Способ защиты тяговых электродвигателей локомотива

Предлагаемое изобретение относится к электрооборудованию транспортных средств с электротягой, в частности к электрическим тяговым системам с питанием от собственных источников энергоснабжения, и касается защиты тяговых электродвигателей постоянного тока локомотивов. Cпоcоб защиты тяговых электродвигателей постоянного тока локомотива заключается в том, что измеряют напряжение тягового генератора локомотива, определяют частоту вращения тяговых электродвигателей постоянного тока, измеряют токи якорей и обмоток возбуждения всех тяговых электродвигателей, выделяют из измеренных значений токов якорей и обмоток возбуждения тяговых электродвигателей минимальные значения, определяют по величинам минимального тока якорей и минимального тока обмоток возбуждения тяговых электродвигателей величину минимального магнитного потока. По величинам измеренного напряжения тягового генератора, определенного значения минимального магнитного потока и измеренного значения минимального тока якоря тягового электродвигателя постоянного тока вычисляют максимальную частоту вращения вала тягового электродвигателя с минимальным током якоря, сравнивают с величиной максимально допустимой частоты вращения тяговых электродвигателей постоянного тока и, в случае ее превышения, отключают тяговые электродвигатели постоянного тока от тягового генератора. Технический результат заключается в повышении надежности системы защиты тяговых электродвигателей. 1 ил.

 

Предлагаемое изобретение относится к электрооборудованию транспортных средств с электротягой, в частности к электрическим тяговым системам с питанием от собственных источников энергоснабжения, и касается защиты тяговых электродвигателей постоянного тока локомотивов.

Известен способ защиты тяговых электродвигателей от превышения скорости локомотива, заключающийся в том, что измеряют напряжение тягового генератора постоянного тока, контролируют срабатывание двух ступеней ослабления возбуждения тяговых электродвигателей постоянного тока, задают уставку максимально допустимого напряжения тягового генератора при включенных двух ступенях ослабления возбуждения тяговых электродвигателей постоянного тока и при превышении напряжением тягового генератора постоянного тока величины заданной уставки разбирают тяговую схему. Такой способ применен на тепловозах типа ТЭ10М (Тепловозы 2ТЭ10М и 3ТЭ10М: Устройство и работа / С.П.Филонов, А.Е.Зиборов, В.В.Ренкунас и др. - М.: Транспорт, 1986, с.182-183, рис.137).

Недостатком известного способа является то, что контроль максимально допустимой скорости локомотива осуществляется только в режиме ослабления возбуждения тяговых электродвигателей постоянного тока. В случае превышения допустимых значений частотой вращения тяговых электродвигателей постоянного тока в режиме полного поля, что может произойти при распрессовке ведущей шестерни хотя бы одного тягового редуктора, защита не осуществляется, что может привести к тяжелым последствиям, вплоть до механического разрушения конструкции тяговых электродвигателей постоянного тока.

Известен способ защиты тяговых электродвигателей постоянного тока от превышения скорости, принятый за прототип, заключающийся в том, что определяют частоту вращения каждого тягового электродвигателя постоянного тока локомотива, сравнивают их с величиной уставки максимально допустимой частоты вращения и при превышении сигналом частоты вращения величины уставки разбирают тяговую схему. Такой способ применен на тепловозах типа 2ТЭ1116 (Тепловоз 2ТЭ116. С.П.Филонов, А.И.Гибалов и др. - М.: Транспорт, 1996, с.311-312, рис.148).

Недостатком известного способа также является то, что в случае превышения допустимых значений частотой вращения тяговых электродвигателей при распрессовке ведущей шестерни хотя бы одного тягового редуктора защита не осуществляется, поскольку в этом случае связь датчиков частоты вращения, устанавливаемых на буксовых узлах тележек локомотива, с валом тяговых электродвигателей постоянного тока разрывается, частота вращения вала тягового электродвигателя постоянного тока начинает резко увеличиваться до недопустимых значений, что может привести к тяжелым последствиям, вплоть до механического разрушения конструкции тяговых электродвигателей постоянного тока. Кроме того, выход из строя датчиков частоты вращения также приводит к потере контроля и снижает надежность работы системы защиты тяговых электродвигателей постоянного тока.

Техническим результатом изобретения является повышение надежности системы защиты тяговых электродвигателей постоянного тока.

Техническим результатом изобретения является повышение надежности системы защиты тяговых электродвигателей постоянного тока.

