Способ измерения толщины льда с подводного носителя


 


Владельцы патента RU 2510608:

Открытое акционерное общество "Концерн "Океанприбор" (RU)

Использование: изобретение относится к области гидроакустики и может быть использовано в навигационных приборах обнаружения льда и измерения его характеристик. Сущность: в способе автоматического измерения толщины льда с подводного носителя измеряют глубину погружения Н носителя, формируют и излучают низкочастотный сигнал длительностью Т<2Н/С, где Н - глубина погружения носителя, С - скорость звука, и частотой не выше F<1000 Гц, формируют и излучают высокочастотный сигнал с частотой F<1200 Гц/d(м), где d толщина молодого льда в метрах, длительностью М=10/f, причем высокочастотный сигнал излучается в точках, соответствующих равенству нулю амплитуды низкочастотного сигнала, раздельно принимают сигналы, измеряют время равенству нулю амплитуды низкочастотного сигнала ti, где i - порядковый номер измерения, измеряют время прихода переднего фронта высокочастотного сигнала Qi и при совпадении порядковых номеров измерений вычисляют разности времен Qi-ti, определяют фазы задержки низкочастотного сигнала по формуле θ=(Qi-ti)180°/M. Определяют толщины льда по формуле hi=θ/η, где η уточняется по результатам экспериментальных оценок (ориентировочно η=500), а окончательную оценку толщины льда определяют как среднее всех измерений толщины льда на длительности низкочастотной посылки. Технический результат: повышение точности и обеспечение автоматического измерения толщины молодого льда. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области гидроакустики и может быть использовано в навигационных приборах обнаружения льда и измерения его характеристик.

Как правило, такие приборы используются подводными носителями, для которых необходимо знание ледовой обстановки, в том числе дистанционная оценка толщины льда с высокой точностью при движении подо льдом на фиксированной глубине.

Известен акустико-гидростатический способ измерения толщины погруженной части льда, который содержит измерение высоты водяного столба, измеряемого датчиком забортного давления, и измерение расстояния до нижней поверхности льда, определяемое эхолотом. Толщина льда при этом есть разность измеренной высоты столба и оценки расстояния до поверхности (А.В.Богородский, Д.Б.Островский. Гидроакустические навигационные и поисково-обследовательские средства. СПб.: ЛЭТИ, 2009 г., с.123-170). Основным недостатком этого способа является недостаточная точность измерения, которая определяется точностью гидростатического измерителя, зависящей от знания атмосферного давления на момент измерения, и точностью измерения эхолотом, показания которого зависят от точности измерения скорости звука. Скорость звука может быть измерена на глубине движения, а по трассе распространения сигнала и особенно в районе, близком к кромке льда, измерить ее практически невозможно.

Для измерения толщины молодого морского льда значительный интерес представляют чисто акустические способы измерения.

Известен способ измерения толщины льда с использованием параметрического излучения. Нелинейное взаимодействие в воде сигналов двух частот приводит к возникновению разностной частоты, на которой и измеряется толщина льда. Характеристики направленности имеют практически такую же ширину, как и на исходных частотах накачки. Практическая реализация эхоледомера на параметрическом методе излучения столкнулась с рядом технических и технологических трудностей, присущих параметрическому методу, которые не позволили обеспечить требуемую точность измерения во всем диапазоне толщин льда.

