Система на основе вынужденного рассеяния мандельштама-бриллюэна с множеством вбр

Изобретение относится к области приборостроения и может быть использовано для создания распределительных систем измерения температуры и деформации. Бриллюэновская система для отслеживания температуры и деформации содержит одно- или двухстороннее волокно с множеством волоконных брэгговских решеток (ВБР) на разных длинах волн и лазерную систему с задающей накачкой, настраиваемую в диапазоне существенно большем, чем бриллюэновский сдвиг. ВБР распределены по длине размещенного волокна и служат как выбираемые отражатели длины волны, позволяющие поддерживать работу устройства даже в случае разрыва волокна. Технический результат: повышение точности и достоверности данных измерений. 2 н. и 5 з.п. ф-лы, 4 ил.

 

Перекрестные ссылки на родственные заявки

Эта заявка заявляет приоритет предварительной заявки на патент США №61/279,632, поданной 23 октября 2009.

Область изобретения

Описание касается распределенных систем измерения для измерения температуры и деформации, и более конкретно - способов и систем для повышения надежности системы на основе вынужденного рассеяния Мандельштама-Бриллюэна путем добавления избыточности.

Предпосылки изобретения

Эффекты рассеяния Рамана и Мандельштама-Бриллюэна использовались для распределенного мониторинга температуры на протяжении многих лет. Эффект Рамана впервые был предложен для применения в измерительных программах в 80-х, тогда как эффект Мандельштама-Бриллюэна был введен позднее как способ увеличения пределов измерений оптической рефлектометрии временной области (OTDR), а затем для применения в программах мониторинга температуры и/или деформации.

Волоконно-оптические датчики, основанные на эффекте рассеяния Мандельштама-Бриллюэна, активно использовались при измерении распределенной температуры и/или напряжения. Как сдвиг частоты, так и мощность бриллюэновского сигнала обратного рассеяния зависят от температуры и напряжения. Рассеяние Мандельштама-Бриллюэна может использоваться для распределенных датчиков как в вынужденном, так и в спонтанном режиме.

Спонтанное рассеяние использует один пучок лазерного света на стабильной длине волны (оптической частоте) и измеряет спектр света обратного рассеяния. Преимущество этого заключается в отсутствии необходимости модуляции для качания частоты света и в одностороннем волокне. Такая упрощенность является большим преимуществом.

Однако оно имеет недостаток малого динамического диапазона. Чтобы осуществить спектральный анализ, схема обнаружения может становиться запутанной. Кроме того, поскольку сигнал обратного рассеяния очень слаб, соотношение сигнала к шуму будет малым и будет требовать длительного времени интегрирования, большого числа измерений для усреднения, или и того и другого.

Системы на основе вынужденного рассеяния Мандельштама-Бриллюэна являются или двусторонними, или используют отражающее зеркало на конце волокна, соединенного с устройством встречного распространения. Вынужденное рассеяние требует двух входящих световых сигналов (зондирующего и импульсного) и, по меньшей мере, один из них должен быть модулированным и развернутым на оптической полосе частот (10-14 ГГц). Кроме того, два входных световых сигнала должны быть встречными, чтобы создавать вынужденное рассеяние, поэтому большая часть работ в этой области основывалась на двусторонней схеме. Это дает значительно больший динамический диапазон. Главным недостатком такой вынужденной системы является то, что, если происходит разрыв волокна, система выходит из строя.

Развивающейся областью является использование волоконных брэгговских решеток (ВБР). Физический принцип, лежащий в основе ВБР датчика, состоит в том, что изменение в деформации, напряжении или температуре изменит центр длины волны света, отраженного от ВБР. Показатель преломления волокна зависит от плотности содержащихся в нем примесей. ВБР изготавливаются посредством перераспределения примесей, чтобы создавать области, содержащие большие или меньшие количества, используя способ, называемый лазерной записью. ВБР фильтр для длины волны состоит из ряда возмущений в показателе преломления вдоль длины оптического волокна, содержащего примеси. Эта решетка показателя преломления отражает узкий спектр, прямо пропорциональный периоду модуляции показателя преломления (L) и эффективному показателю преломления (n).

