Штамм хс-18 вируса ядерного полиэдроза хлопковой совки helicoverpa armigera hbn, используемый для получения инсектицидного препарата


 


Владельцы патента RU 2511042:

Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" (ФБУН ГНЦ ВБ "Вектор") (RU)

Изобретение относится к микробиологической промышленности и биотехнологии. Штамм вируса ядерного полиэдроза хлопковой совки Helicoverpa armigera Hbn обладает высокой противовирусной активностью по отношению к хлопковой совке. Депонирован в Государственной коллекции Роспотребнадзора возбудителей вирусных инфекций, риккетсиозов ФБУН ГНЦ ВБ «Вектор» под регистрационным номером V-607 и может быть использован при производстве биологических инсектицидов для сельского хозяйства. Изобретение позволяет повысить противовирусную активность по отношению к хлопковой совке. 1 ил., 3 табл., 4 пр.

 

Изобретение относится к микробиологической промышленности и биотехнологии, а именно к производству биологических инсектицидов для сельского хозяйства на основе нового штамма вируса ядерного п олиэдроза (ВЯП), патогенного для личинок хлопковой совки (ХС), являющихся опасным вредителем хлопчатника и многих других культурных растений.

Применение биологических средств защиты растений является экологически оправданым. В отличие от химических средств защиты этот вирус вызывает заболевание и гибель только личинок хлопковой совки, не оказывая вредного воздействия на другие виды животных (насекомых и позвоночных). Кроме того, стоимость получения вируса в пересчете на обрабатываемую площадь оказывается сравнимой со стоимостью используемых в настоящее время химических пестицидов.

Известен ряд химических препаратов, применяемых для борьбы с хлопковой совкой. Например, известен препарат «Регент», однако он является химическим препаратом и оказывает негативное влияние не только на вредителей, но и на человека и теплокровных животных.

Известен штамм ВЯП Mamestra brassicae (Pd-1-5) ВКПМ virus-1, используемый для производства инсектицидного препарата против капустной совки (АС СССР №1638161, МГЖ C12N 7/00, опубл. 30.03.91). Биологическая активность препарата, полученного на основе штамма Pd-1-5 для гусениц Mamestra brassicae, составляет LD50 0,2×105 полиэдров на гусеницу.

Недостатком штамма Pd-1-5 является низкая вирулентность по отношению к капустной совке Mamestra brassicae и отсутствие значимой вирулентности по отношению к хлопковой совке Helicoverpa armigera Hbn.

Известен штамм ВЯП Mamestra brassicae (КС-3-86) ГКВ №2155, используемый для производства инсектицидного препарата против капустной совки (Патент РФ №2153258, МПК A01N 63/00, опубл. 27.07.2000). Биологическая активность препарата, полученного на основе штамма КС-3-86 для гусениц Mamestra brassicae, составляет (2,3-7,0)×102 полиэдров на гусеницу.

Однако штамм КС-3-86 имеет недостаточную вирулентность по отношению к капустной совке Mamestra brassicae и отсутствие значимой вирулентности по отношению к хлопковой совке Helicoverpa armigera Hbn.

Известен штамм ВЯП ХС-2, на основе которого получают препарат Вирин ХС-2 (ТУ 10.01.41-91). Он вызывает специфически направленную гибель хлопковой совки, безвреден для других животных, нетоксичен.

Однако указанный штамм имеет недостаточную противовирусную активность, требует двухкратных обработок посевов. Эффективность достигает 77%.

Наиболее близким аналогом (прототипом) является штамм вируса ядерного полиэдроза ХС-17 (авторское название), который задепонирован в Коллекции культур микроорганизмов» ФБУН ГНЦ ВБ ″Вектор″ под регистрационным номером VB-06 (патент РФ №2359031, МПК C12N 7/00, опубл. 20.06.2009 г.). Предлагаемый штамм ХС-17 получен в результате селекции вируса, выделенного из гусениц, собранных на полях хлопчатника Таджикистана и погибших от спонтанного полиэдроза в лаборатории.

Однако штамм ВЯП ХС-17 также обладает недостаточной противовирусной активностью по отношению к хлопковой совке.

Техническим результатом является получение нового штамма вируса ядерного полиэдроза с более высокой противовирусной активностью по отношению к хлопковой совке.