В настоящее время для измерения толщины льда используются гидроакустические эхоледомеры (Ю.А.Корякин, С.А.Смирнов, Г.В.Яковлев. Корабельная гидроакустическая техника. СПб.: Наука, 2004 г., с.127-142). Гидроакустический эхоледомер свободен от недостатков акустогидростатического, так как его показания не зависят от абсолютного гидростатического давления. Гидроакустический эхоледомер состоит из высокочастотного канала, который содержит генератор, антенну, приемник и измеритель расстояния, низкочастотного канала, содержащего генератор, антенну, приемник и измеритель расстояния, индикатора и блока измерения толщины льда. Зондирующий импульс с высокочастотной несущей отражается от нижней поверхности льда, а сигнал низкочастотной несущей - от его верхней поверхности. Физической основой этого эффекта служит аномально большое затухание акустической энергии в кристаллической структуре молодого льда, обнаруженное во время изучения его акустических свойств. При очень низких частотах порядка 1 кГц затухание сигнала в толще льда небольшое, при частотах выше 100 кГц затухание настолько сильное, что эхосигнал формируется только самым нижним слоем льда (В.В.Богородский, Г.Е.Смирнов, С.А.Смирнов. Поглощение и рассеяние звуковых волн морским льдом. Труды ААНИИ. Л. 1975 г., с.128-134). При толщине льда меньше 0,5 м, что соответствует молодому льду, точность измерения толщины льда таким способом недостаточна для решения практических задач. Кроме того, этот способ требует участия оператора для ручной отработки результатов.

Задачей предлагаемого способа является повышение точности и обеспечение автоматического измерения толщины молодого льда.

Технический результат изобретения заключается в обеспечении автоматического измерения толщины молодого льда с высокой точностью.

Способ, реализованный в гидроакустическом эхоледомере, по количеству общих признаков является наиболее близким аналогом предлагаемого способа.

Для обеспечения заявленного технического результата в известный способ измерения толщины льда, содержащий излучение из подводного положения носителя в направлении льда высокочастотного и низкочастотного зондирующих гидроакустических сигналов раздельно высокочастотной и низкочастотной антеннами соответственно, прием отраженных от льда сигналов высокочастотной антенной - высокочастотного, и низкочастотной антенной - низкочастотного соответственно, введены новые признаки, а именно измеряют глубину погружения Н носителя, формируют и излучают низкочастотный сигнал длительностью Т<2Н/С, где С - скорость звука на горизонте измерения, и частотой F<1200 Гц/d(M), где d - толщина молодого льда в метрах, формируют и излучают высокочастотный сигнал f≥100 кГц с длительностью М=10/f, причем высокочастотный сигнал излучают в моменты времени, соответствующие равенству нулю фазы низкочастотного сигнала, измеряют время прихода переднего фронта высокочастотного сигнала Qi, измеряют время равенства нулю фазы низкочастотного сигнала ti, где i - порядковый номер измерения, вычисляют разности времен Qi-ti, определяют фазу задержки низкочастотного сигнала по формуле θ=(Qi-ti)360°/M, определяют толщину льда из формулы hii/η, где η - эмпирический коэффициент, который определяют по результатами графической зависимости фазы низкочастотного сигнала от отношения толщины льда к длине волны низкочастотного колебания, которые измерены предварительно, или выбирают равным 500, а окончательную оценку толщины льда определяют как среднее значение всех i измерений толщин льда на число измерений за длительность низкочастотной посылки.

Сущность работы предлагаемого способа основана на физических принципах гидроакустического метода, в котором используется зависимость отражательной способности льда от частоты, но в отличие от прототипа используется фазовый метод измерения. Низкочастотная излучающая антенна формирует ориентированную вверх характеристику направленности на частотах F<1200 Гц/d(M), где d - толщина молодого льда в метрах (С.А. Смирнов. Отражение низкочастотного гидроакустического сигнала от слоя молодого морского льда. Труды 8-й международной конференции «Прикладные технологии гидроакустики и гидрофизики». СПб.: Наука. 2006 г., с.115). Высокочастотная излучающая антенна формирует узконаправленный луч, ориентированный вверх, и излучает короткие импульсы в моменты, соответствующие нулевым фазам низкочастотного зондирующего сигнала. При отражении зондирующего высокочастотного сигнала от слоя молодого льда формируется нижняя граница льда. Низкочастотный зондирующий сигнал проходит через молодой лед практически без затухания и отражается от верхней границы льда. При отражении от границы лед - воздух происходит поворот фазы на 180 градусов, и отраженный низкочастотный сигнал принимается низкочастотной приемной антенной (там же). Таким образом, временная задержка между принятым высокочастотным импульсом, время приема которого характеризует нижнюю границу льда, и измеренным временем перехода фазы низкочастотного сигнала, который отразился от верхней кромки льда, через ноль функционально связана с толщиной льда. При излучении моменты времени формирования высокочастотного сигнала должны быть жестко связаны с моментами времени перехода фазы несущей низкочастотного сигнала через ноль, поэтому количество высокочастотных зондирующих сигналов равно количеству переходов несущей частоты низкочастотного импульса через ноль.