Поскольку состояния температуры и деформации ВБР непосредственно влияют на их спектр отражения, они также могут использоваться для множества измерительных устройств. Являясь волоконно-оптическим аналогом традиционных электронных датчиков, ВБР могут служить в качестве тензометрических датчиков, для предоставления инженерам-проектировщикам ранее недоступных данных измерений. Появляющиеся устройства учитывают детектирующие изменения в напряжении зданий, мостов и корпусов самолетов; измерения глубины потоков, рек и резервуаров для противопаводковой защиты; и измерения температуры и давления в глубинных нефтяных скважинах. Преимущества ВБР датчиков включают улучшенную точность, чувствительность и устойчивость к электромагнитным помехам, радиочастотным помехам и излучению; способность превращаться в компактное, легковесное, прочное устройство, достаточно малое, чтобы встраиваться или накладываться на структуры или вещества, чтобы создавать «интеллектуальные» материалы, которые могут функционировать в неблагоприятных условиях - например под водой - где традиционные датчики работать не могут; способность к мультиплексации; легкость установки и использования; и потенциальная низкая стоимость как результат массового производства в сфере телекоммуникаций.

Эти свойства позволяют использовать много датчиков на одном оптическом волокне, расположенных на произвольном расстоянии друг от друга. Используя настраиваемый лазер, можно независимо опрашивать каждый датчик и получать распределенное измерение на крупных конструкциях. Поскольку решетки мультиплексны на одном волокне, можно иметь доступ ко многим датчикам при помощи одного соединения к оптическому источнику и детектору. Традиционные тензометрические датчики требуют, чтобы каждый датчик имел свой проволочный вывод, соединенный и подведенный к считывающему устройству датчика. В устройстве, которое будет обсуждаться, применение разнесенных ВБР используется новым способом, чтобы достичь существенного улучшения надежности системы в системе на основе рассеяния Мандельштама-Бриллюэна.

Имеется необходимость в системе, обладающей преимуществами как односторонней спонтанной системы, так и улучшенного динамического диапазона системы на основе вынужденного рассеяния Мандельштама-Бриллюэна.

Суть изобретения

Эта необходимость удовлетворяется изобретением данного описания.

Предлагаемая система на основе рассеяния Мандельштама-Бриллюэна содержит одностороннее волокно с множеством волоконных брэгговских решеток (ВБР) на разных длинах волн и лазерную систему с задающей накачкой, настраиваемую в диапазоне существенно большем, чем бриллюэновский сдвиг. ВБР распределяются по длине размещенного волокна и служат как выборочные отражатели длин волн. Волоконная брэгговская решетка (ВБР) представляет собой разновидность распределенного брэгговского отражателя, созданного в коротком отрезке оптического волокна, который отражает конкретные длины волн света и пропускает все другие. Это достигается посредством добавления периодического изменения к показателю преломления сердечника волокна, что порождает диэлектрическое зеркало, зависящее от длины волны. Волоконная брэгговская решетка, таким образом, может использоваться как отражатель, зависящий от длины волны.

При первом запуске система использует самую дальнюю размещенную ВБР, а лазер системы настраивается на частоту этой ВБР. Если с этим волокном нет проблем, то эта конфигурация сохраняется. Если позже в процессе эксплуатации происходит разрыв волокна, тогда лазер системы возвращается к оставшейся самой дальней ВБР, обеспечивая непрерывную вынужденную работу на остающемся волокне.