Указанный технический результат достигается созданием штамма ХС-18 вируса ядерного полиэдроза хлопковой совки Helicoverpa armigera Hbn, депонированного в Государственной коллекции Роспотребнадзора возбудителей вирусных инфекций, риккетсиозов ФБУН ГНЦ ВБ «Вектор», имеющего регистрационный номер V-607 и используемого для получения инсектицидного препарата.

Штамм ХС-18 содержит уникальные маркерные признаки для идентификации, полученные в результате анализа нуклеотидной последовательности генома указанного штамма HS-18 и касающиеся следующих нуклеотидов по району Orf119-like protein:

9/С; 50/G; 58/А; 64/А; 104/G; 117/С; 133/А; 138/G; 176/Т; 210/G; 282/Т; 289/С; 384/С; 444/Т; 462/С, где в числителе указан номер нуклеотида, а в знаменателе - наименование нуклеотида.

Происхождение заявляемого штамма ХС-18. Вирус ядерного полиэдроза хлопковой совки штамм ХС-18 получен в инсектарии отдела биофизики и экологических исследований ФБУН ГНЦ ВБ «Вектор», Новосибирская область, Новосибирский район, р.п. Кольцово при активации латентной инфекции личинки 3 возраста лабораторной популяции хлопковой совки. Из погибшей от полиэдроза гусеницы был приготовлен гомогенат из которого путем грубой очистки был выделен вирус ядерного полиэдроза. Собственно штамм был выделен путем слепого пятикратного пассирования образца на личинках Helicoverpa armigera путем заражения per os и приготовления гомогената из погибших личинок. Из каждого пассажа для прохождения дальнейшего пассирования отбирался вирус, выделенный только из одной гусеницы погибшей от полиэдроза на 7 сутки после инфицирования. К моменту патентования штамм ВЯП ХС 18 прошел 4 пассажа на гусеницах хлопковой совки лабораторной популяции при пероральном заражении.

Идентификация вируса проведена с помощью частичного секвенирования в лаборатории молекулярной эпидемиологии ФБУН ГНЦ ВБ «Вектор». Штамм ХС-18 вируса ядерного полиэдроза хлопковой совки Helicoverpa armigera Hbn депонирован Государственной коллекции Роспотребнадзора возбудителей вирусных инфекций, риккетсиозов ФБУН ГНЦ ВБ «Вектор», имеющий регистрационный номер V-607 (справка о депонировании прилагается).

Морфологическое описание. Размеры полиэдров составляют: ⌀ 1 - 3 мкм; размеры вирионов: 400×80 нм; размеры нуклеокапсидов 310×50 нм. ДНК кольцевая ковалентно замкнутая, мол.вес 121,7 МД.

Штамм обладает высокой репродуктивной активностью: выход вируса составляет (1 - 6)×109 полиэдров на гусеницу при его культивировании на личинках (Helicoverpa armigera Hbn.) 4-го возраста

Высоко патогенен исключительно для вида Helicoverpa armigera (хлопковая совка) и абсолютно безопасен для других видов животных, включая класс Насекомые. Биологическая активность: lgЛД50=1.23±0.29 (на гусеницах 3-го возраста хлопковой совки лабораторной популяции), ЛВ50 = 4.3 суток при заражении дозой ЛД90.

Культивирование вируса. Штамм бакуловируса ХС-18 размножают путем инфицирования личинок хлопковой совки и дальнейшего содержания их при температуре 28°С и влажности 60% на искусственной питательной среде (ИПС) в течение 14 дней. Состав ИПС: люцерновая мука - 88 г, кукурузная мука - 35 г, дрожжи кормовые - 44 г, аскорбиновая кислота - 4,4 г, бензойная кислота - 2,0 г, формалин (100 p-p) - 8 мл, агар - 15 мл, вода дистиллированная - 788 мл.

Штамм хорошо хранится при плюс 4°С как в лиофильно высушенном виде, так и в 50% водном растворе глицерина.

Определение полной нуклеотидной последовательности генома Helicoverpa armigera nuclear polyhedrosis virus, штамм HS-18.