Измеряя разность между временем прихода высокочастотного сигнала и следующим за ним моментом времени перехода фазы несущей частоты низкочастотного импульса через ноль, получим оценку задержки фазы низкочастотного сигнала относительно высокочастотного сигнала. Точность измерения фазы будет определяться длительностью высокочастотного импульса. Поэтому длительность высокочастотного импульса должна быть минимальной, при которой будет обеспечено хорошее отношение сигнал - помеха при приеме. Исходной величиной для определения длительности низкочастотного сигнала является глубина погружения носителя Н, поэтому сначала измеряется глубина погружения носителя, которая измеряется на всех подводных носителях с помощью стандартного глубиномера. Длительность низкочастотного сигнала должна быть меньше Т<2Н/С, где Н - глубина погружения антенн носителя, а С - скорость звука, что гарантирует разнесение по времени излучения зондирующего сигнала и прием отраженного от верхней кромки льда эхосигнала. Частота низкочастотного сигнала определяется на основе проведенных экспериментальных исследований, согласно которым измеряли граничную частоту низкочастотного сигнала, отраженного от верхней кромки льда. Эта частота определялась из выражения F<1200 Гц/d(M) и равнялась примерно 1000 Гц, а конкретное значение определяется техническими и технологическими возможностями реализации (Ю.А.Корякин, С.А.Смирнов, Г.В.Яковлев. Корабельная гидроакустическая техника. СПб.: Наука, 2004 г., с.127-142). Частота излучения высокочастотного сигнала зависит от времени работы и свойств льда, которые могут изменяться, что сказывается на отражательной способности. Эта частота находится, как правило, в пределах от 100 до 200 кГц и определяется особенностями построения конкретного эхоледомера (В.В.Богородский, В.П.Гаврило. Лед. Л.: Гидрометеоиздат, 1984 г.).