В одном аспекте необходимость удовлетворяется способом для улучшения надежности системы на основе вынужденного рассеяния Мандельштама-Бриллюэна путем добавления избыточности, который включает, по меньшей мере, этапы: создания первого оптического сигнала, первый оптический сигнал настраивается в предопределенном диапазоне длины волны; соединения первого оптического сигнала с оптоволоконным кабелем, расположенным в исследуемой области, размещенный оптоволоконный кабель содержит множество разнесенных волоконных брэгговских решеток, каждая волоконная брэгговская решетка имеет отличительную и известную характерную длину волны отражения; настройки первого оптического сигнала на характерную длину волны отражения первой выбранной разнесенной волоконной брэгговской решетки; создания второго оптического сигнала на фиксированной предопределенной длине волны, предопределенная длина волны лежит вне спектра отражения любой из разнесенных волоконных брэгговских решеток; соединения второго оптического сигнала с оптоволоконным кабелем; получения первого отраженного сигнала первого оптического сигнала, отраженный сигнал отражается от первой выбранной разнесенной волоконной брэгговской решетки в размещенном оптическом кабеле; получения второго отраженного сигнала второго оптического сигнала, второй отраженный сигнал получается из бриллюэновского обратного рассеяния в размещенном оптическом волокне; измерения смещений в признаках между вторым оптическим сигналом и вторым отраженным сигналом, указывающих на условия окружающей среды вдоль размещенного оптического волокна; где, когда в размещенном оптоволоконном кабеле определяется разрыв, первый оптический сигнал перенастраивается на характерную длину волны второй выбранной разнесенной волоконной брэгговской решетки.

В другом аспекте необходимость удовлетворяется системой для повышения надежности системы на основе вынужденного рассеяния Мандельштама-Бриллюэна путем добавления избыточности, который содержит, по меньшей мере: настраиваемый зондирующий лазер; лазер накачки с фиксированной частотой; акустооптический модулятор, чтобы сдвигать оптическую частоту лазера накачки с фиксированной частотой, чтобы подавать фиксированную предопределенную длину волны; соединитель, который объединяет сигналы с настраиваемого зондирующего лазера и лазера накачки с фиксированной частотой и подключает к волоконно-оптическому датчику, размещенному в исследуемой области, подлежащей измерению; детектор для собирания света обратного рассеяния из волоконно-оптического датчика; модуль сбора/обработки для анализа света обратного рассеяния и измерений смещений в признаках между вторым оптическим сигналом и вторым отраженным сигналом, указывающих на условия окружающей среды вдоль размещенного оптоволокна, где волоконно-оптический датчик содержит множество разнесенных волоконных брэгговских решеток, каждая волоконная брэгговская решетка имеет отдельную и известную отличающуюся длину волны отражения; и где фиксированная предопределенная длина волны из лазера накачки с фиксированной частотой и акустооптического модулятора лежит вне спектра отражения любой из разнесенных волоконных брэгговских решеток.

Краткое описание графических материалов

Для более полного понимания данного изобретения теперь производится обращение к следующим графическим материалам, в которых:

фиг.1 представляет собой изображение спектра рассеянного света в оптическом волокне;

фиг.2 представляет собой изображение конфигурации импульсной накачки для осуществления системы на основе рассеяния Мандельштама-Бриллюэна отслеживания;

фиг.3 представляет собой изображение одно- и двусторонней бриллюэновских конфигураций прототипов;

фиг.4 представляет собой изображение одно- и двустороннего бриллюэновской системы данного изобретения.

Подробное описание изобретения

Хотя в этом документе подробно были описаны определенные варианты осуществления данного изобретения и их преимущества, следует понимать, что различные изменения, замены и модификации могут осуществляться без отклонений от сущности и объема изобретения, как определено прилагаемой формулой изобретения. Более того, не подразумевается, что объем данного изобретения ограничивается конкретными вариантами осуществления процессов, механизмов, изделий, средств, способов и этапов, описанных здесь. Специалист средней квалификации в данной области техники легко поймет из этого описания, что другие процессы, механизмы, изделия, средства, способы или этапы, существующие в настоящее время или которые будут разработаны позднее, выполняющие в значительной мере ту же функцию или приводящие в значительной мере к тому же результату, что и соответствующие варианты осуществления, описанные в этом документе, могут использоваться в соответствии с данным изобретением. Соответственно, предполагается, что прилагаемая формула изобретения включает в свой объем такие процессы, механизмы, изделия, средства, способы или этапы.

