Способ изготовления строительных плит универсального назначения

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении плит и панелей, предназначенных для внутренней и внешней облицовки промышленных и гражданских зданий, подоконных плит, лестничных ступеней и малых архитектурных форм. Технический результат заключается в получении строительной плиты с пониженной коррозионной активностью при сохранении оптимальных эксплуатационных характеристик, экологической безопасности и биологической стойкости. Способ изготовления строительных плит универсального назначения включает перемешивание магнезиального вяжущего, органического наполнителя, минерального наполнителя и водного раствора хлорида магния, формование изделий, их отверждение и сушку. Минеральный наполнитель состоит из двух или более компонентов, одним из которых является совместно осажденный кальциево-магниевый компонент, а вторым - перлит. Водный раствор хлорида магния перед добавлением в смесь смешивают с ингибитором коррозии, при этом соотношение компонентов в общей смеси составляет, мас.%: магнезиальное вяжущее 10-40, водный раствор хлористого магния плотностью 1,1-1,3 г/см3 40-70, органический наполнитель 4-15, минеральный наполнитель 2-20, ингибитор коррозии 0,015-0,025. Дополнительно возможно добавление пластификатора в количестве 0,01-0,50% (в пересчете на сухое вещество) от общей массы. 10 з.п. ф-лы.

 

Изобретение относится к области производства строительных материалов и изделий и может быть использовано при изготовлении плит и панелей, предназначенных для внутренней и внешней облицовки промышленных и гражданских зданий, подоконных плит, лестничных ступеней и малых архитектурных форм.

Основой многих строительных материалов (половых покрытий, стенных перегородок, панелей и др.) являются магнезиальные цементы.

Магнезиальным цементом называют материал, содержащий активный оксид магния (каустический магнезит, каустический доломит или синтетический оксид магния), затворенный раствором соли магния. В качестве раствора соли магния чаще всего используют растворы хлорида или сульфата магния. Магнезиальное вяжущее, затворенное раствором хлорида магния, называют цементом Сореля. Цемент Сореля состоит из оксихлоридов магния, состав которых зависит от условий приготовления и хранения [Наназашвили И.Х. Строительные материалы из древесно-цементной композиции. Л.: Стройиздат, 1990, 415 с.]. При твердении магнезиального цемента наряду с оксихлоридами магния образуется гидроксид магния [Волженский А.В. Минеральные вяжущие вещества. М.: Стройиздат, 1986,464 с.].

Гидроксид магния обладает огнестойкими свойствами, что обуславливает его применение как наполнителя - антипирена в производстве полимерных композиций (ПВХ, ПА, ПЭ, ПП, АБС и др. термопластов, реактопластов, эластомеров), в резиновых смесях и ЛКМ, в бумажной промышленности (Позин М.Е. Технология минеральных солей, ч.1, изд.4. Л.: Химия, 1974; Поливинилхлорид / Салмерс Дж., Уилки Ч., Даниэле Ч. СПб: профессия, 2007). Кроме того, гидроксид магния обладает очень низкой растворимостью и слабо выраженными основными свойствами.

Заполнителями для магнезиальных цементов служат древесные опилки, стружки, костра и т.д. (Позин М.Е. Технология минеральных солей (удобрений, пестицидов, промышленных солей, окислов и кислот), ч.I. Л.: Химия, 1974, 792 с., Волженский А.В. Минеральные вяжущие вещества. М.: Стройиздат, 1986, 464 с., Наназашвили И.Х. Строительные материалы из древесно-цементной композиции. Л.: Стройиздат, 1990, 415 с.].

Раствор хлорида магния является отличной огнестойкой пропиткой для органических наполнителей, а также препятствует развитию в органических наполнителях микроорганизмов и мицелия [Наназашвили И.Х. Строительные материалы из древесно-цементной композиции. Л.: Стройиздат, 1990, 415 с.].

Все это делает строительные материалы на основе магнезиальных цементов антибактериальными, огнестойкими и экологически безопасными.