Длительность высокочастотного зондирующего импульса должна быть не менее 10 периодов несущей частоты. Это обеспечивает достаточное отношение сигнал - помеха, с одной стороны, и предельную точность измерения фазы несущей частоты низкочастотного сигнала, с другой стороны, что практически определяет инструментальную точность измерений предлагаемым способом. После излучения сигналов производят прием отраженных сигналов. Прием высокочастотного сигнала и низкочастотного сигнала производят на разные антенны. Первым приходит высокочастотный сигнал, отразившись от нижней кромки льда. Определение времени прихода высокочастотного сигнала происходит с использованием стандартной процедуры после измерения помехи и выбора порога, при этом фиксируют момент превышения порога амплитудой огибающей высокочастотного импульса. Этот измеренный момент времени является сигналом для формирования процедуры измерения времени пересечения амплитуды несущей низкочастотного сигнала нулевого уровня, который соответствует нулевой фазе низкочастотного сигнала. Подобные измерения известны и достаточно подробно изложены в специальной литературе (Б.Н.Митяшев. Определение временного положения импульсов при наличии помех. М.: Сов. радио, 1962 г.). Поскольку первым приходит высокочастотный сигнал, отразившись от нижней кромки льда, то он и обеспечивают высокую точность измерения нулевого уровня низкочастотного сигнала даже при наличии помехи. Операции измерения времени происходят последовательно, поэтому совпадение порядковых номеров обеспечивается автоматически по каждому приему высокочастотного сигнала и соответствующей ему нулевой фазе низкочастотного сигнала. По каждой паре измерений производится определение фазы задержки низкочастотного сигнала в зависимости от точности измерения, которая определяется длительностью используемого высокочастотного импульса по формуле θi=(Qi-ti)360°/M. Далее определяется толщина льда из формулы hii/η, где η - эмпирический коэффициент, который уточняется по результатам экспериментальных оценок. Можно использовать графическую зависимость отношения толщины льда к длине волны низкочастотного колебания от сдвига фазы и запрограммировать процедуру сравнения фазы и соответствующей ей толщины льда по таблице для конкретного значения низкой частоты. Можно воспользоваться усредненным значением коэффициента, полученным аппроксимацией той же графической зависимости (ориентировочно η=500) (С.А.Смирнов. Отражение низкочастотного гидроакустического сигнала от слоя молодого морского льда. Труды 8-й международной конференции «Прикладные технологии гидроакустики и гидрофизики», СПб.: Наука, 2006 г., с.115). Некоторая потеря точности не будет существенной, поскольку не будет выходить за границу, которая определяется априорной неопределенностью исходных данных и незнанием условий работы. В процессе работы используются несколько периодов низкой частоты, определяемых длительностью низкочастотного сигнала. По каждому периоду определяется значение толщины льда, поэтому можно использовать ряд последовательных измерений и получить статистическую оценку среднего значения, которая будет являться окончательным результатом измерений по одному циклу излучение - прием.

Блок схема устройства, реализующего предложенный способ, представлена на фиг.1.

Устройство содержит низкочастотную антенну 1, соединенную через аппаратуру 3 приема передачи низкочастотного (НЧ) сигнала двусторонней связью с блоком 5 управления и согласования и далее со спецпроцессором 6 обработки входных данных и выработки оценки толщины льда. Антенна 2 через аппаратуру приема-передачи высокочастотного (ВЧ) сигнала соединена со вторым входом блока 5 управления и согласования двусторонней связью. Измеритель 7 глубины и скорости звука соединен со вторым входом спецпроцессора 6 обработки входных данных и выработки оценки толщины льда, а третий вход спецпроцессора 6 соединен с блоком 8 формирования априорных данных.

Антенны 1 и 2 являются известными направленными акустическими антеннами, так же аппаратура приема-передачи 3 и 4 является известными устройствами, используемыми в прототипе. Блок 5 управления и согласования может быть частью вычислительного устройства, реализованного в спецпроцессоре 6. Для качественного решения задач обработки гидроакустической информации на современных кораблях используются спецпроцессоры на основе ЦВС, обладающие высокой производительностью, функциональной надежностью и малыми габаритами. С использованием специального алгоритмического и программного обеспечения спецпроцессорами могут решаться все задачи формирования и обработки принимаемых гидроакустических сигналов, в том числе и для автоматического измерения толщины льда (Ю.А.Корякин, С.А.Смирнов, Г.В.Яковлев. Корабельная гидроакустическая техника. СПб.: Наука, 2004 г., с.281).

Реализацию способа целесообразно рассмотреть на примере работы устройства.