Фиг.1 представляет собой схематическое изображение спектра рассеянного света в оптических волокнах, принимая, что в волокне запущена одна длина волны λ0, показанная как 20. Все компоненты 40 представляют стоксовые компоненты, а все компоненты 30 представляют антистоксовые компоненты. Свет раманового обратного рассеяния имеет две смещенные частотные компоненты, стоксовую 90 и антистоксовую 50, задаваемые термически наведенными молекулярными вибрациями. Следовательно, свет обратного рассеяния несет информацию о локальной температуре в месте возникновения рассеяния. Различные амплитуды 60 антистоксовой компоненты 50 сильно зависят от температуры, тогда как амплитуды стоксовой компоненты 90 - нет. Следовательно, рамановский сенсорный способ требует некоторого фильтрования, чтобы изолировать релевантные частотные компоненты, и состоит в записи соотношения между антистоксовой амплитудой и стоксовой амплитудой, которое содержит информацию о температуре. Поскольку величина спонтанного рамановского обратного рассеяния света достаточно низкая, используются многомодовые волокна с высокой числовой апертурой, чтобы максимально увеличить направленную интенсивность света обратного рассеяния. Однако сравнительно высокие характеристики затухания многомодовых волокон ограничивают работу рамановских устройств дальностью приблизительно 10 км.

Рассеяние Мандельштама-Бриллюэна показано как 70 в антистоксовом режиме и как 75 в стоксовом режиме. Оно происходит в результате взаимодействия между распространяющимся оптическим сигналом и термоакустическими волнами в ГГц диапазоне, присутствующими в кварцевом волокне, вызывая подъем смещенных частотных компонентов. Его можно видеть как дифракцию света на движущейся решетке, порожденную акустической волной (акустическая волна в действительности является волной давления, которая вводит модуляцию показателя преломления посредством упругооптического эффекта). Дифрагированный свет претерпевает допплеровское смещение, поскольку решетка распространяется в волокне со скоростью звука. Скорость звука прямо связана с плотностью среды и зависит как от температуры, так и от деформации. В результате так называемый бриллюэновский сдвиг частоты несет информацию о локальной температуре и деформации волокна. Кроме того, бриллюэновские способы отслеживания основываются на измерении частоты 80 или 85, в противоположность рамановским способам, которые основываются на интенсивности. Бриллюэновские способы, следовательно, являются по своей сути более точными и более стабильными в долгосрочной перспективе, поскольку способы, основывающиеся на интенсивности, страдают от большей чувствительности к отклонениям.

Рассеяние Мандельштама-Бриллюэна имеет ту особенность, что оно может становиться вынужденным взаимодействием, при условии, что оптический сигнал, называемый зондирующим сигналом, используется в дополнение к оригинальному оптическому сигналу, обычно называемому накачкой.

Базовая конфигурация распределенного бриллюэновского датчика имеет следующие аспекты: сильный импульс света, называемый накачкой, запускается в волокно. Он встречает слабую волну света, называемую зондом, распространяющуюся в обратном направлении. Вынужденное рассеяние Мандельштама-Бриллюэна возникает, когда накачка и зонд перекрываются, приводя к усилению зонда, при условии что разница между двумя частотами лежит в пределах бриллюэновского спектра расширения.

Это взаимодействие вызывает объединение между оптическими сигналами накачки и зонда и акустическими волнами, когда выполняется условие резонанса, т.е. когда разности частот между светом зонда и накачки соответствуют бриллюэновскому сдвигу частоты.

Оказывается, что условие резонанса зависит от деформации и температуры, так что определение резонансной частоты непосредственно дает измерение температуры или деформации. Преимущество измерения взаимодействия двух оптических сигналов вместо регистрации спонтанно рассеянного света низкой интенсивности состоит в том, что соотношение сигнала к шуму является значительно более приемлемым. В результате измерение спонтанного света обратного рассеяния требует длительного времени интегрирования, тогда как способ накачки-зонда - нет, и, следовательно, является очень подходящим для быстрых измерений.

Бриллюэновские способы измерения работают только с одномодовыми оптическими волокнами, и благодаря низким характеристикам потерь одномодовых волокон могут получаться измерения на расстояниях более нескольких десятков километров.

Существует ряд конфигураций оборудования, которые могут использоваться для осуществления вынужденных бриллюэновских измерений.

