Приемник импульсного оптического излучения


 


Владельцы патента RU 2511069:

Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (RU)

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсного оптического излучения, содержащий фотоприемник с источником смещения и нагрузкой, подключенной к усилителю, усилитель выполнен по схеме дифференциального каскада, левый вход которого подключен к нагрузке фотоприемника, а правый вход имеет возможность подключения к внешнему источнику сигнала, причем параллельно входам дифференциального каскада введены ключи, связанные с коммутатором, управляющим их замыканием и размыканием в противофазе. Технический результат изобретения состоит в обеспечении высокой точности временной привязки принятого сигнала и, соответственно, высокой точности измерений с помощью приборов, в которых используется такой приемник. 1 ил.

 

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами.

Известны приемники импульсного оптического излучения [1] для систем импульсной лазерной локации, предназначенные для преобразования в электрические сигналы отраженных удаленными объектами зондирующих импульсов лазерного излучения и временной привязки электрических импульсов для определения их задержки τ относительно момента излучения лазерного зондирующего импульса. По этой задержке судят о дальности R до отражающего объекта по формуле R=сτ/2, где с - скорость света.

Наиболее близким по технической сущности к предлагаемому изобретению является приемник импульсного оптического излучения, содержащий фотоприемник (например, фотодиод) с источником смещения и нагрузкой и подключенный к нагрузке усилитель, выполненный на транзисторах [2].

При таком построении приемника имеет место погрешность временной привязки принятого сигнала к моменту излучения зондирующего импульса вследствие несовпадения по времени электрического сигнала на выходе усилителя относительно оптического сигнала, поступающего на вход фотоприемника. Это приводит к ошибкам определения временного интервала между исходным и принятым импульсами.

Задачей изобретения является обеспечение высокой точности временной привязки принятого сигнала за счет устранения указанных погрешностей.

Эта задача решается за счет того, что в известном приемнике импульсного оптического излучения, содержащем фотоприемник с источником смещения и нагрузкой, подключенной к усилителю, усилитель выполнен по схеме дифференциального каскада, левый вход которого подключен к нагрузке фотоприемника, а правый вход имеет возможность подключения к внешнему источнику сигнала, причем параллельно входам дифференциального каскада введены ключи, связанные с коммутатором, управляющим их замыканием и размыканием в противофазе.

На чертеже представлена схема приемника импульсного оптического излучения на базе дифференциального каскада.

Устройство состоит из фотоприемника 1 (фотодиода) с источником смещения 2. Нагрузкой фотодиода является сопротивление 3, подключенное к левому входу усилителя 4, выполненного в виде дифференциального каскада [3]. Параллельно входам дифференциального каскада установлены ключи 5 и 6, управляемые от коммутатора 7. К правому входу дифференциального каскада подключен датчик тока накачки импульсного полупроводникового лазера 8 с источником накачки 9. В качестве датчика тока накачки использовано сопротивление 10, включенное последовательно с полупроводниковым лазером. Рабочая точка дифференциального каскада обеспечивается напряжением смещения Uсм, подаваемым на его входы. Питается дифференциальный каскад от источника Uпит.

Устройство работает следующим образом.

На фотоприемник 1 поступает принимаемый оптический сигнал, например сигнал лазерного излучателя, отраженный удаленным объектом. При разомкнутом ключе 5 и замкнутом ключе 6 на выходе усилителя 4 формируются сигналы от этого источника. Внешнее устройство (схема временной фиксации [4] с последующим измерителем временных интервалов или цифровой сигнальный процессор (ЦСП) с аналого-цифровым преобразователем на входе [5]) осуществляет временную привязку ts таких сигналов к моменту t0 формирования токового импульса накачки полупроводникового лазера. Момент t0 фиксируется этими же устройствами в цикле временной привязки зондирующего сигнала при замыкании с помощью коммутатора 7 левого ключа 5 и размыкании ключа 6, когда на выходе дифференциального каскада 4 формируются импульсы с датчика тока накачки 10. Временной интервал τ=ts-t0 измеряется внешним устройством и используется в дальнейшем в процессе определения дальности до удаленного объекта. Подобная временная привязка производится перед каждым измерением дальности и позволяет исключить влияние дестабилизирующих факторов - старения элементов схемы, дрейфа питающих напряжений, температурного ухода параметров, влияния фонового освещения и т.п.