Указанный технический результат достигается тем, что в способе защиты тяговых электродвигателей постоянного тока локомотива, заключающемся в том, что измеряют напряжение тягового генератора локомотива, определяют частоту вращения тяговых электродвигателей постоянного тока, измеряют токи якорей и обмоток возбуждения всех тяговых электродвигателей постоянного тока локомотива, выделяют из измеренных значений токов якорей и обмоток возбуждения тяговых электродвигателей постоянного тока минимальные значения, определяют по величинам минимального тока якорей и минимального тока обмоток возбуждения тяговых электродвигателей постоянного тока величину минимального магнитного потока, по величинам измеренного напряжения тягового генератора, определенного значения минимального магнитного потока и измеренного значения минимального тока якоря тягового электродвигателя постоянного тока вычисляют максимальную частоту вращения вала тягового электродвигателя постоянного тока с минимальным током якоря, сравнивают с величиной максимально допустимой частоты вращения тяговых электродвигателей постоянного тока и в случае ее превышения отключают тяговые электродвигатели постоянного тока от тягового генератора.

На чертеже изображена структурная схема, иллюстрирующая работу предлагаемого способа защиты тяговых электродвигателей постоянного тока.

Тяговый генератор 1 локомотива (при синхронном генераторе с выпрямителем - на чертеже не показан) подключен через поездные контакторы 2 к тяговым электродвигателям 3 постоянного тока, для измерения напряжения тягового генератора 1 к нему подключен датчик 4 напряжения, для измерения токов якорей и токов возбуждения в цепи тяговых электродвигателей 3 постоянного тока включены датчики 5 тока, выходы датчиков 5 тока подключены к блоку 6 выделения минимального сигнала, выход блока 6 выделения минимального сигнала подключен ко входу функционального преобразователя 7, выход функционального преобразователя 7, выход датчика 4 напряжения тягового генератора 1 и выход блока 6 выделения минимального сигнала подключены к блоку 8 вычисления частоты вращения, выход блока 8 вычисления частоты вращения подключен к входу порогового элемента 9, выход порогового элемента 9 подключен к входам управления поездными контакторами 2. Число тяговых электродвигателей 3 постоянного тока, поездных контакторов 2 и датчиков 5 тока в общем случае равно числу обмоторенных осей локомотива, на чертеже представлено два тяговых электродвигателя 3 постоянного тока, два поездных контактора 2 и два датчика 5 тока.

Способ реализуется следующим образом.

Напряжение тягового генератора 1 Uг через включенные поездные контакторы 2 подают на тяговые электродвигатели 3 постоянного тока, измеряют напряжение Uг тягового генератора 1 локомотива, измеряют с помощью датчиков 5 тока токи якорей Jя и токи возбуждения Jв всех тяговых электродвигателей 3 постоянного тока локомотива, выделяют в блоке 6 выделения минимального сигнала из измеренных значений токов якорей и токов возбуждения тяговых электродвигателей 3 постоянного тока минимальные значения Jвмин и Jямин, по величинам измеренных значений минимального тока якоря Jямин и минимального тока возбуждения Jвмин тяговых электродвигателей 3 постоянного тока по кривой намагничивания СФ=f(Jв,Jя)>известной для каждого типа тяговых электродвигателей и представляющей из себя нелинейную функцию от тока возбуждения Jв и тока якоря Jя тягового электродвигателя 3 постоянного тока, определяют величину минимального магнитного потока СФмин.

По величинам измеренного напряжения тягового генератора 1 Uг, определенного значения минимального магнитного потока СФмин и измеренного значения минимального тока якоря Jямин тягового электродвигателя 3 определяют вычислением в блоке 8 вычисления максимальной частоты вращения максимальную частоту вращения nдвмакс тягового электродвигателя 3 постоянного тока в соответствии с выражением:

n д в м а к с = ( U г J я м и н * R ) С Ф м и н , где

Jямин - измеренное датчиком 5 тока значение минимального тока якоря тягового электродвигателя 3 постоянного тока;

Uг - напряжение тягового генератора 1, измеренное датчиком 4 напряжения;

СФмин- минимальный магнитный поток тягового электродвигателя 3 постоянного тока, определенный для измеренных значений минимального тока якоря Jямин и минимального тока возбуждения Jвмин тяговых электродвигателей 3 постоянного тока по кривой намагничивания СФ=f(Jв,Jя);

ΣR - суммарное сопротивление цепи тягового электродвигателя 3 постоянного тока;

nдвмакс - вычисленное значение максимальной частоты вращения тягового электродвигателя 3 постоянного тока.