Фиг.2 представляет собой изображение одного подхода - использование настраиваемого зондирующего лазера 120 (первый оптический сигнал) и лазера 110 накачки с фиксированной частотой вместе с акустооптическим модулятором 130, чтобы сдвигать вверх оптическую частоту (второй оптический сигнал). Другие подходы включают конструкции оптических круговых резонаторов, чтобы неоднократно передавать по кругу сигнал через модулятор, чтобы непрерывно подниматься до достижения желаемой частоты. Использование любого из этих подходов для получения вынужденного рассеяния Мандельштама-Бриллюэна учитывается концепцией данной заявки. Мощность лазерного излучения проходит через соединители 140, 150 к вытянутому волоконно-оптическому датчику 150, размещенному в исследуемой области для измерения, например, температур или деформаций. Свет обратного рассеяния из волоконно-оптического датчика проходит через детектор 160 в модуль 180 сбора/обработки для анализа. Модуль сбора/обработки может использовать любой бриллюэновский способ измерения, известный в данной области техники.

На фиг.3 и 4 прямоугольник, представленный как система 310, 315, 325, 335 DMS (распределенная система отслеживания), может быть любой бриллюэновской системой, описанной ранее, которая может генерировать эквиваленты импульсного и зондирующего лазерного излучения на частотах, необходимых для получения вынужденных бриллюэновских измерений.

Фиг.3 представляет собой изображения двух обычных прототипных реализаций бриллюэновской системы: двухсторонняя система 300, в которой оптическое волокно 320 соединяется с двух сторон с DMS 310, и односторонняя система 330 с отражающим зеркалом 350 на дальней стороне.

Фиг.4 представляет собой изображение варианта осуществления, обеспечивающего и улучшенный динамический диапазон, и защиту от потери системы в случае возникновения поломки. Или в одностороннем 400, или в двустороннем 500 режиме система имеет периодические волоконные брэгговские решетки 440 или 550 (ВБР), действующие как зеркала по всей длине размещенного оптического кабеля 420 или 540. Распределенные ВБР служат как выбираемые отражатели длин волн. Каждая волоконная брэгговская решетка в этом варианте осуществления имеет отличительную и известную характеристику длины волны отражения. Это реализует система на основе вынужденного рассеяния Мандельштама-Бриллюэна в выбранных точках вдоль системы. Настраиваемый лазер системы DMS может настраиваться на конкретную частоту каждой из отдельных ВБР при помощи способов, известных в данной области техники.

Эти свойства позволяют использовать много датчиков на произвольном расстоянии на одном оптическом волокне. Используя настраиваемые лазеры, можно опрашивать каждый датчик независимо друг от друга и получать распределенные измерения на крупных конструкциях. Поскольку решетки мультиплексированы на одном волокне, можно получить доступ ко многим датчикам при помощи одного соединения с источником света и детектором. Традиционные электронные тензометрические датчики требуют, чтобы каждый датчик имел свои проволочные выводы, соединенные и подведенные к считывающему устройству датчика. В описанном варианте осуществления использование разнесенных ВБР используется новым способом, чтобы достигать существенного улучшения надежности устройства.

Используя одностороннюю систему с фиг.4 в качестве примера, система может быть размещена, а настраиваемые лазеры использованы для настройки всего устройства для конечной ВБР 550. Если имеется поздний разрыв в волокне, система может быть немедленно возвращена в самую дальнюю рабочую ВБР вдали от системы DMS, чтобы обеспечить вынужденную бриллюэновскую работу на остающемся волокне. Теперь это делает возможным одностороннюю бриллюэновскую систему с производительностью и преимуществами системы на основе вынужденного рассеяния без угрозы полной потери системы в случае разрыва волокна.

В случае двусторонней системы с фиг.4, действует та же аргументация. Разрыв в двусторонней системе также может быть исправлен при помощи использования любой из остающихся ВБР в качестве выбираемых отражателей длины волны, чтобы продолжать использование системы на основе вынужденного рассеяния Мандельштама-Бриллюэна для измерения и температурного профиля, и деформации.