В соответствии с предлагаемым изобретением был разработан макетный образец фотоприемного устройства, испытанный в составе лазерного дальномера.

Проведенные исследования дальномера показали, что ошибка без такой привязки может достигать 5-20 наносекунд (как и в других существующих аналогичных приборах), а в случае временной привязки по предлагаемому способу снижается до 0,5 нс, то есть при измерении дальности ошибка снижается с 1-3 м до нескольких сантиметров.

Таким образом, предлагаемое устройство обеспечивает высокую точность временной привязки принятого сигнала и, соответственно, высокую точность приборов, в которых используется такой приемник.

Источники информации

1. В.А.Волохатюк и др. "Вопросы оптической локации". - М.: Советское радио, М., 1971. - с.213.

2. В.Г.Вильнер и др. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. «Оптико-механическая промышленность». №9, 1981 г. - с.59 - прототип.

3. И.Г.Мамонкин «Усилительные устройства». - М.: «Связь», 1977. - С.268.

4. В.Г.Вильнер и др. Методы повышения точности импульсных лазерных дальномеров. «Электроника. Наука, Технология, Бизнес». №3, 2008 г. - С.118.

5. В.Г.Вильнер и др. Способ измерения дальности. Патент РФ №2455615.

Приемник импульсного оптического излучения, содержащий фотоприемник с источником смещения и нагрузкой, подключенной к усилителю, отличающийся тем, что усилитель выполнен по схеме дифференциального каскада, левый вход которого подключен к нагрузке фотоприемника, а правый вход имеет возможность подключения к внешнему источнику сигнала, причем параллельно входам дифференциального каскада введены ключи, связанные с коммутатором, управляющим их замыканием и размыканием в противофазе.



 

Похожие патенты:

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами.

Изобретение относится к области фотометрии и может быть использовано в оптико-электронных приборах с фотодиодными преобразователями излучений. .

Пирометр // 2462693
Изобретение относится к контрольно-измерительной технике, а именно к устройствам бесконтактного измерения температуры поверхности нагретых тел путем регистрации теплового излучения.

Изобретение относится к фотометрии и может быть использовано в оптико-электронных приборах с фотодиодными преобразователями излучений. .

Изобретение относится к контрольно-измерительной технике. .

Изобретение относится к измерительной технике и физике и может быть использовано для контроля одиночных импульсов. .

Изобретение относится к области регистрации слабых оптических сигналов ближнего инфракрасного диапазона спектра, передающихся через оптические волоконные линии связи.

Изобретение относится к полупроводниковой оптоэлектронике, в частности к приемникам светового излучения. .

Изобретение относится к контрольно-измерительной технике и может быть использовано в системах регистрации оптического излучения с большим динамическим диапазоном.

Изобретение относится к полупроводниковой оптоэлектронике, в частности к конструированию приемников светового излучения. .
Изобретение относится к технике фотометрии и предназначено для повышения точности измерения электрических характеристик фотодиода. Способ заключается в том, что исследуемую электрическую характеристику измеряют в выбранной последовательности точек, осуществляя контроль температуры с использованием датчика температуры в процессе измерений. Из выбранной последовательности точек выбирают реперную точку вблизи максимального значения тока или напряжения при начальной температуре. Последовательно для каждой следующей точки проводятся измерения тока или напряжения, каждый раз после этого возвращаясь в реперную точку. При этом термостабилизация осуществляется следующим образом: после возврата в реперную точку определяют относительное изменение температуры фотодиода путем оценки смещения реперной точки от исходного положения при постоянной величине силы тока или напряжения, причем в качестве датчика температуры и управляющего элемента термостабилизации используют исследуемый фотодиод; путем изменения температуры фотодиода добиваются возврата реперной точки в исходное положение. Технический результат заключается в повышении точности измеряемой электрической характеристики фотодиода.