В пороговом элементе 9 полученную величину максимальной частоты вращения nдвмакс тягового электродвигателя 3 постоянного тока сравнивают с величиной максимально допустимой частоты вращения тяговых электродвигателей 3 постоянного тока для данного типа тяговых электродвигателей постоянного тока и в случае ее превышения отключают тяговые электродвигатели 3 постоянного тока от тягового генератора 1, для чего с выхода порогового элемента 9 подают команду на отключение поездных контакторов 2.

Предлагаемый способ испытан на магистральных пассажирских и грузовых тепловозах с передачей переменно-постоянного тока и постоянного тока и показал положительные результаты.

Способ защиты тяговых электродвигателей постоянного тока локомотива, заключающийся в том, что измеряют напряжение тягового генератора локомотива, определяют частоту вращения тяговых электродвигателей постоянного тока, отличающийся тем, что измеряют токи якорей и обмоток возбуждения всех тяговых электродвигателей постоянного тока локомотива, выделяют из измеренных значений токов якорей и обмоток возбуждения тяговых электродвигателей постоянного тока минимальные значения, определяют по величинам минимального тока якорей и минимального тока обмоток возбуждения тяговых электродвигателей постоянного тока величину минимального магнитного потока, по величинам измеренного напряжения тягового генератора, определенного значения минимального магнитного потока и измеренного значения минимального тока якоря тягового электродвигателя постоянного тока вычисляют максимальную частоту вращения вала тягового электродвигателя постоянного тока с минимальным током якоря, сравнивают с величиной максимально допустимой частоты вращения тяговых электродвигателей постоянного тока и в случае ее превышения отключают тяговые электродвигатели постоянного тока от тягового генератора.



 

Похожие патенты:

Изобретение относится к области транспортного машиностроения, в частности к электрическим тяговым системам транспортных средств с питанием от собственных источников энергоснабжения, например тепловозов, гибридных локомотивов, самоходных путевых машин с двигателями постоянного тока.

Изобретение относится к области транспорта и направлено на усовершенствование автоматических систем регулирования напряжения тяговых генераторов в электрических передачах транспортных средств.

Изобретение относится к электротехнике и может быть использовано в качестве источника энергии для электропривода. .

Изобретение относится к системам тягового электропривода постоянного тока аккумуляторных электромобилей. .

Изобретение относится к железнодорожному транспорту, в частности, к силовому оборудованию двухсекционных тепловозов и может быть использовано для передвижения несамоходных путевых машин на железнодорожном ходу, требующих большого тягового усилия и автоматического поддержания малой скорости при максимальном использовании мощности.

Изобретение относится к области автоматического регулирования электрических передач мощности транспортных средств (тепловозы, большегрузные автомобили). .

Изобретение относится к железнодорожному транспорту, а именно к способу регулирования электропередачи тепловоза. Способ заключается в том, что задают частоту вращения вала теплового двигателя, измеряют положение дозирующего органа топливоподачи регулятора частоты вращения и нагрузки теплового двигателя, задают положение дозирующего органа топливоподачи регулятора частоты вращения и нагрузки пропорционально заданной частоте вращения, сравнивают его с измеренным положением дозирующего органа топливоподачи регулятора частоты вращения и нагрузки, величину их рассогласования интегрируют по времени. Результат интегрирования принимают за величину уставки напряжения тягового генератора постоянного тока. Измеряют напряжение тягового генератора постоянного тока, сравнивают его с величиной уставки и по величине рассогласования изменяют ток возбуждения тягового генератора постоянного тока. Заданное положение дозирующего органа топливоподачи регулятора частоты вращения и нагрузки теплового двигателя дополнительно корректируют пропорционально температуре топлива на входе в тепловой двигатель. Технический результат заключается в повышении топливной экономичности и производительности тепловозов. 2 ил.

Изобретение относится к области электротехники и может быть использовано в системах электропитания и электроуправления. Технический результат - увеличение времени вращения вала электродвигателя при отключенном источнике постоянного тока без использования громоздких стабилизационных узлов. В электромеханическое устройство введен автоматический расцепитель, фиксирующий напряжение между минимальным и максимальным значениями, имеющий вход, соединенный с выходом трехфазного выпрямителя, и выход, соединенный с третьим входом автоматического расцепителя и с входом тороидального потенциометра. 1 ил.