Описанные варианты осуществления предоставляют систему на основе вынужденного рассеяния Мандельштама-Бриллюэна, которая может быть использована на большом расстоянии для отслеживания и деформации, и температуры, одновременно обеспечивая большой динамический диапазон и возможность справляться с разрывом волокна без полной потери производительности системы.

1. Способ для повышения надежности сенсорной системы на основе вынужденного рассеяния Мандельштама-Бриллюэна путем добавления избыточности, включающий этапы:
a. создания первого оптического сигнала, причем указанный первый оптический сигнал является настраиваемым в предопределенном диапазоне длин волн;
b. подачи указанного первого оптического сигнала в оптоволоконный кабель, размещенный в исследуемой области, причем указанный размещенный оптоволоконный кабель содержит множество разнесенных волоконных брэгговских решеток, где каждая волоконная брэгговская решетка имеет отличающуюся и известную характерную длину волны отражения;
c. настройки указанного первого оптического сигнала на характерную длину волны отражения первой выбранной разнесенной волоконной брэгговской решетки;
d. создания второго оптического сигнала на фиксированной предопределенной длине волны, причем указанная предопределенная длина волны находится вне спектра отражения любой из указанных разнесенных волоконных брэгговских решеток;
e. подачи указанного второго оптического сигнала на указанный оптоволоконный кабель;
f. получения первого отраженного сигнала первого оптического сигнала, причем указанный отраженный сигнал отражен от первой выбранной разнесенной волоконной брэгговской решетки в размещенном оптическом кабеле;
g. получения второго отраженного сигнала второго оптического сигнала, причем второй отраженный сигнал получен из обратного рассеяния Мандельштама-Бриллюэна в размещенном оптическом волокне;
h. измерения смещений в признаках между указанным вторым оптическим сигналом и указанным вторым отраженным сигналом, указывающих на условия окружающей среды вдоль указанного размещенного оптического волокна; где, когда в указанном размещенном кабеле определяют разрыв, указанный первый оптический сигнал перенастраивают на характерную длину волны второй выбранной разнесенной волоконной брэгговской решетки.

2. Способ по п.1, дополнительно включающий импульсную генерацию указанного второго оптического сигнала.

3. Способ по п.1, где указанную первую выбранную разнесенную волоконную брэгговскую решетку выбирают как самую отдаленную размещенную волоконную брэгговскую решетку в интересуемой области.

4. Способ по п.1, где после определения разрыва в указанном размещенном оптоволоконном кабеле указанную вторую выбранную разнесенную волоконную брэгговскую решетку выбирают как самую отдаленную размещенную волоконную брэгговскую решетку в остающемся неразорванном оптоволоконном кабеле.

5. Система для повышения надежности сенсорной системы на основе вынужденного рассеяния Мандельштама-Бриллюэна путем добавления избыточности, содержащая:
a. настраиваемый зондирующий лазер;
b. лазер накачки с фиксированной частотой;
c. акустооптический модулятор для смещения оптической частоты указанного лазера накачки с фиксированной частотой для предоставления фиксированной предопределенной длины волны;
d. соединитель, который объединяет сигналы из указанного настраиваемого зондирующего лазера и указанного лазера накачки с фиксированной частотой и подключает к волоконно-оптическому датчику, размещенному в интересуемой области, подлежащей измерению;
e. детектор для сбора света обратного рассеяния из указанного волоконно-оптического датчика;
f. модуль сбора/обработки для анализа указанного света обратного рассеяния и измерений сдвигов в признаках между указанным вторым оптическим сигналом и указанным вторым отраженным сигналом, указывающих на условия окружающей среды вдоль указанного размещенного оптоволокна;
g. где указанный волоконно-оптический датчик содержит множество разнесенных волоконных брэгговских решеток, причем каждая волоконная брэгговская решетка имеет отличающуюся и известную характерную длину волны отражения, и
h. где указанная фиксированная предопределенная длина волны из указанного лазера накачки с фиксированной частотой и указанного акустооптического модулятора лежит вне спектра отражения любой из указанных разнесенных волоконных брэгговских решеток.

