принятого за ближайший аналог, приводит к следующему.

Результаты расчета по упрощенным выражениям - CA=2.3 мкФ; CB=8.29 мкФ; CC=4.37 мкФ. Максимальная погрешность определения емкостей составляет 14.48%.

Используемая вместо упрощенных выражений система нелинейных уравнений имеет два решения: 1 - соответствующее действительным значениям фазных емкостей (CA=2 мкФ; CB=8 мкФ; CC=4.5 мкФ); 2 - несоответствующее действительным значениям фазных емкостей (CA=3.65 мкФ; CB=0.12 мкФ; CC=3.87 мкФ), что может привести к ошибке определения фазных емкостей.

Таким образом, видно, что способ решает поставленную задачу точного определения фазных емкостей электросети и исключает возможность возникновения ошибки.

Способ измерения фазной емкости электросети с изолированной нейтралью, включающий поочередное измерение токов замыкания на землю каждой из фаз, отличающийся тем, что измеряют углы между векторами токов замыкания и векторами возникающих при замыканиях напряжений на нейтрали, по которым известным способом рассчитывают углы между векторами токов замыкания и векторами токов утечки незамыкаемых фаз, используя которые рассчитывают фазные емкости по следующему выражению:
( C A C B C C ) = 1 ω U с ( 0 cos ( α A ) cos ( β A ) cos ( β B ) 0 cos ( α B ) cos ( α C ) cos ( β C ) 0 ) 1 ( I A I B I C ) ,
где CA, CB, CC - значения емкостей между каждой из фаз и корпусом (или землей); ω - угловая частота сети; Uc - действующее значение напряжения сети; αA, αB, αC - углы между током замыкания и током утечки отстающей фазы; βA, βB, βC - углы между током замыкания и током утечки опережающей фазы; IA, IB, IC - действующие значения токов замыкания фаз.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к релейной защите синхронных генераторов, и может быть использовано на электрических станциях для защиты синхронных генераторов от замыкания обмотки возбуждения на землю в одной точке, а также для контроля сопротивления изоляции.

Способ измерения сопротивления изоляции цепей постоянного тока, находящихся под рабочим напряжением, и устройство для его осуществления относятся к электроизмерительной технике и предназначены для использования преимущественно в автоматизированных системах контроля, диагностики и управления технологическими процессами.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей постоянного тока относительно корпуса.

Группа изобретений относится к электроизмерительной технике и предназначена для использования в автоматизированных системах контроля, диагностики и управления технологическими процессами.

Изобретение относится к контрольно-измерительной технике транспортных средств с электрической тягой, а именно к микропроцессорным системам управления и диагностики тепловозов.

Изобретение относится к электроэнергетике и предназначено для эксплуатационного контроля состояния изоляции относительно земли объектов под рабочим напряжением в трехфазных сетях с изолированной нейтралью, а также в сетях, где нейтраль заземлена через резистор или реактор.

Изобретение относится к контрольно-измерительной технике и используется для измерения и постоянно действующего контроля сопротивления изоляции электрических сетей постоянного тока на кораблях, судах, шахтах, метрополитене и там, где есть разветвленные отдельные сети постоянного тока, изолированные от земли.

Изобретение относится к контрольно-измерительной технике транспортных средств с электрической тягой. .

Изобретение относится к электротехнике и предназначено к использованию при создании и применении устройств и систем для измерения сопротивлений изоляции в сетях постоянного тока, находящихся под напряжением.