В спецпроцессор 6 поступает оценка глубины и оценка скорости звука из измерителя 7, который является известным устройством и работает в штатном режиме (В.А.Комляков. Корабельные средства измерения скорости звука и моделирования акустических полей в океане». СПб.: Наука, 2003 г.). По оценке глубины в спецпроцессоре 6 рассчитываются длительность низкочастотного сигнала и времена выработки высокочастотных зондирующих импульсов, которые согласованы с нулевыми фазами низкочастотного сигнала, и определяется число формируемых сигналов. Эта информация поступает в блок 5 управления и согласования, который формирует последовательность работы низкочастотного канала на антенну 1 и высокочастотного канала на антенну 2. Аппаратура 4 приема-передачи формирует зондирующие сигналы высокой частоты, которые антенной 2 излучаются в направлении льда. Одновременно аппаратура 3 приема-передачи формирует низкочастотные сигналы, которые антенной 1 излучаются в направлении льда. Отраженные нижней кромкой льда высокочастотные эхосигналы принимаются антенной 2 и поступают на аппаратуру 4 приема-передачи ВЧ сигнала, где происходит оптимальная обработка принятых сигналов, пороговое обнаружение сигналов и фиксация моментов времени приема высокочастотного сигнала, которые передаются в блок 5. Одновременно эхосигнал НЧ, отраженный от верхней кромки льда, принимается антенной 1 и поступает на аппаратуру 3 приема-передачи НЧ сигнала, где происходит оптимальная обработка низкочастотного сигнала, определение момента пересечения фазой низкочастотного сигнала нулевого уровня и передача этих данных в блок 5. В блоке 5 происходит сравнение моментов излучения и приема в соответствии с выбранной временной диаграммой и передача полученных временных оценок в спецпроцессор 6 для обработки входных данных и выработки оценки толщины льда. Из блока 8 формирования априорных данных в спецпроцессор 6 поступают исходные данные по району работы, времени года и графики зависимости оценки фазы от отношения толщины льда к длине волны, полученные по результатам экспериментальных исследований. В спецпроцессоре 6 происходит выработка среднего значения оценки толщины льда по всем полученным измерениям на длительности низкочастотного сигнала.

Таким образом, предлагаемое техническое решение позволяет автоматически измерять толщину льда с подводного носителя при использовании фазоимпульсного метода измерения и осреднения результатов нескольких измерений в процессе накопления информации за один цикл излучение - прием.

1. Способ автоматического измерения толщины льда, включающий излучение из подводного положения носителя в направлении льда высокочастотного и низкочастотного зондирующих гидроакустических сигналов высокочастотной и низкочастотной антеннами соответственно, прием отраженных от льда сигналов: высокочастотной антенной - высокочастотного, и низкочастотной антенной - низкочастотного соответственно, и измерение времен прихода отраженных сигналов, отличающийся тем, что измеряют глубину погружения Н носителя, формируют и излучают низкочастотный сигнал длительностью Т<2Н/С, где С - скорость звука на глубине погружения, и частотой F<1200 Гц/d(м), где d толщина молодого льда в метрах, формируют и излучают высокочастотный сигнал f≥100 кГц с длительностью импульса М=10/f, причем высокочастотный сигнал излучают в моменты времени, соответствующие равенству нулю фазы низкочастотного сигнала, измеряют время прихода переднего фронта высокочастотного сигнала Qi, измеряют время равенства нулю фазы низкочастотного сигнала ti, где i - порядковый номер измерения, вычисляют разности времен Qi-ti, определяют фазы задержки низкочастотного сигнала по формуле θ=(Qi-ti)360°/M, определяют толщину льда из формулы hii/η, где η - эмпирический коэффициент, а окончательную оценку толщины льда определяют как среднее всех измерений толщины льда на длительности низкочастотной посылки.

2. Способ по п.1, отличающийся тем, что коэффициент η определяют по результатам графической зависимости фазы низкочастотного сигнала от отношения толщины льда к длине волны низкой частоты, измеренной предварительно.

3. Способ по п.1, отличающийся тем, что коэффициент η выбирают равным 500.



 

Похожие патенты:

Использование: изобретение относится к области гидроакустики и предназначено для дистанционных акустических измерений морфометрических характеристик плавучих льдов из-под воды.

Изобретение относится к способам неразрушающего контроля и может быть использовано для измерения высоты (толщины) металлических деталей или их износа. .

Изобретение относится к теплоэнергетике и может быть использовано для определения толщины и плотности отложений в оборудовании химических, нефтехимических предприятий, а также тепловых, геотермальных, атомных энергоустановок.

Изобретение относится к методам неразрушающего контроля и предназначено для определения толщины отложений на внутренних поверхностях трубопроводов. .