Для установления генотипа штамма HS-18 Helicoverpa armigera nucleopolyhedrovirus образцы вирусного материала были четырежды пассированы на Helicoverpa armigera Hbn и были исследованы методом неспецифического секвенирования на метагеномном секвенаторе Ion Torrent. При проведении анализа нуклеотидной последовательности генома штамм HS-18 в работе был использован метод секвенирования ДНК на основе обнаружения ионов водорода. Данная технология реализована фирмой Life Technologies, в приборе Ion Torrent (PGM). Эта технология отличается от других секвенирующих технологий тем, что в ней нет модифицированных нуклеотидов и не используются сложные оптические системы. В приборе используется полупроводниковая технология для определения ионного потока во время полимеразной цепной реакции. Данные по ионному потоку переводятся в нуклеотидные последовательности длиной до 200 п.н., а полученные нуклеотидные последовательности обрабатываются сервером и выстраиваются в элаймент. Полученные консенсусные последовательности сравниваются с прототипными последовательностями из международной базы данных GenBank. Геномная последовательность района Orf119-like protein Helicoverpa armigera nucleopolyhedrovirus штамма HS-18 представлена на фиг. 1. На фиг.1 приведено филогенетическое дерево, построенное для различных штаммов Helicoverpa armigera nucleopolyhedrovirus. Штамм HS-18 обозначен в рамке.

HS-18 типирован как Helicoverpa armigera nucleopolyhedrovirus. При сравнении с прототипным штаммом strain HaSNPV-G4 (Китай, 2010 г., gb NC_002654) процент гомологии составил 99%. Штамм HS-18, по сравнению с наиболее близкими прототипами - штамм HaSNPV-G4 и штамм NNgl, имеет нуклеотидные отличия по району Orf119-like protein. (таблица 1). Указанные различия являются уникальными для HS-18 и могут быть использованы для идентификации данного вируса.

Для сравнения были использованы следующие штаммы:

JX131375 Helicoverpa armigera nuclear polyhedrosis virus, strain Bangalore.

AF271059 Helicoverpa armigera nuclear polyhedrosis virus, strain G4.

AF303045 Helicoverpa armigera nuclear polyhedrosis virus, strain C1.

JN584482 Helicoverpa armigera NPV strain Australia.

AP010907 Helicoverpa armigera NPV strain NNg1.

AF334030 Helicoverpa zea acronym HzSNPV.

AF275264 Helicoverpa zea strain SNPV.

Таблица 1
Нуклеотидные отличия между различными штаммами Helicoverpa armigera nucleopolyhedrovirus по району Orf1 19-like protein
9 50 58 64 104 117 133 138 176 210 282 289 384 444 462
S-18 C G А А G С А G Т G Т С С T С
131375 C А А А G С А Т Т G T С T T С
F271059 C G А А G С А G T А C С C T С
F30304S C G А А G С А G T А C С C T С
N584482 C G А А G Т А G Т А C T C T С
Р010907 C G А А G С А G T G T C C C С
F334030 T G А А А C А G C G T C C T T
F275264 T G С С А C С G C G T C C T T

Изобретение иллюстрируется следующими примерами конкретного выполнения.

Пример 1. Технология получения жидкой суспензии штамма ХС-18

Технология вирусов ядерного полиэлроза in vivo осуществляется по следующей схеме: выращивание насекомых, культивирование в них вирусов, сбор погибших гусениц, выделение вирусной биомассы и очистка полиэдров.

Отродившихся из яиц личинок хлопковой совки (Helicoverpa armigera Hbn.) доращивают до четвертого возраста и инфицируют вирусом ядерного полиэдроза (штамм ХС-18). Для этого искусственную питательную среду (ИПС) в чашках Петри диаметром 90 мм (по 25 мл в 1 чашке) опрыскивают вирусной суспензией штамма ХС-18 из расчета 1 мл с титром 2×105 полиэдров/мл на 60 кв.см поверхности и скармливают зараженную ИПС гусеницам хлопковой совки (ХС) примерно по 0,2 г на 1 гусеницу. Инфицированных таким образом гусениц ХС содержат при 27±1,5°С и влажности 65%. Время инкубирования инфицированных гусениц 8-10 дней. При этом гибель насекомых составляет не менее 75%. Затем личинки собирают с помощью вакуумного насоса с давлением (8,7±0,1)×104 Па в посуду из толстостенного стекла, добавляют раствор диэтилтиокарбоната натрия до конечной концентрации 0,1%) и хранят при температуре от плюс 5 до плюс 10°С не более года. Для очистки вируса к биомассе из погибших гусениц добавляют дистиллированную воду и размельчают с помощью гомогенизатора. Полученный гомогенат фильтруют через 2 слоя капроновой ткани с ячейками 0,1 мм. Затем из фильтрата осаждают крупные остатки тканей центрифугированием в течение 0,5 мин при 500 об./мин. Из супернатанта осаждают очищенный вирус двойным центрифугированием 10 мин при 5000 об./мин.