Известен способ [Патент РФ №2276117] получения сырьевой смеси, включающий перемешивание каустического магнезита с древесными опилками с последующим увлажнением массы водным раствором бишофита, который предварительно смешан с 0,3-0,6 об.ч. йодинола. Добавка йодинола в бишофит позволяет достичь бальнеологического эффекта сырьевой смеси. Однако полученный данным методом материал не обладает высокой прочностью и может использоваться только как отделочный: в виде облицовочной плитки, настенных панно и элементов решетчатых перегородок.

Известен также способ изготовления строительных материалов на магнезиальном вяжущем [Патент РФ №2121987], включающий смешение порошка каустического магнезитового, минерального наполнителя и водного раствора хлорида магния, формование изделий и их отверждение, в котором минеральный наполнитель предварительно активируют совместным помолом с химической и/или минеральной добавками. Минеральная добавка представляет собой электротермофосфорный шлак или пиритные огарки или их смесь, а химическая добавка представляет собой суперпластификатор или кремнийорганическую жидкость, или их смесь. Введение суперпластификатора (предпочтительно марки С-3) обеспечивает повышение подвижности магнезиальной смеси, что позволяет применять литьевую технологию изготовления изделий. Данный способ позволяет утилизировать отходы производства, такие как электротермофосфорный шлак и пиритные огарки, однако прочностные характеристики полученного строительного материала являются недостаточно высокими: предел прочности при изгибе в возрасте 28 суток для разных составов составляет от 4,4 до 11,8 МПа и экологическая безопасность такого материала вызывает определенные опасения.

В способе приготовления сырьевой смеси [Патент РФ №2098381], включающем смешение магнезиального вяжущего с заполнителем с последующим затворением раствором бишофита, раствор бишофита предварительно обрабатывают в магнитном поле напряженностью 160-340 кА/м при скорости течения раствора в магнитном поле 0,6-1,5 м/с. Для усиления эффекта магнитной обработки раствор бишофита пропускают через указанное магнитное поле несколько раз. Предварительная обработка водного раствора бишофита в магнитном поле, по мнению авторов, приводит к его положительным структурным изменениям, что способствует получению более плотной и мелкозернистой структуры материала. Благодаря замене в рецептуре опилок на смесь песка с тальком, авторам удается снизить водопоглощение до 3,5% и повысить предел прочности на изгиб до 15 МПа. Однако исключение из рецептуры опилок приводит к снижению звукоизоляционных свойств получаемых плит и повышению их теплопроводности, что является приемлемым при изготовлении отделочных плиток, но нежелательным при использовании сырьевой смеси для изготовления строительных плит различного назначения. Кроме того, многократная обработка раствора бишофита магнитным полем является аппаратурным усложнением процесса и повышает себестоимость строительного материала.

Наиболее близким по существу, принятым за прототип, является способ получения сырьевой смеси для изготовления строительных изделий [Патент РФ №2090535], включающий перемешивание каустического магнезита с целлюлозосодержащим заполнителем растительного происхождения, например опилками, с последующим увлажнением массы раствором хлорида магния и окончательное перемешивание. Вводимый в состав вспученный перлит предварительно опыляют каустическим магнезитом. Вспученный перлит повышает характеристики тепло- и звукоизоляции и пожаробезопасности строительных изделий. Однако строительные изделия, полученные данным способом, имеют очень низкий предел прочности на изгиб, который составляет 7-8 МПа.

В составе магнезиального цемента после твердения могут содержаться остаточные количества не вступившего в реакцию хлорида магния. Присутствием хлорида магния обусловлена коррозионная активность магнезиального цемента, для снижения которой вводятся ингибиторы коррозии.

Во всех перечисленных способах, в получаемых строительных изделиях не предусмотрено никакой защиты от коррозионного воздействия солей, в то время как известно, что при соприкосновении с металлическими конструкциями хлориды магния и натрия вызывают повышенную коррозию металла [Наназашвили И.Х. Строительные материалы из древесно-цементной композиции. Л.: Стройиздат, 1990, 415 с.]. Так, например, хлорид магния, хлорид натрия и их смеси при использовании в составе противогололедных материалов для достижения требуемого значения коррозионной активности на металл обязательно содержат ингибитор коррозии.