6. Система для повышения надежности сенсорной системы на основе вынужденного рассеяния Мандельштама-Бриллюэна по п.5, где волоконно-оптический датчик, содержащий множество разнесенных волоконных брэгговских решеток, является двусторонней системой.

7. Система для повышения надежности сенсорной системы на основе вынужденного рассеяния Мандельштама-Бриллюэна по п.5, где волоконно-оптический датчик, содержащий множество разнесенных волоконных брэгговских решеток, является односторонней системой.



 

Похожие патенты:

Низкопрофильная линза с боковым излучением для светодиодного кристалла имеет две связки различных волноводов, продолжающихся радиально от центральной светоизлучающей линзы.

Изобретение относится к области оптоволоконной связи, в частности к волокну, имеющему значительно сниженные потери на изгибе. .

Изобретение относится к области оптической связи. .

Изобретение относится к области оптоволоконной связи. .

Изобретение относится к области волоконной оптики и может быть использовано в волоконно-оптических гироскопах и других датчиках физических величин, а также в волоконных линиях связи и мощных волоконных технологических лазерах.

Изобретение относится к оптоволоконной технике и может быть использовано в оптических усилителях, лазерах, спектральных фильтрах и телекоммуникационных сетях. .

Изобретение относится к устройствам задней подсветки жидкокристаллических дисплеев и может быть использовано в качестве генератора белого света в гражданском и/или авиационном оборудовании.

Изобретение относится к осветительным устройствам и может быть использовано для освещения поверхности. .
Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах.

Изобретение относится к системам сигнализации и основано на использовании четырехкомпонентного настраиваемого лазера, работающего в средней части инфракрасного (ИК) диапазона для одновременного измерения и частиц, и газа.

Изобретение относится к области сельского хозяйства. .

Изобретение относится к способам определения кристаллизации и образования льда тяжелых изотопных видов воды в природной, при ее равномерном охлаждении, и применяется в датчиках кристаллизации установок разделения легкой и тяжелых вод.

Изобретение относится к обнаружению дефектов газо- и нефтепроводов на основании многомерных спектральных характеристик каждой мишени. .

Изобретение относится к области техники спектроскопического измерения концентрации веществ (в том числе экологически вредных) в различных агрегатных состояниях автоматическими аналитическими методами, особенно применительно к природным условиям.

Изобретение относится к области лазерной спектроскопии и спектрального анализа, а именно к области применения перестраиваемых полупроводниковых лазеров, и может быть использовано для одновременной диагностики абсолютного и относительного содержания окислов углерода CO и CO2 в газообразной среде, для мониторинга содержания окислов углерода CO и CO2, например, в выдыхаемом воздухе, в атмосфере, в частности для биомедицинской диагностики.

Изобретение относится к области лазерной спектроскопии и спектрального анализа и может быть использовано для одновременной диагностики абсолютного и относительного содержания окислов углерода CO и CO2 в газообразной среде, для мониторинга содержания окислов углерода СО и CO2 например, в выдыхаемом воздухе, в атмосфере, в частности для биомедицинской диагностики.

Изобретение относится к бесконтактным исследованиям поверхности металлов и полупроводников оптическими методами. .

Изобретение относится к области химического анализа веществ, более конкретно - к устройствам для измерения количества химических веществ, содержащихся в атмосфере и других газовых средах.

Изобретение относится к электрическому кабелю с встроенным датчиком деформации, пригодным, в особенности, для измерения статических и динамических деформаций, в частности деформаций изгиба.

Изобретение относится к области приборостроения и может быть использовано для создания распределительных систем измерения температуры и деформации. Бриллюэновская система для отслеживания температуры и деформации содержит одно- или двухстороннее волокно с множеством волоконных брэгговских решеток на разных длинах волн и лазерную систему с задающей накачкой, настраиваемую в диапазоне существенно большем, чем бриллюэновский сдвиг. ВБР распределены по длине размещенного волокна и служат как выбираемые отражатели длины волны, позволяющие поддерживать работу устройства даже в случае разрыва волокна. Технический результат: повышение точности и достоверности данных измерений. 2 н. и 5 з.п. ф-лы, 4 ил.

Наверх