Осадок суспендируют в малом объеме 50% раствора глицирина. Титр живых вирусов в полученной вирусной суспензии составляет не менее 5×109 полиэдров/мл.

Пример 2. Сравнительные данные биологической активности заявляемого штамма ВЯП ХС-18 и штаммов-аналогов.

Для получения сравнительных данных параллельно из разных партий гусениц, инфицированных разными штаммами вирусов, получают вирусный материал известных штаммов ХС-17, КС-3-86 и заявляемого штамма ХС-18.

Биологическую активность известных и заявляемого штаммов оценивали путем определения величины ЛД50 - дозы вируса (полиэдров на гусеницу), вызывающей гибель 50% инфицированных насекомых, и ЛВ50 время (в сутках), за которое погибает 50% гусениц, инфицированных дозой 105 полиэдров/гусеницу (пэ/гус). Расчет проводили по методу Кербера, гибель насекомых определяли с поправкой по формуле Аббота (Ашмарин И. П., Воробьев А.А. // Статистические методы в микробиологических исследованиях. Л.: Медгиз, 1962, с.82-93). Данные приведены в таблице 1.

Анализ таблицы 2 показывает, что заявляемый штамм ХС-18 патогенен для гусениц ХС, причем его активность превышает активность известных штаммов КС-3-86 и ВЯП ХС (штамм ХС-17).

Таблица 2
Сравнительные данные по биологической активности штаммов
Наименование штамма Биологическая активность, ЛД50
% разведения Полиэдры/1 гусеница
ВЯП ХС (штамм ХС-18) 0,0005 (1,5-3,0)×101
ВЯП ХС (штамм ХС-17) (прототип) 0,0005 (2,5-5,5)×101
Штамм КС-3-86 0,1 (2,3-7,0)×104

Пример 3. Исследование токсичности и патогенности вирусного штамма ХС-18

Проведена медико-токсикологическая оценка вируса ядерного полиэдроза - штамм ХС-18. Испытания безопасности для теплокровных выполнены в соответствии с ″Методическими указаниями по оценке новых пестицидов. МЗ СССР, 1988 г.″ и рекомендациями ВОЗ/ФАО, Женева, 1975 г. по испытанию безопасности бакуловирусов.

Проведены эксперименты по выявлению токсичности-патогенности ВЯП - штамм ХС-18 на мышах. 5 группам мышей (массой 18-20 г) по 10 в каждой. Вводили суспензию вируса с титром 2×109 пэ/мл в желудок и в брюшину из расчета по 1 мкл вирусной суспензии на 1 г веса. Контрольной группе вводили раствор 0,9% NaCl по 0,2 мл.

Установлено, что введение дозы 1 мкл на 1 г или 1000 мг на 1 кг веса не приводит к гибели животных ни при введении в желудок, ни при внутрибрюшинном введении. Термометрия, взвешивание, гематологические исследования живых мышей не выявили существенных отклонений от физиологической нормы. Серологические исследования, проведенные иммуноферментным и иммунофлуоресцентным методом, не выявили специфического бакуловирусного антигена ВЯП ХС в крови и органах животных на 28 день обследования.

Кожно-резорбтивное действие изучалось на гвинейских свинках при разовом и многократном нанесении суспензии штамма ХС-18 на неповрежденную и скарифицированную кожу. Контрольным группам наносили 0,9% NaCl.

Было установлено, что во всех случаях однократное нанесение не вызывало заметных местных или общих реакций у животных при воздействии всеми испытуемыми материалами. Также не выявлено отклонений от показателей в опытных группах при термометрии или взвешивании животных в течение 14 дней. Многократное нанесение на скарифицированную кожу сопровождалось местной реакцией раздражения, которое проходило через 2-3 дня после окончания воздействия.