Известно, что для снижения коррозии растворов, содержащих хлориды щелочных и щелочноземельных металлов, успешно используются такие ингибиторы коррозии, как дигидрофосфаты и гидрофосфаты щелочных и щелочно-земельных металлов [А.с. СССР №482488, Патент РФ №2302442, РФ №2313553, РФ №2314329].

Целью настоящего изобретения является создание способа изготовления строительных плит универсального назначения, обладающих экологической безопасностью и достаточными эксплуатационными характеристиками, такими как прочность, тепло- и звукоизоляция при снижении их себестоимости и коррозионной активности для контактирующего с ними оборудования.

Поставленная цель достигается тем, что способ изготовления строительных плит универсального назначения включает перемешивание магнезиального вяжущего, органического наполнителя, минерального наполнителя и водного раствора хлорида магния с последующим формованием, отверждением и сушкой, причем минеральный наполнитель состоит из двух и более компонентов, одним из которых является совместно осажденный кальциево-магниевый компонент, вторым - перлит, а водный раствор хлорида магния перед добавлением в смесь предварительно смешивают с ингибитором коррозии, при этом соотношение компонентов в общей смеси составляет, мас.%:

Магнезиальное вяжущее 10-40
Раствор хлористого магния плотностью 1,1-1,3 г/см3 40-70
Органический наполнитель 4-15
Минеральный наполнитель 2-20
Ингибитор коррозии 0,015-0,025

В качестве магнезиального вяжущего может быть использован каустический магнезит, каустический доломит, обожженный брусит и синтетический оксид магния.

Для приготовления водного раствора хлористого магния с плотностью 1,1-1,3 г/см3 может быть использован шестиводный хлорид магния или раствор хлорида магния природного происхождения (бишофит).

Для снижения коррозии контактирующего со строительными плитами металлического оборудования в раствор хлорида магния предварительно вводится ингибитор коррозии в количестве 0,015-0,025% масс. В качестве ингибитора коррозии может быть использован натрий дигидрофосфат и натрий гидрофосфат.

В качестве органического наполнителя могут быть использованы древесные опилки, древесная мука, шелуха рисовых семян, шелуха хлопковых семян, лузга подсолнечных семян или их смеси и др.

Уникальные свойства строительного материала обеспечиваются, в частности, тем, что минеральный наполнитель состоит из двух и более компонентов, одним из которых является совместно осажденный кальциево-магниевый компонент, а вторым - перлит.

Совместно осажденный кальциево-магниевый компонент имеет следующий состав, % мас: карбонат кальция 70-80, гидроксид магния 10-20, хлорид натрия 5-9, вода остальное. Входящий в его состав карбонат кальция снижает водопоглощение и, как следствие, набухаемость материала, является инертным, негорючим и экологически безопасным наполнителем. Гидроксид магния, как упоминалось выше, является широко распространенным и также экологически безопасным антипиреном. Хлорид натрия является добавкой, устраняющей склонность материала к растрескиванию за счет снижения дефектности структуры путем встраивания в структуру магнезиального камня. Хлорид натрия также является негорючим и экологически безопасным компонентом. Таким образом, совместно осажденный кальциево-магниевый компонент в целом является негорючим и экологически безопасным, обладающим рядом полезных для строительного материала свойств. Благодаря совместному осаждению его составляющие представляют собой гранулометрически и химически высокооднородную смесь.

В качестве совместно осажденного кальциево-магниевого компонента может быть использован, в частности, шлам содово-каустической очистки рассола производства натра едкого электролизным методом, являющийся отходом производства.

Для использования всего комплекса свойств совместно осажденного кальциево-магниевого компонента необходимо, чтобы его содержание в минеральном наполнителе находилось в пределах 1-97% маc.

Вспученный перлит повышает характеристики тепло- и звукоизоляции и пожаробезопасности строительных изделий.

Минеральный наполнитель, кроме указанных компонентов, может дополнительно содержать компонент, выбранный из группы природных или синтетических соединений кремния, включающей песок, белую сажу, полевой шпат, серпентинит, бентонит, каолин, волластонит, вермикулит и др. или их смесь. Силикаты и кремнеземы различного происхождения используются в магнезиальных цементах как минеральные наполнители и модифицирующие добавки, повышающие прочность, водостойкость и морозостойкость изделий на основе магнезиальных вяжущих.