Изобретение относится к технике электрических измерений. Устройство содержит источник испытательного напряжения (ИИН), эталонный резистор (ЭР), зарядный ключ (ЗК), испытуемый объект (ИО), разрядный ключ (РК), разрядный резистор (РР), выходные выводы, к которым подключают ИО, двухканальный цифровой измеритель с запоминающим устройством с двумя информационными (ЦИ) и двумя управляющими входами, устройство отображения информации (УОИ), генератор тактовых импульсов (ГТИ) и блок управления (БУ) с выходами «Пуск» и «Установка нуля». Первый вывод ИИН через ЗК присоединен к первому выходному выводу устройства, а второй вывод ИИН через ЭР присоединен ко второму выходному выводу устройства. К выходным выводам устройства параллельно подключены соединенные последовательно РК и РР. Выход ЦИ соединен с входом УОИ. Выход ГТИ соединен с первым управляющим входом ЦИ. Также в устройство введены замыкающий и размыкающий блок-контакты ЗК, замыкающий блок-контакт РК, пиковый детектор, дифференцирующий элемент, нуль-компаратор, световой индикатор, счетчик времени, блок умножения напряжений, цифровой индикатор, два масштабных преобразователя и органы управления двухканальным цифровым измерителем с запоминающим устройством. Причем входные выводы первого масштабного преобразователя подключены параллельно выходным выводам устройства, а его выход через размыкающий блок-контакт ЗК и замыкающий блок-контакт РК подключен к первому информационному входу ЦИ и к входам дифференцирующего элемента и пикового детектора. Выход дифференцирующего элемента подключен к входу нуль-компаратора, а выход нуль-компаратора подключен к входу счетчика времени и световому индикатору. Выход счетчика времени подключен к первому входу блока умножения напряжений, второй вход которого подключен к выходу пикового детектора. Выход блока умножения напряжений подключен к входу второго масштабного преобразователя, выход которого соединен с входом цифрового индикатора. Второй вывод ИИН соединен через замыкающий блок-контакт ЗК с вторым информационным входом ЦИ. Вход генератора тактовых импульсов соединен с выходом «Пуск» блока управления. Второй управляющий вход ЦИ соединен с выходом органов управления ЦИ. Обнуляющие входы пикового детектора и счетчика времени соединены с выходом «Установка нуля» блока управления. Технический результат заключается в возможности непосредственного измерения оставшегося ресурса изоляции. 3 ил.

Изобретение относится к области электротехники. Устройство состоит из источника измерительного стабилизированного напряжения постоянного тока, фильтра RC, состоящего из последовательно соединенных резистора и конденсатора, одного диод, шунтирующего конденсатор С1, блока гальванической развязки, усилителя напряжения сигнала с регулируемым коэффициентом усиления, блока питания, электронного делителя напряжения, блока индикации и блока сигнализации. При этом источник измерительного стабилизированного напряжения постоянного тока положительным полюсом подключен к корпусу (земле), а отрицательным полюсом соединен с нижним первым выводом резистора нейтрали контролируемой сети. Второй вывод резистора нейтрали контролируемой сети соединен с нейтралью контролируемой сети. Параллельно источнику измерительного стабилизированного напряжения постоянного тока включены конденсатор С1 и диод, катод которого соединен с корпусом (землей). Параллельно резистору нейтрали включен фильтр RC, причем конденсатор фильтра включен параллельно входу блока гальванической развязки, который своим выходом включен на вход усилителя напряжения сигнала с регулируемым коэффициентом усиления, выход которого соединен со входом электронного делителя напряжения, а выход электронного делителя напряжения соединен непосредственно с блоком индикации и с блоком сигнализации. При этом все блоки устройства запитаны от блока питания. Технический результат заключается в возможности непрерывного контроля сопротивления изоляции. 1 ил.

Изобретение относится к области электротехники. Устройство содержит резистор, соединенный с нейтралью одним выводом, резистивный датчик тока, источник стабилизированного напряжения постоянного тока, шунтирующий конденсатор C1, RC-фильтр на 50 Гц, блок гальванической развязки, электронный делитель напряжения, дифференциальный усилитель, блок питания и блоки индикации и сигнализации. При этом второй вывод резистора нейтрали соединен с введенными резистивным датчиком тока и источником стабилизированного напряжения постоянного тока, включенными последовательно. Второй вывод резистора нейтрали соединен с корпусом через шунтирующий конденсатор С1, а плюсовой вывод источника стабилизированного напряжения соединен с корпусом через введенный резистивный датчик тока. Параллельно резистивному датчику тока включен RC-фильтр, средняя точка которого соединена с входом блока гальванической развязки, а выход блока гальванической развязки соединен с входом электронного делителя напряжения, на выход которого входом включен дифференциальный усилитель, на выход которого входом включены блоки индикации и сигнализации. Все блоки устройства запитаны от блока питания. Технический результат заключается в возможности непрерывно контролировать сопротивление изоляции в сетях переменного тока с резистивной нейтралью. 1 ил.