Изучение раздражающего действия вируса на слизистую глаз кроликов показало, что однократное воздействие не вызывает раздражение слизистых, а многократное приводило к развитию конъюнктивитов. Выздоровление наступало через 3-4 дня после последнего воздействия. Повреждений роговицы и повышения температуры не отмечено.

Инфекционная оценка вируса проведена на теплокровных. Исследования проводили на культуре клеток эмбриональной ткани человека (ЧЭТ). Культуры инфицировали вирионами ВЯП ХС по 0,02 мл на пробирку с титром 1/512 по ИФА. Было проведено 7 пассажей патогенов. С помощью ИФА и ИФ-метода выявляли возможную адаптацию или репродукцию вируса.

Установлено, что инфицирование ЧЭТ вирионами ВЯП ХС не приводит к цитопатическим изменениям монослоя клеток. В процессе пассажей исходного материала специфический антиген в культурах не выявлялся.

В результате проведенных исследований установлено, что вирусный антиген в крови и во внутренних органах теплокровных животных не накапливается и обычно элиминируется из организма к 7-14 дню после введения. Во всех случаях визуальные наблюдения и термометрия не выявили отклонений от физиологической нормы.

Таким образом, результаты исследования токсичности-патогенности вирусного штамма ХС-18 показали, что он нетоксичен для теплокровных, не репродуцируется в теплокровном организме, не вызывает инфекционного процесса.

Пример 4. Использование заявляемого штамма ХС-18 в инсектицидном препарате

Препарат используется в виде жидкой суспензии, полученной в соответствии с примером 1. Схема применения препарата приведена в таблице 3.

Таблица 3
Схема применения препарата ВИРИН ХСК
1. Спектр действия Контроль за численностью вредителя хлопка хлопковой совки
2. Сфера применения Сельское хозяйство, защита растений
2.1. Культуры Хлопок
2.2. Вредные объекты (с латинскими названиями) или назначение Хлопковая совка (Helicoverpa armigera Hbn)
3. Рекомендуемые регламенты применения
3.1. Срок проведения обработок Начало отрождения личинок хлопковой совки из яиц
3.1.2. Фаза развития защищаемой культуры Не существенна
3.1.3. Фазы развития (стадия)
вредного организма
Яйцекладки, личинки 1-3 возраста
3.2. Кратность обработок Двукратная
3.3. Интервал между обработками 5 суток
4. Рекомендуемая норма расхода 3 г исходной пасты на 1 га при использовании тракторного дисперсного опрыскивателя ОВХ-28
Способ применения Вариант А (немасштабная обработка)
1. В емкость объемом 1,5 л поместить 9 г исходного субстрата препарата ВИРИН ХСК, добавить 0,5 л воды, тщательно перемешать.
2. Добавить к полученному раствору 0,2 л 5% Na-КМЦ, тщательно перемешать.
3. Добавить к полученному раствору 0,6 л воды, тщательно перемешать.
4. Полученный в результате раствор развести в 600 л воды в тракторных бочках - это рабочий раствор для обработки 3 га хлопкового поля.
5. Обработку полей следует проводить вечером, после захода солнца (после 19 ч).
Вариант Б (масштабная обработка)
1. В емкость смесителя объемом 700 л поместить 3 кг исходного субстрата препарата ВИРИН ХСК, добавить 200 л воды, тщательно перемешать.
2. Добавить к полученному раствору 200 л 5% Na-КМЦ, тщательно перемешать.
3. Добавить к полученному раствору 100 л воды, тщательно перемешать.
4. Полученный в результате раствор расфасовать по емкостям объемом 1,5 л.
5. Одну порцию (1,5 л) расфасованного таким образом раствора перед применением развести в 600 л воды в тракторных бочках -
это рабочий раствор для обработки 3 га хлопкового поля.
6. Обработку полей следует проводить вечером, после захода солнца (после 19 ч).
5. Рекомендуемый срок ожидания (в днях до сбора урожая) Работа на полях допускается уже на следующий день после обработки.
6. Вид (механизм) действия на вредные организмы Инфицирование целевого насекомого через пищеварительный тракт (алиментарно).
6.1. Системный -
6.2. Контактный -
6.3. Иной -
7. Период защитного действия В течение всего сезона после обработки.
8. Селективность Препарат патогенен только для хлопковой совки и не оказывает никакого влияния на другие виды животных.
9. Скорость воздействия 5-11 суток
10. Совместимость с другими препаратами Совместим с любыми препаратами, но при использовании исключительно биологических средств защиты растений проявляет большую продолжительность действия.
11. Биологическая эффективность 90%
11.1. Лабораторные и вегетационные опыты ЛД 50 при индивидуальном заражении составила 0,0001 мкл исходного препарата на 1 гусеницу.
11.2. Полевые опыты 90%, при расходе 40 мл исходного препарата на 1 га посевов хлопка.
12. Фитотоксичность, толерантность защищаемых культур Не оказывает никакого влияния на защищаемые культуры.
13. Возможность возникновения резистентности Развитие резистентности хлопковой совки к препарату за 30 лет наблюдений не отмечено.
14. Возможность варьирования культур в севообороте Применение данного препарата никаких ограничений на варьирование культур в
севообороте не требует.
15. Результаты оценки биологической эффективности и безопасности в других странах Биологическая эффективность 91,5%
15.1. Страна Республика Узбекистан
15.2. Защищаемая культура Хлопок
15.3. Вредный организм Хлопковая совка (Helicoverpa armigera Hbn)
16. Результаты определения остаточных количеств в других странах (в динамике) По данным австралийских исследователей, препарат сохранял в почве свою активность в течение 6 лет.
17. Влияние препарата на полезную энтомофауну защищаемого агроценоза Не оказывает влияния на полезную энтомофауну защищаемого агроценоза.