Изобретение относится к светоизмерительной технике и касается устройства для преобразования яркости цветного излучения в коды. Устройство содержит корпус, микрообъектив, полупрозрачные микрозеркала, усилители импульсов, блок индикации и дисковые фотоприемные устройства. Каждое дисковое фотоприемное устройство содержит восемь фотоприемных секторов и восемь регистров сдвига. Технический результат заключается в обеспечении возможности одновременного измерения яркости восьми цветных излучений с помощью одного преобразователя. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для выделения одиночных импульсов на фоне низкочастотного шума. Устройство содержит датчик, первый и второй операционные усилители (ОУ1, ОУ2), первый, второй, третий, четвертый, пятый и шестой резисторы, первый, второй, третий, четвертый и пятый конденсаторы, первый и второй выпрямители, ограничитель, шину смещения. Инвертирующий вход ОУ1 соединен с первым выводом первого резистора, а выход соединен с входами первого и второго выпрямителей. Выход первого выпрямителя соединен с неинвертирующим входом ОУ2 и через последовательно соединенные пятый и шестой резисторы с выходом второго выпрямителя и вторым выводом первого конденсатора. Первый вывод первого конденсатора соединен с общей шиной. Инвертирующий вход ОУ2 соединен через пятый конденсатор с первым выводом третьего резистора и первым выводом второго резистора, второй вывод которого соединен с общей шиной. Выход ОУ2 соединен с первым выводом третьего резистора. Выход ограничителя через второй конденсатор соединен либо с инвертирующим входом ОУ1, неинвертирующий вход которого соединен с общей шиной, либо с выходом датчика. Выход датчика через последовательно соединенные третий конденсатор и четвертый резистор соединен со вторым выводом третьего резистора и первым выводом первого резистора. Второй вывод первого резистора соединен через четвертый конденсатор с выходом датчика и непосредственно с входом ограничителя и выходом первого выпрямителя, который через последовательно соединенные пятый и шестой резисторы соединен с выходом второго выпрямителя и вторым выводом первого конденсатора. При этом точка объединения пятого и шестого резисторов подключена к шине смещения. Технический результат заключается в упрощении устройства, уменьшении габаритов и повышении надежности. 5 ил.

Изобретение относится к области измерительной техники и касается частотно-селективного фотопреобразователя оптического излучения. Устройство включает в себя фотодиод, источник питания, дифференциальный усилитель, полевой транзистор, затвор которого подключен к обкладке первого конденсатора, источник управляющего напряжения, варикап и индуктивно-емкостной контур. Выход дифференциального усилителя через индуктивно-емкостной контур соединен с затвором полевого транзистора, исток которого через первый резистор подключен ко второй обкладке первого конденсатора и к катоду фотодиода, который через второй резистор соединен с инвертирующим входом дифференциального усилителя, который через второй конденсатор подключен к его выходу. Катод варикапа через третий резистор соединен с источником управляющего напряжения и через третий конденсатор подключен к затвору полевого транзистора, сток которого соединен с источником питания, а его исток является выходом устройства. Технический результат заключается в обеспечении высокой селективной чувствительности в узкой полосе частот при наличии большой постоянной освещенности или при наличии шумового излучения. 1 ил.