Дополнительно для повышения подвижности и жизнеспособности в формовочную массу возможно добавление пластификатора в количестве 0,01-0,50% (в пересчете на сухое вещество) от общей массы. В качестве пластификатора может быть использован пластификатор на основе полиметиленсульфоната натрия или на сульфированной нафталинформальдегидной основе, или на сульфированной меламинформальдегидной основе, или на полиэтиленгликолевой основе, или на основе поликарбоксилатов.

Формование строительных плит, получаемых по предлагаемому способу, можно осуществлять литьем, литьем с виброуплотнением, литьем с прикатыванием и т.д. При формовании возможно расположение верхним и нижним слоем стеклосетки и/или нетканого полотна. Формование и отверждение строительных плит проводится при температуре 20-40°С, причем на отверждение в зависимости от температуры требуется 16-24 ч.

Предлагаемый способ изготовления строительных плит универсального назначения иллюстрируется следующими примерами.

В скобках указаны мас.% компонента об общей массы загрузки.

Пример 1

Смешивают 54,0 мас.ч. (21,8 мас.%) синтетического оксида магния, 21,2 мас.ч. (8,6 мас.%) опилок, 3,2 мас.ч. (1,3 мас.%) перлита, 6,0 мас.ч. (2,4 мас.%) совместно осажденного кальциево-магниевого компонента состава, % масс.: карбонат кальция 72, гидроксид магния 19, хлорид натрия 5, вода - остальное. Полученную сухую смесь затворяют 162,8 мас.ч. (65,9 мас.%) раствора хлористого магния с плотностью 1,18 г/см3, предварительно смешанного с 0,04 мас.ч. (0,016 мас.%) дигидрофосфата натрия. Перемешивают до получения однородной массы. Полученную формовочную массу подают на слой стеклосетки, размещенный на подложке, накрывают вторым слоем стеклосетки и прикатывают для уплотнения и удаления пустот. После отверждения образцы снимают с подложки и сушат при температуре 20°С 28 суток. Полученные образцы имеют следующие характеристики: предел прочности на изгиб (в возрасте 28 суток) - 16 МПа; морозостойкость - более 50 циклов; плотность - 950 кг/м; водопоглощение - 20%.

Пример 2

Смешивают 70,0 мас.ч. (30,3 мас.%) обожженного брусита, 17,0 мас.ч. (7,4 мас.%) шелухи рисовых семян, 2,8 мас.ч. (1,2 мас.%) перлита, 17,5 мас.ч. (7,6 мас.%) песка, 22,5 мас.ч. (9,7 мас.%) совместно осажденного кальциево-магниевого компонента. В качестве совместно осажденного кальциево-магниевого компонента используют шлам содово-каустической очистки рассола производства натра едкого электролизным методом следующего состава, % мас: карбонат кальция 74, гидроксид магния 16, хлорид натрия 7, вода 3. Полученную сухую смесь затворяют 101,2 мас.ч. (43,8 мас.%) раствора хлористого магния с плотностью 1,24 г/см3, предварительно смешанного с 0,034 мас.ч. (0,015 мас.%) дигидрофосфата натрия. Формование проводят по примеру 1. Полученные образцы имеют следующие характеристики: предел прочности на изгиб (в возрасте 28 суток) - 13 МПа; морозостойкость - более 50 циклов; плотность - 1300 кг/м3; водопоглощение - 8%.

Пример 3

Смешивают 147,5 мас.ч. (30,0 мас.%) обожженного брусита, 70,8 мас.ч. (14,4 мас.%) рисовой лузги, 7,9 мас.ч. (1,6 мас.%) перлита, 1,9 мас.ч. (0,4 мас.%) совместно осажденного кальциево-магниевого компонента состава, указанного в примере 2. Полученную сухую смесь затворяют 256,1 мас.ч. (52,1 мас.%) раствора хлорида магния с плотностью 1,24 г/см3, предварительно смешанного с 0,08 мас.ч. (0,016 мас.%) дигидрофосфата натрия и с 7,4 мас.ч. суперпластификатора С-3 в жидкой форме, что в пересчете на сухое вещество составляет 1,85 мас.ч. (0,38 мас.%). Формование проводят по примеру 1. Полученные образцы имеют следующие характеристики: предел прочности на изгиб (в возрасте 28 суток) 13,4 МПа; морозостойкость более 50 циклов, плотность 1120 кг/м3; водопоглощение 6,5%.