Изобретение относится к области контрольно-измерительной техники и неразрушающего контроля, а именно к методам измерения толщины, определения текстурной анизотропии и напряженно-деформированного состояния конструкций и проката из черных и цветных металлов и сплавов в широком диапазоне толщин при одностороннем доступе, дефектоскопии и структуроскопии различных материалов и изделий, и предназначено для применения в металлургии, машиностроении, в авиастроении, автомобилестроении и других отраслях промышленности.

Изобретение относится к области контрольно-измерительной техники и ультразвукового неразрушающего контроля и позволяет повысить достоверность и точность результатов измерений толщины изделий.

Изобретение относится к медицинской технике, а именно к устройствам для диагностирования состояния кровеносного сосуда. .

Изобретение относится к области измерения расстояний до объекта акустическими методами. .

Изобретение относится к комплексам для измерения толщины стенок трубопроводов с использованием звуковых колебаний и может быть использовано для определения толщины слоя льда на внутренней поверхности пульпопровода.

Изобретение относится к контрольно-измерительной технике, в частности, для неразрушающих испытаний и может быть использовано для измерения толщины образцов материалов и изделий.

Изобретение относится к области диагностики линейной части трубопроводных систем и может быть использовано для диагностики технического состояния внутренней стенки магистральных трубопроводов. Размещают на внешней поверхности трубопровода возбуждающие и измерительную катушки, генерируют гармонический испытательный сигнал и передают его в возбуждающие катушки, усиливают напряжение, наводимое в измерительной катушке, и определяют по комплексной амплитуде толщину стенки трубопровода. Периодически осуществляют измерение толщины стенки трубопровода, полученные значения сравнивают с ранее накопленными и полученными в результате моделирования. В результате регрессионной обработки осуществляют прогнозирование времени истончения трубопровода до предельного значения и осуществляют контроль изменений условий наблюдения и корректировку измеренных параметров. Устройство содержит возбуждающий генератор, блок измерительных преобразователей, включающий возбуждающие и измерительную катушки, и усилитель. Устройство снабжено полосовым фильтром, цифровым датчиком температуры, расположенным в непосредственной близости от любой из катушек возбуждения на поверхности трубопровода, цифровым вычислителем, состоящим из центрального процессора, оперативного и постоянного запоминающих устройств, аналого-цифрового преобразователя и порта ввода-вывода. Техническим результатом является повышение безопасности эксплуатации магистрального трубопровода. 2 н.п. ф-лы, 2 ил.

Использование: для измерения толщины отложения материала на внутренней стенке конструкции. Сущность изобретения заключается в том, что a) нагревают участок конструкции; b) детектируют колебания на нагретом участке; c) детектируют колебания на ненагретом участке конструкции; d) определяют резонансную частоту или частоты конструкции на основании колебаний, детектированных на этапе c); и e) определяют толщину отложения материала на внутренней стенке конструкции на упомянутом ненагретом участке с использованием определенной резонансной частоты или частот, на этом этапе используют колебания, детектированные на этапе b), в качестве калибровочных данных. Технический результат - повышение достоверности определения толщины отложения материала на внутренней стенке конструкции. 5 н. и 15 з.п. ф-лы, 8 ил.