Изобретение относится к электроизмерительной технике и предназначено для измерения сопротивления изоляции электрических сетей переменного тока, находящихся под напряжением и изолированных от земли. Устройство содержит источник измерительного напряжения, миллиамперметр, блок гальванической развязки, блок вычитания, блок управления, управляемый источник переменного напряжения, первый ключ, второй ключ, токоограничивающий резистор. Причем два входа блока гальванической развязки подключены к двум фазам контролируемой сети, между которыми действует переменное напряжение. Выход блока гальванической развязки подключен ко второму входу блока управления, выход которого подключен к входу управляемого источника переменного напряжения, первый выход которого подключен к второму выводу токоограничивающего резистора, первый вывод которого подключен ко второму выходу источника измерительного напряжения. Второй выход управляемого источника переменного напряжения подключен через миллиамперметр к земле. Первый выход источника измерительного напряжения через первый ключ подключен к любой фазе контролируемой сети. Первый вход блока вычитания подключен к первому выходу управляемого источника переменного напряжения, а выход блока вычитания через второй ключ подключен к первому входу блока управления. Технический результат заключается в уменьшении погрешности и времени измерения сопротивления изоляции. 3 ил.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий, отключенных от источника питания. На первом этапе при закороченных шинах между корпусом и шинами устанавливают тестовый сигнал, существенно превосходящий уровень помех, что позволяет проводить измерения параллельно соединенных сопротивлений изоляции обеих шин с высокой точностью. На втором этапе подключают первый источник низкого уровня между шинами электропитания, который обеспечивает быстрый заряд емкости нагрузки и нейтрализацию влияния активного сопротивления нагрузки на результаты измерений. При этом малый уровень сигнала исключает повреждение потребителей энергии по цепям питания. А второй источник сигнала подключают между корпусом и одной из шин, что обеспечивает высокую точность измерений сопротивления утечки. Технический результат заключается в возможности проведения контроля с минимальными энергетическими затратами, с высоким быстродействием и с минимальным влиянием помех. 4 ил.

Изобретение относится к электротехнике и может быть использовано при создании устройств контроля изоляции сетей постоянного оперативного тока. В сети постоянного тока периодически осуществляют тестовое воздействие путем подключения к полюсам высокоточного резистора, при этом измеряют величины напряжений на полюсах и дифференциальные токи присоединений сети до и после каждого тестового воздействия. Величина сопротивления резистора регулируется исходя из условия, чтобы после его подключения напряжения полюсов относительно земли входили в диапазон допустимых значений, а ток утечки на землю через резистор не превышал установленного допустимого значения. Технический результат заключается в расширении функциональных возможностей и повышении точности измерения сопротивления изоляции, а также в повышении универсальности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике и может быть использовано при создании и применении устройств и систем измерения сопротивлений изоляции в сетях постоянного тока с изолированной нейтралью, находящихся под напряжением. Технический результат: повышение точности измерений сопротивления изоляции сети постоянного тока. Сущность: измеряют напряжение между «землей» и полюсами источника постоянного тока. Для чего сначала подключают резистивный элемент к одному из полюсов, а затем к другому, выравнивают напряжения на полюсах параллельным подключением к источнику постоянного тока двух последовательно соединенных одинаковых резисторов, общая точка которых через третий резистор соединена с «землей». При этом резистивные элементы подключают поочередно параллельно первому и второму резисторам, измеряют напряжение на третьем резисторе после подключения одного и другого резистивных элементов. Далее определяют сопротивление изоляции всей сети, а затем для каждого из полюсов. 1 ил.