Пример 4

Смешивают 70,0 мас.ч. (30,6 мас.%) обожженного брусита, 22,0 мас.ч. (9,6 мас.%) рисовой лузги, 3,4 мас.ч. (1,5 мас.%) перлита, 1,2 мас.ч. (0,5 мас.%) вермикулита и 1,1 мас.ч. (0,5 мас.%) совместно осажденного кальциево-магниевого компонента состава, указанного в примере 2. Полученную сухую смесь затворяют 131,3 мас.ч. (57,3 мас.%) раствора хлорида магния с плотностью 1,24 г/см3, предварительно смешанного с 0,034 мас.ч. (0,015 мас.%) гидрофосфата натрия. Формование проводят по примеру 1, за исключением того, что формовочную массу накрывают не стеклосеткой, а нетканым полотном. Полученные образцы имеют следующие характеристики: предел прочности на изгиб (в возрасте 28 суток) - 18 МПа; морозостойкость - более 50 циклов; плотность - 1090 г/см3; водопоглощение - 14%.

Представленные примеры показывают, что использование предлагаемого способа изготовления строительных плит позволяет получать строительные плиты с достаточно высокими прочностными характеристиками.

Приводимые примеры являются иллюстрацией и не ограничивают область заявляемого изобретения.

Изобретение позволяет существенно удешевить производство строительных материалов на магнезиальном вяжущем за счет использования шлама содово-каустической очистки рассола, являющегося отходом производства, и снизить коррозионную активность строительных плит при сохранении оптимальных эксплуатационных характеристик.

Строительные плиты универсального назначения, изготовленные предлагаемым способом, являются экологически чистым и биологически стойким материалом, не подвержены гниению и горению благодаря антисептическим и антипиреновым свойствам входящих в их состав компонентов. Они легко поддаются обработке (пилению, сверлению, забиванию гвоздей); имеют пониженную коррозионную активность по отношению к металлическим крепежным деталям, арматуре и контактирующему оборудованию; могут быть использованы для жилищного и промышленного строительства.

1. Способ изготовления строительных плит универсального назначения, включающий перемешивание магнезиального вяжущего, органического наполнителя, минерального наполнителя и водного раствора хлорида магния с последующим формованием, отверждением и сушкой, отличающийся тем, что минеральный наполнитель состоит из двух или более компонентов, одним из которых является совместно осажденный кальциево-магниевый компонент, вторым - перлит, а водный раствор хлорида магния перед добавлением в смесь предварительно смешивают с ингибитором коррозии, при этом соотношение компонентов в общей смеси составляет, мас.%:

Магнезиальное вяжущее 10-40
Раствор хлористого магния плотностью 1,1-1,3 г/см3 40-70
Органический наполнитель 4-15
Минеральный наполнитель 2-20
Ингибитор коррозии 0,015-0,025

2. Способ по п.1, отличающийся тем, что магнезиальное вяжущее выбрано из группы, включающей каустический магнезит, каустический доломит, обожженный брусит и синтетический оксид магния.

3. Способ по п.1, отличающийся тем, что органический наполнитель выбран из группы, включающей древесные опилки, древесную муку, шелуху рисовых семян, шелуху хлопковых семян, лузгу подсолнечных семян или их смесь.

4. Способ по п.1, отличающийся тем, что минеральный наполнитель состоит из перлита, совместно осажденного кальциево-магниевого компонента и, возможно, наполнителя, выбранного из группы природных или синтетических соединений кремния, включающей песок, белую сажу, полевой шпат, серпентинит, бентонит, каолин, волластонит, вермикулит или их смесь.

5. Способ по п.1, отличающийся тем, что минеральный наполнитель содержит 1-97 мас.% совместно осажденного кальциево-магниевого компонента.