Заявленное изобретение относится к области технической диагностики и неразрушающего контроля промышленных объектов и используется для контроля за динамикой изменения минимального значения толщины стенки тонкостенных и листовых изделий, а также других изделий, в которых могут распространяться волны Лэмба, например трубопроводов, резервуаров, сосудов, цистерн. Заявленное решение включает способ контроля за динамикой изменения толщины стенки контролируемого объекта, включающий размещение на его поверхности на известном расстоянии друг от друга, по крайней мере, одного акустического преобразователя для излучения волн Лэмба и, по крайней мере, одного преобразователя для их приема, излучение в заданный момент времени импульсного сигнала, расчет зависимости спектральной плотности мощности принятого сигнала от времени, выбор волны Лэмба и частоты, определение разности между временем приема выбранной частотной составляющей выбранной волны Лэмба и временем излучения сигнала, определение значения групповой скорости выбранной частотной составляющей выбранной волны Лэмба по известному значению расстояния между преобразователями и значению разности между временем приема выбранной частотной составляющей выбранной волны Лэмба и временем излучения сигнала, определение значения толщины стенки по полученному значению групповой скорости, выбранному значению частоты и эталонной зависимости групповой скорости выбранной волны Лэмба от произведения толщины стенки и частоты, при этом устанавливают минимальную величину толщины стенки по полученным среднеарифметической величине толщины стенки и дисперсии значений толщины стенки объекта, причем среднеарифметическое значение толщины стенки определяют с выбором симметричной волны Лэмба нулевого порядка и, по крайней мере, одной частоты, на которой эталонная зависимость обратной величины групповой скорости симметричной волны Лэмба нулевого порядка от произведения толщины стенки и частоты близка к линейной, а дисперсию значений толщины стенки определяют с выбором антисимметричной волны Лэмба нулевого порядка и частоты, на которой эталонная зависимость обратной величины групповой скорости антисимметричной волны Лэмба нулевого порядка от произведения толщины стенки и частоты существенно нелинейна. Технический результат, достигаемый от реализации заявленного решения, заключается в снижении трудоемкости, упрощении и ускорении контроля толщины стенки больших по площади объектов, устранении необходимости получения физического доступа ко всей поверхности объекта, подлежащей контролю толщины, обеспечении возможности контроля толщины при наличии вариаций значений толщины, к примеру при наличии на объекте очаговой коррозии, обеспечении возможности определения среднеарифметического и минимального значений толщины на участке между двумя акустическими преобразователями, установленными на объекте в произвольных точках, без проведения предварительного измерения толщины в тех же точках. 6 ил.

Изобретение относится к области измерения и регистрации гололедных отложений на длинномерных конструкциях типа морских буровых установок, линий электропередач и т.п. Целью настоящего изобретения является создание способа и устройства, обеспечивающих непрерывный, через точно определенные промежутки времени, мониторинг характеристик гололедных отложений, позволяющий определить их толщину и плотность. Способ основан на том, что резонансные частоты отдельных элементов конструкции изменяются, если на них появились гололедные отложения. Изменения частоты отдельных резонансных гармоник пропорциональны присоединенной массе льда. Помимо изменения частоты резонансных гармоник гололедные отложения увеличивают декремент затухания звуковых колебаний элементов конструкции, поскольку гололедные отложения представляют собой поглощающую среду для звуковых колебаний. Система для измерения толщины и плотности гололедных отложений содержит устройство возбуждения в конструкции волны звукового диапазона частот и приемное устройство, также усилители принятых сигналов, аналого-цифровой преобразователь и анализатор спектра, подключенные к компьютеру, при этом устройство возбуждения закреплено на конструкции и включает в себя выполненные с возможностью автономной работы генератор шума с подключенным к нему пьезокерамическим вибратором, настроенным на среднюю резонансную частоту амплитудно-частотной характеристики конструкции, а приемные устройства, также закрепленные на конструкции, выполнены в виде датчиков вибрации. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области судостроения, а более конкретно - к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения ледовых модельных исследований в ледовом опытовом бассейне. Предложен способ определения толщины ледового поля при испытаниях моделей судов и морских инженерных сооружений в ледовом опытовом бассейне, заключающийся в зондировании ледового поля ультразвуковыми импульсами с последующим преобразованием отраженных импульсов в напряжение на электронном устройстве и регистрацией результатов измерения, при этом под нижнюю поверхность ледового поля на исследуемом участке подводят плоский жесткий экран, прижимая его к нижней поверхности ледового поля, отражающий зондирующие ледовое поле ультразвуковые импульсы. Предложено также устройство для осуществления данного способа. Технический результат заключается в повышении достоверности и точности результатов эксперимента по определению толщины ледового поля. 2 н. и 1 з.п. ф-лы, 1 ил.