Использование: для преобразования интенсивности светового потока инфракрасного, видимого и ультрафиолетового оптического диапазонов, а также рентгеновского излучения в частоту импульсов. Сущность изобретения заключается в том, что микромощный фотодатчик с частотным выходом содержит фотодиод, катод которого подключен к входу логического инвертора, выход которого соединен с первым выводом резистора, полевой транзистор, затвор которого подключен к второму выходу резистора, а сток и исток полевого транзистора подключены к входу логического инвертора, в качестве которого применен инвертирующий триггер Шмитта, анод фотодиода соединен с нулевой цепью, а выход триггера Шмитта является выходом устройства. Технический результат: обеспечение возможности повышения чувствительности, расширения динамического диапазона преобразования излучения в частоту импульсов и уменьшения потребляемой мощности. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля переменного и импульсного оптического излучения. Фотодатчик переменного оптического излучения содержит фотодиод, источник питания, дифференциальный усилитель и полевой транзистор, затвор которого подключен к одной обкладке первого конденсатора и через первый резистор соединен с выходом дифференциального усилителя, при этом в него введены второй, третий резисторы и второй конденсатор, который включен между выходом и инвертирующим входом дифференциального усилителя, неинвертирующий вход которого соединен с нулевой шиной и анодом фотодиода, катод которого подключен ко второй обкладке первого конденсатора, через второй резистор соединен с истоком полевого транзистора и через третий резистор соединен с инвертирующим входом дифференциального усилителя, причем сток полевого транзистора подключен к источнику питания, а исток полевого транзистора является выходом устройства. Технический результат - повышение чувствительности фотодатчика к переменному оптическому сигналу в условиях большой постоянной освещенности и изменения уровня внешней засветки в широком диапазоне. 1 ил.

Изобретение относится к области приема оптических сигналов и касается однофотонного приемника для пространственно-временного поиска оптических импульсных сигналов. Приемник включает в себя диссектор с фокусирующе-отклоняющей системой и динодной умножительной системой, блок питания динодов с регулируемым потенциалом, блок управления, блок развертки, импульсный усилитель, импульсный дискриминатор, формирователи импульсов, генераторы тактовых и синхроимпульсов, реле и логические элементы. Кроме того, приемник содержит приемный телескоп с блоком управления и светофильтр. Технический результат заключается в увеличении вероятности правильного обнаружения сигнала, снижении времени поиска и уменьшении временной неопределенности приема импульсных сигналов. 15 ил.

Изобретение относится к способам коррекции собственной температурной зависимости кремниевых фотопреобразователей (ФЭП) и может быть использовано при тепловакуумных испытаниях (ТВИ) космического аппарата (КА) или его составных частей с использованием имитатора солнечного излучения. В предложенном способе коррекции собственной температурной зависимости кремниевых ФЭП нелинейная температурная зависимость конкретного ФЭП определяется непосредственно перед тепловакуумными испытаниями путем измерения показаний температуры и освещенности ФЭП на разных уровнях освещенности, построением и аппроксимацией графиков полученных данных, анализом угловых коэффициентов зависимостей с последующим построением и решением трансцендентного уравнения. Получены следующие результаты: коррекция собственной температурной зависимости кремниевых ФЭП осуществляется аналитическим способом, исключая при этом ввод в вакуумную камеру дополнительных термостабилизирующих устройств. При этом в процессе ТВИ корректируются отклонения в показаниях ФЭП от реально установленной освещенности в пределах ±12%. Технический результат - упрощение способа коррекции собственной температурной зависимости кремниевых ФЭП. 3 ил.

Изобретение относится к области оптических измерений и касается фотоприемного устройства. Фотоприемное устройство содержит последовательно соединенные лавинный фотодиод, усилитель и фильтр, а также компаратор, дискриминатор длительности импульсов, регулируемый источник питания, блок оценки сигналов, источник опорного напряжения, высокочастотный генератор и блок синхронизации. Кроме того, устройство включает в себя последовательно соединенные дополнительный усилитель и детектор. При этом выход детектора соединен с первым входом компаратора, вход дополнительного усилителя соединен с фильтром. В качестве фильтра используется полосовой фильтр с полосой пропускания около середины рабочей полосы частот усилителя. Технический результат заключается в увеличении отношения сигнал/шум при регулировании коэффициента умножения лавинного фотодиода непосредственно по принимаемому оптическому сигналу. 2 ил., 1 табл.
Наверх