6. Способ по п.1, отличающийся тем, что совместно осажденный кальциево-магниевый компонент имеет следующий состав, мас.%: карбонат кальция 70-80, гидроксид магния 10-20, хлорид натрия 5-9, вода - остальное.

7. Способ по п.1, отличающийся тем, что в качестве совместно осажденного кальциево-магниевого компонента используют шлам содово-каустической очистки рассола производства натра едкого электролизным методом.

8. Способ по п.1, отличающийся тем, что ингибитор коррозии выбран из группы, включающей натрий дигидрофосфат и натрий гидрофосфат.

9. Способ по п.1, отличающийся тем, что в формовочную массу дополнительно добавляется пластификатор в количестве 0,01-0,50% (в пересчете на сухое вещество) от общей массы.

10. Способ по п.1, отличающийся тем, что при формовании строительных плит нижним и верхним слоем укладываются в один и/или два слоя стеклосетка и/или нетканое полотно.

11. Способ по п.1, отличающийся тем, что отверждение смеси ведут при температуре 20-40°С в течение 16-24 ч.



 

Похожие патенты:

Изобретение относится к области строительства, а именно к способам и конструкциям для изготовления изделий из конструкционно-теплоизоляционного ячеистого бетона с замкнутыми порами.
Изобретение относится к промышленности строительных материалов и может быть использовано в производстве сборного железобетона и в монолитном строительстве. Техническим результатом является повышение пластичности смесей, снижение энергозатрат за счет снижения температуры термовлажностной обработки и сокращения времени экзотермической выдержки.
Изобретение относится к области производства строительных материалов и может быть использовано для производства огнестойких панелей, перегородок, потолков, дверей и других конструктивных элементов, используемых при строительстве гражданских и промышленных зданий, в которых требуется обеспечение пожаробезопасности и безопасности жизнедеятельности человека.
Изобретение относится к области производства теплоизоляционных строительных материалов в виде плит, скорлуп и других изделий с заданными геометрической формой и размерами.

Изобретение относится к области исследования физико-химических свойств бетона в условиях воздействия на образец углекислого газа заданной концентрации. Установка содержит не менее 2-х герметичных камер с заполненной водой U-образной трубкой для сброса избыточного давления в камере, впускным и выпускным газовыми распределительными коллекторами, фильтрами для очистки забираемой из камер газовоздушной среды и с установленными внутри каждой камеры вентилятором и ванной с насыщенным раствором соли для создания и постоянного поддержания заданной относительной влажности воздуха внутри камеры, подсоединенный к герметичным камерам через впускной газораспределительный коллектор и установленные на трубопроводах электромагнитные клапаны источник углекислого газа, автоматический газоанализатор с побудителем расхода газа, газовый распределительный коммутатор для попеременного забора пробы из камер и передачи ее в газоанализатор через побудитель расхода газа, кроме того, газоанализатор соединен с ЭВМ для автоматизации контроля за концентрацией газа в герметичных камерах и подачей в них газа через электромагнитные клапаны.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из кислотостойких бетонов.

Изобретение относится к промышленности строительных материалов, в частности к технологии гранитоцементных изделий из мелкозернистых бетонов, и может быть использовано для изготовления элементов отделки цоколей стен зданий, плитки для полов, брусчатки для дорог и тротуаров и других атмосферостойких изделий.