Изобретение относится к электротехнике и может быть использовано при создании устройств контроля и измерения сопротивления изоляции сетей переменного тока с изолированной нейтралью. Технический результат: расширение функциональных возможностей за счет измерения сопротивлений изоляции присоединений, уменьшение величины перекоса напряжений между фазами и «землей», возникающих при определении сопротивления изоляции сети и сопротивления изоляции присоединений. Сущность: измеряют средние значения напряжения между положительным и отрицательным полюсами трехфазного выпрямительного моста, собранного на полупроводниковых диодах по схеме Ларионова и подключенного к фазам сети переменного тока, а также между положительным и отрицательным полюсами трехфазного выпрямительного моста и «землей». При этом производят выравнивание напряжений на фазах сети путем включения параллельно полюсам трехфазного выпрямительного моста двух последовательно соединенных первого и второго резисторов, общая точка которых соединена с «землей». Измеряют среднее значение тока через провод, соединяющий общую точку первого и второго резисторов с «землей», измеряют средние значения дифференциальных токов, протекающих по присоединениям сети, с помощью датчиков дифференциальных токов для измерений средних значений токов, после подключения сначала к одному из полюсов трехфазного выпрямительного моста третьего резистора, один из выводов которого подсоединен к общей точке первого и второго резисторов, а потом к другому полюсу трехфазного выпрямительного моста четвертого резистора, один из выводов которого подсоединен к общей точке первого и второго резисторов. Значения сопротивлений изоляции всей сети в целом и сопротивления изоляции присоединений определяют из соответствующих выражений. 11 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля сопротивления изоляции многофазных разветвленных сетей переменного тока с изолированной нейтралью, находящихся под напряжением. Техническим результатом является осуществление избирательного контроля утечки или замыкания фазы на землю в разветвленной системе электроснабжения с изолированной нейтралью, выявление элемента с поврежденной изоляцией до появления аварийного режима. Устройство контроля изоляции сети электроснабжения с изолированной нейтралью содержит высоковольтные провода подключения, контактор измерительной цепи, контактор заземления. Параллельно контактам контактора заземления подключен диодный мост с модулятором поискового тока. При этом обеспечивается возможность подключения фазы сети электроснабжения через коммутационный переключатель, токоограничивающий конденсатор, контакт контактора измерительной цепи и контакт контактора заземления к контуру заземления. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электроизмерительной технике, в частности к автоматизированным системам контроля, и применяется для контроля сопротивления изоляции шин питания гальванически развязанных источников постоянного тока относительно корпуса и между собой. Техническим результатом изобретения является повышение достоверности определения значений сопротивления изоляции относительно корпуса, а также возможность контроля изоляции шин нескольких гальванически развязанных источников постоянного тока как относительно корпуса, так и между собой как в выключенном, так и во включенном состоянии. Способ измерения сопротивления изоляции в цепях постоянного тока основан на подключении к полюсам цепи постоянного тока цепи резисторов, состоящей из двух последовательно соединенных резисторов с одинаковой величиной сопротивления. В место соединения резисторов включается измерительная цепь из последовательно включенных источника измерительного напряжения и измерителя тока. Далее определяется эквивалентное сопротивление цепи резисторов. В измерительную цепь включают источник измерительного напряжения с одним значением напряжения, величина которого может быть равна нулю, затем с другим, отличным от нуля. Определяют значения измерительных токов для двух значений измерительных напряжений, вычисляют алгебраическую разность измерительных напряжений, делят ее на алгебраическую разность измеренных токов и из результата деления, взятого по модулю, вычитают значение эквивалентного сопротивления. Для измерения сопротивления изоляции между двумя гальванически развязанными источниками постоянного тока подключают между местами соединения двух цепочек резисторов с одинаковыми величинами сопротивлений, включенных между полюсами соответствующих источников постоянного тока, при этом вычитаемое эквивалентное сопротивление равно номинальному значению сопротивлений резисторов цепочек. Способ измерения сопротивления изоляции реализуется в устройстве, которое содержит цепочку из одинаковых резисторов, включенных последовательно, подключаемую к полюсам источника постоянного тока для измерения его сопротивления изоляции относительно корпуса, измерительную цепь, состоящую из последовательно включенных источника измерительного напряжения и датчика тока, а также коммутатора измерительного напряжения, имеющего вход управления, контроллера с аналоговым входом, подключенным к датчику тока, и выходом контроллера, имеющим электрическую связь с входом управления коммутатора измерительного напряжения. Дополнительно введены два коммутатора, каждый из которых имеет n+1 вход, один выход и вход управления, резистор, подключенный между n+1 входом первого коммутатора и n+1 входом второго коммутатора, устройство последовательного интерфейса. Кроме этого, введены n-1 дополнительных цепочек последовательно соединенных резисторов, измерительная цепь подключена между выходами введенных коммутаторов, а коммутатор измерительного напряжения своим выходом подключен параллельно источнику измерительного напряжения. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано для измерения емкости между фазами и корпусом в любых трехфазных электросетях, например в судовых. Описан способ измерения фазной емкости электросети с изолированной нейтралью, который включает в себя поочередное измерение токов замыкания каждой из фаз и отличается тем, что дополнительно измеряют углы между векторами токов замыкания и векторами возникающих при замыканиях напряжений на нейтрали, используя которые рассчитывают фазные емкости. Способ повышает точность и устраняет ошибки при определении фазных емкостей электросети. 3 ил.

Наверх