Таким образом, из вышеизложенного следует, что в заявляемом техническом решении достигается технический результат, а именно получен новый штамм ХС-18 вируса ядерного полиэдроза с более высокой противовирусной активностью по отношению к хлопковой совке.

Штамм вируса ядерного полиэдроза хлопковой совки Helicoverpa armigera Hbn, депонированный в Государственной коллекции Роспотребнадзора возбудителей вирусных инфекций, риккетсиозов ФБУН ГНЦ ВБ «Вектор», имеющий регистрационный номер V-607 и используемый для получения инсектицидного препарата.



 

Похожие патенты:
Изобретение относится к области ветеринарной микробиологии и касается способа получения вакцины против парагриппа-3 крупного рогатого скота. Представленный способ включает приготовление вируссодержащего материала из штамма вируса парагриппа-3 крупного рогатого скота, инфицирование вируссодержащим материалом культуры перевиваемых клеток, культивирование вируса парагриппа-3 крупного рогатого скота, сбор вируссодержащей жидкости, инактивацию ее с последующим приготовлением целевого продукта в жидкой форме, при этом инактивацию вируссодержащей жидкости проводят раствором оксидантов, полученным электролизом 10,0-20,0%-ного раствора хлорида натрия, причем электролиз ведут до достижения величин pH 7,0-8,0, концентрации оксидантов 0,7-0,9% и окислительно-восстановительного потенциала +1000±50 мВ и при расходе инактивирующего средства 4,5-5,0 см3 на 0,8-1,0 л вируссодержащей жидкости, причем инактивацию вируссодержащей жидкости проводят в одну стадию при содержании активного хлора Сах=250-500 мг/л в течение 60-70 мин и при температуре 37-38˚С при рН 7,2-7,4.
Изобретение относится к области медицинской вирусологии. Предложен вакцинный штамм вируса гриппа A/17/mallard/Нидерланды/00/95(H7N3), характеризующийся температурочувствительностью и высокой степенью холодоадаптированности.

Изобретение относится к области медицинской вирусологии и микробиологии, а именно к штамму бактериофага. Штамм обладает литической активностью в отношении Staphylococcus aureus.

Представленная группа изобретений относится к области биотехнологии и касается новых нуклеотидных последовательностей вируса Torque teno (TTV) и векторов, содержащих такие последовательности.
Изобретение относится к ветеринарной вирусологии, микробиологии и биотехнологии и может быть использовано при разработке средств специфической профилактики, и, в частности, для получения вакцины против вирусной диареи крупного рогатого скота.

Изобретение относится к области медицинской микробиологии и касается штамма бактериофага Escherichia coli ECD4. Штамм бактериофага Escherichia coli ECD4 выделен из фекалий бройлерных кур на культуре бактерий штамма Escherichia coli О104:Н4 RKI№112027 и депонирован в Государственной коллекции патогенных микроорганизмов и клеточных культур «ГКПМ-Оболенск» под номером Рh63.