Использование: для ультразвуковой толщинометрии с высоким разрешением. Сущность изобретения заключается в том, что в процессе обследования трубопровода устройство ультразвуковой толщинометрии с высоким разрешением с использованием пьезоэлектрических преобразователей регистрирует отраженные сигналы от внутренней или внешней поверхностей стенки трубопровода, превышающие программно задаваемый порог, при этом выбираются отраженные сигналы по максимальному значению амплитуды, привязанной ко времени прихода от излученного импульса, далее из полученных сигналов выбирают не менее четырех сигналов по максимальным значениям амплитуд и регистрируют как значения времени от излученного импульса, так и амплитуды, при этом определяют границы начала изменения толщины стенки так называемой «зоны неопределенности границы дефекта» и в зависимости от структуры сигнала в «зоне неопределенности» вычисляют величину коррекции и далее корректируют сигналы отступа и толщины стенки трубопровода. Технический результат: обеспечение возможности определения границ зон изменения толщины стенки трубопровода с произвольным расположением плоскостей к нормали акустической оси пьезоэлектрического преобразователя. 4 з.п. ф-лы, 7 ил.

Изобретение относится к области гидроакустики и предназначено для разработки гидроакустической аппаратуры, используемой при плавании в ледовой обстановке. Способ заключается в том, что излучают из подводного положения носителя в направлении льда высокочастотные зондирующие гидроакустические сигналы, принимают отраженные ото льда сигналы, измеряют глубину погружения Н носителя, принимают отраженные эхосигналы веером узконаправленных характеристик в горизонтальной плоскости в диапазоне передней полусферы, производят последовательный набор временных реализаций по всем пространственным характеристикам направленности. Далее производят последовательное аналогово-цифровое преобразование сигнала, последовательную когерентную обработку, измерение уровня помехи по первому циклу набора как среднее значение всех амплитудных составляющих по всем пространственным каналам Апом, выбор порога, по каждому пространственному каналу определение амплитуды эхосигнала превысившего порог, измерение амплитуды эхосигнала Аэхо, измерение номера пространственного канала, определение дистанции Д, по измеренной глубине погружения Н и измеренной дистанции Д, определение угла отражения эхосигнала как Q°=arcsinН/Д. Производят выбор эхосигналов, которые имеют угол отражения в диапазоне 10°-30° и принадлежат тем характеристикам направленности, которые отстоят от направления движения на угол не больше 30 градусов для выбранных эхосигналов, определение коэффициента контраста по формуле S(Q)=Аэхо/Аводы, а толщину льда определяют по формуле Тл=S(Q)×70к, где к - поправочный коэффициент, связанный с особенностями калибровки аппаратуры. Технический результат - дистанционное автоматическое измерение толщины льда в направлении движения по ходу носителя аппаратуры. 1 ил.

Использование: для ультразвуковой эхо-импульсной толщинометрии. Сущность изобретения заключается в том, что измерение толщины осуществляют за N циклов контроля, во время первого цикла контроля на верхней поверхности контролируемого изделия в произвольной точке размещают ультразвуковой преобразователь, излучают в контролируемое изделие зондирующий импульс, принимают из него отраженный от нижней поверхности изделия эхо-сигнал, запоминают принимаемый эхо-сигнал, N-1 раз изменяют положение преобразователя на поверхности контролируемого изделия и для каждого нового положения повторяют цикл контроля, при этом преобразователь выполняют раздельным, положение излучающего и приемного преобразователей на поверхности контролируемого изделия выбирают произвольно, для каждого цикла контроля запоминают геометрические координаты положения излучающего и принимающего преобразователей и производят обработку принимаемых сигналов. Технический результат: расширение функциональных возможностей способа ультразвуковой эхо-импульсной толщинометрии. 5 ил.
Наверх