Изобретение относится к электрическим тяговым системам транспортных средств. Тяговый электропривод транспортного средства содержит тяговые электродвигатели постоянного тока последовательного возбуждения, подключенные к источнику постоянного тока, причем к якорной обмотке каждого тягового электродвигателя подключены последовательно соединенные обмотки возбуждения соответствующего тягового электродвигателя и датчики тока. Параллельно двум цепям тяговых электродвигателей последовательного возбуждения подключены два датчика напряжения. Между плюсовой клеммой источника постоянного тока и коллекторами первого и второго биполярных транзисторов в обратном направлении включены диоды. В цепь каждого тягового электродвигателя последовательного возбуждения соответственно установлены два поездных контактора. Общие точки соединения обмоток возбуждения и якорных обмоток каждого тягового электродвигателя соединены между собой через первый тормозной контактор и тормозной резистор. Общая точка соединения первого датчика тока и первого поездного контактора соединена с общей точкой соединения свободного вывода якорной обмотки второго тягового электродвигателя со вторым поездным контактором через второй тормозной контактор. Выходы датчиков тока и датчиков напряжения соединены с входами блока управления, выходы которого соединены с входами поездных контакторов, тормозных контакторов и входами первого и второго биполярных транзисторов. Технический результат изобретения состоит в повышении надежности работы тягового электропривода и расширении функциональных возможностей. 2 з.п. ф-лы, 1 ил.

Изобретение относится к автоматическим системам регулирования напряжения тяговых генераторов в электрических тяговых системах тепловозов при автоматизированном режиме ведения состава. Микропроцессорная система регулирования напряжения тягового генератора тепловоза содержит дизель-генератор, возбудитель, соединенный жесткой связью с дизелем и подключенный к обмотке возбуждения тягового генератора, датчик напряжения, датчик тока нагрузки тягового генератора, датчик скорости вращения вала дизель-генератора. Датчик подачи топлива в дизель соединен с автоматическим регулятором скорости вращения вала дизель-генератора. Блок возбуждения возбудителя подсоединен к обмотке возбуждения возбудителя. Блок управления пневматическим тормозом включает в себя блок расчета режимов движения и отображения оперативной информации, блок интерфейса. Микропроцессорный контроллер, включающий в себя первое и второе задающие устройства, первое, второе и третье сравнивающие устройства, функциональный преобразователь, первый и второй интеграторы, множительное устройство, логическое устройство и сумматор. Функциональный преобразователь своим входом соединен с выходом датчика скорости вращения вала дизель-генератора, а выходами соединен соответственно с первым входом третьего сравнивающего устройства и первым входом сумматора. Второй вход третьего сравнивающего устройства соединен с выходом датчика подачи топлива, а выход третьего сравнивающего устройства соединен с входом первого интегратора, соединенного своим выходом со вторым входом сумматора. Технический результат заключается в обеспечении режима ведения состава с соблюдением скоростных ограничений.1 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано в системах широкого класса изделий в качестве электропривода постоянного тока при автономном источнике электроэнергии ограниченной мощности, например, в служебных системах космических аппаратов. Технический результат заключается в равномерной работе автономного источника электроэнергии, обеспечивающего сетевое электроснабжение, без пиковых нагрузок во время пуска электродвигателя постоянного тока, что повышает надежность и увеличивает срок службы автономного источника электроэнергии ограниченной мощности и усиливает помехозащищенность всей сети электроснабжения. Электропривод постоянного тока при автономном источнике электроэнергии ограниченной мощности содержит соединитель электродвигателя, емкостной накопитель электроэнергии, коммутационные ключи, сетевой разъем (для соединения с сетью электроснабжения), управляющее коммутационное устройство, индикатор оборотов электродвигателя, сопряженный с осью вращения электродвигателя, балластный резистор и диод развязки, включенные последовательно в цепь зарядки емкостного накопителя электроэнергии от сети электроснабжения. Запуск электродвигателя осуществляется от заранее заряженного емкостного накопителя электроэнергии (например, блока ионисторов), который обеспечивает требуемый пусковой ток (а он может превышать номинальный ток в несколько раз). Когда ротор электродвигателя раскрутится, индикатор оборотов посылает сигнал на управляющее коммутационное устройство, которое обеспечивает переключение питания электродвигателя на бортовую сеть электроснабжения. 1 з.п. ф-лы, 1 ил.
Наверх