Изобретение относится к области вирусологии и касается штамма вируса Коксаки В6. Описанный штамм получен посредством проведения серии адаптационных пассажей родительского штамма вируса ЖЭВ-15 Коксаки В6 на высокочувствительной к данному вирусу культуре клеток НЕК293 и неопластической клеточной линии С33А (HPV-негативная карцинома шейки матки человека), с получением нового штамма ЖЭВ-15L вируса Коксаки В6.
Изобретение относится к области микробиологии и касается штамма вируса гриппа H16N3-субтипа. Описан штамм вируса гриппа птиц A/common gull/Altai/804/2011/H16N3-субтипа, депонирован в Государственной Коллекции вирусных инфекций и риккетсиозов Федерального бюджетного учреждения науки «Государственный научный центр вирусологии и биотехнологии «Вектор» под регистрационным номером V-583.

Изобретение относится к области биотехнологии и вирусологии. В настоящем изобретении раскрывается кодон-оптимизированный ген, кодирующий главный капсидный белок L1 вируса папилломы человека, который способен, после трансдукции в клетку дрожжей, к эффективной экспрессии главного капсидного белка L1 вируса папилломы человека.

Изобретение относится к области биотехнологии и вирусологии. Описаны нуклеиновые кислоты, кодирующие геномы двух новых штаммов свиного цирковируса типа 2В.
Изобретение относится к биотехнологии. Композиция для увеличения урожая сельскохозяйственных культур содержит липо-хитоолигосахарид и хитиновое соединение, выбранное из группы, которая включает хитины и хитозаны.
Изобретение относится к области биотехнологии, в частности к бактерицидным препаратам с лизоцимной активностью. Смешивают водные растворы нитрата серебра и лизоцима в заданном соотношении с получением восстановленного металлического серебра.
Изобретение относится к биотехнологии, а именно к штамму Bacillus subtilis 8A. Штамм депонирован под номером RCAM 00876 в коллекции ГНУ ВНИСХМ РОССЕЛЬХОЗАКАДЕМИИ.

Изобретение относится к области сельского хозяйства и представляет собой способ получения стимулятора, ускоряющего энергию и скорость прорастания семян зерновых культур.
Изобретение относится к области сельского хозяйства. .

Изобретение относится к штаммам микроорганизмов, стимулирующим восстановление микробиоценоза почвы и желудочно-кишечного тракта (ЖКТ) животных и человека, обладающим антибактериальной, фунгицидной и вирулицидной активностью, продуцирующим интерферон -2 лейкоцитарный человеческий, и к препаративной форме на их основе и может быть использовано в биотехнологии, ветеринарной медицине, медицине и защите растений для:получения препаратов против бактериальных, грибных и вирусных инфекций животных и растений; использования в качестве микробиологических удобрений, предназначенных для восстановления почвенной микробиоты; изготовления лечебно-профилактических препаратов для животных и человека, способных восстанавливать и поддерживать микробиоценоз желудочно-кишечного тракта; корректировать и поддерживать в норме иммунный статус.
Изобретение относится к микробиологической промышленности, в частности к получению биологически активных веществ, и может быть использовано при получении фузикокцинов различного назначения как для сельскохозяйственного производства, так и для медицинских целей.

Изобретение относится к способам стимуляции роста и защиты ягодных культур от болезней, вызываемых грибными патогенами, и может быть использовано в сельскохозяйственной микробиологии, сельскохозяйственной биотехнологии, защите растений.

Изобретение относится к новому антибиотическому пептиду и производным пептидов, в частности, для применения в медицине. .
Изобретение относится к микробиологии, в частности к средствам защиты растений. Штамм Bacillus thuringiensis var. darmstadiensis №25 (BtH10№25) обладает инсектицидной активностью против вредителей - жесткокрылых насекомых и широким спектром антифунгальной активности против фитопатогенных грибов. Депонирован в ГНУ ВНИИСХМ под регистрационным номером RCAM01490. Может быть использован при производстве полифункционального средства защиты растений от вредных жесткокрылых насекомых и фитопатогенных грибов. Изобретение позволяет повысить также всхожесть растений. 7 табл., 1 пр.
Наверх