Изобретение относится к области строительства, а именно к технологии приготовления бетонных смесей и изделий из них. В способе приготовления бетонной смеси, включающем перемешивание части расчетной дозы жидкости затворения с цементом в смесителе-активаторе, введение оставшейся части расчетной дозы жидкости затворения в бетоносмеситель с заполнителем, последующее введение полученной в смесителе-активаторе суспензии в бетоносмеситель и окончательное перемешивание полученной смеси, в качестве жидкости затворения используют воду, которую предварительно заливают в смеситель-активатор в объеме (40÷70)% от расчетной (рецептурной) дозы жидкости затворения, которую в процессе заливки в смеситель-активатор активируют, для чего пропускают со скоростью (1÷2) м/с через поперечное магнитное поле, напряженность которого лежит в диапазоне (500÷2000) Э, затем, после заливки в смеситель-активатор, упомянутую жидкость подвергают дополнительной вторичной активации путем ее кавитационной дезинтеграции, для чего на нее воздействуют ультразвуком, частота которого лежит выше частоты порога кавитации в диапазоне низких частот от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежит в области стабильной кавитации от 1,5 Вт/см2 до 2,5 Вт/см2, причем в процессе кавитационный дезинтеграции жидкости затворения в нее засыпают и перемешивают цемент, при этом одновременно с заливкой жидкости затворения в смеситель-активатор также заливают оставшуюся от расчетной (рецептурной) дозы часть жидкости затворения в бетоносмеситель с заполнителем, в качестве которой используют воду, которую в процессе ее заливки в бетоносмеситель с заполнителем омагничивают, для чего ее также пропускают со скоростью (1÷2) м/с через поперечное магнитное поле, напряженность которого лежит в диапазоне (500÷2000) Э, затем после перемешивания суспензии - цементного теста в смесителе-активаторе в течение 1-1,5 минут, ее переливают в бетоносмеситель и полученную смесь окончательно перемешивают в течение 1,5-2 минут.

Изобретение относится к области строительства, в частности к способу получения теплоизоляционного материала на основе отходов деревообработки. Технический результат заключается в снижении плотности материала и повышении его теплоизоляционных свойств.

Изобретение относится к промышленности строительных материалов, а именно к способам приготовления бетонной смеси. .
Изобретение относится к области производства строительных материалов и может быть использовано для производства огнестойких панелей, перегородок, потолков, дверей и других конструктивных элементов, используемых при строительстве гражданских и промышленных зданий, в которых требуется обеспечение пожаробезопасности и безопасности жизнедеятельности человека.
Изобретение относится к области строительства, а именно к способам изготовления строительных плит. Изобретение позволит повысить экологическую безопасность строительных плит.

Изобретение относится к строительным материалам на основе модифицированного магнезиального вяжущего, которые могут быть использованы при изготовлении стеновых, теплоизоляционных, отделочных изделий, ячеистых бетонов, ксилолитовых и других материалов для гражданского и промышленного строительства.

Изобретение относится к самовыравнивающейся магнезиальной композиции и может найти применение в промышленности строительных материалов для получения литых декоративных изделий, монолитных конструкций типа наливных полов, при тампонировании трещин разрушающихся зданий, а также при производстве сухих смесей для декоративно-художественной отделки зданий и сооружений.

Изобретение относится к производству декоративных изделий, которые можно использовать для интерьерной отделки, например полы, стены, подоконники, столешницы, мозаичные декоративные панно на стенах зданий с применением наполнителя из янтаря и/или отходов янтарного производства, особенно тех, которые до сих пор не использовались.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий, используемых для внутренней и внешней облицовки зданий, производства стеновых блоков, панелей, монолитных конструкций, а также для заделки трещин в зданиях и сооружениях.
Изобретение относится к области строительных материалов и может быть использовано при изготовлении литого материала для футеровки тепловых агрегатов для работы с агрессивными средами, расплавами, преимущественно, для плавки цветных металлов.
Изобретение относится к строительной индустрии, в частности к изготовлению деталей, используемых при строительстве зданий и сооружений, в том числе кирпичей, блоков, перемычек для оконных перекрытий и дверных проемов и т.д. Технический результат заключается в расширении ассортимента материалов для несущих строительных конструкций, снижении удельной массы, увеличении прочности, теплопроводности, звукоизоляции, сечения половинного поглощения для гамма- и рентгеновского излучения. Предложен строительный материал, полученный затворением смеси каустического магнезита и вспученного вермикулита с насыпной плотностью от 90 до 250 кг/м3 эффективным количеством водного раствора хлорида магния плотностью 1120÷1290 кг/м3, при этом количество вспученного вермикулита составляет 38,4÷217 кг в расчете на 1 м3, количество каустического магнезита составляет 128÷217 кг в расчете на 1 м3, а объемное соотношение каустического магнезита и вспученного вермикулита составляет 1:3÷4:5. 6 з.п. ф-лы, 2 табл.
Наверх