Наноструктурный ик-приемник (болометр) с большой поверхностью поглощения



Наноструктурный ик-приемник (болометр) с большой поверхностью поглощения
H01L27/14 - содержащие полупроводниковые компоненты, чувствительные к инфракрасному излучению, свету, коротковолновому электромагнитному или корпускулярному излучению, и предназначенные для преобразования энергии этих излучений в электрическую энергию или для управления электрической энергией с помощью таких излучений (компоненты, чувствительные к излучению, конструктивно связанные только с одним или несколькими электрическими источниками света H01L 31/14; соединение световодов с оптоэлектронными элементами G02B 6/42)

Владельцы патента RU 2511275:

Федеральное государственное унитарное предприятие "Научно-исследовательский институт физических проблем им. Ф.В. Лукина" (RU)

Изобретение относится к области создания детекторов инфракрасного излучения и касается болометрического ИК-детектора. Детектор состоит из мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к подложке с помощью токопроводящих шинок. ТЧЭ и ПЭЭ объединены в одном элементе, который выполнен в виде покрытия из тонкопленочного монокристального материала Bi1-xSbx (0<x<12). Покрытие максимально покрывает поверхность мембраны и включает полоску, которая отделена зазорами шириной l от остальной части покрытия за исключением концов полоски, соединенных с остальной частью покрытия. Кроме того, покрытие разделено щелью на две части, электрически соединенные указанной полоской. Параметры болометра удовлетворяют следующим соотношениям: R/2Z<1, где R - удельное поверхностное сопротивление пленки, Z=120π Ом - импеданс свободного пространства; S/χ1>l22, где χ1 - температуропроводность среды, непосредственно контактирующей с мембраной, χ2 - температуропроводность материала мембраны. Технический результат заключается в упрощении конструкции и повышении удельной обнаружительной способности устройства. 1 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к болометрическому детектору и устройству для детектирования инфракрасного излучения, использующему такой детектор. Изобретение может применяться, в частности, в тепловизионной технике, и может быть использовано в тепловизорах смотрящего типа в качестве чувствительного элемента матричных приемников, и предназначено для работы во всем ИК-диапазоне длин волн М для создания тепловых изображений предметов в ночное время суток.

УРОВЕНЬ ТЕХНИКИ

В области техники, относящейся к инфракрасным детекторам, известны болометрические приемники, которые, как правило, включают в себя: средство поглощения инфракрасного излучения и преобразования его в тепло (поглотитель); средство термоизоляции детектора, обеспечивающее возможность максимального возрастания его температуры в результате воздействия инфракрасного излучения; термометрическое средство, в котором в случае болометрического детектора используют резистивный элемент.

Обычно болометр состоит из мембраны, на которой расположен термочувствительный элемент (ТЧЭ) и поглотитель электромагнитной энергии (ПЭЭ). Часто функции ТЧЭ и ПЭЭ совмещаются в одном элементе, например, в случае болометров, изготовленных на основе VOx. Если в качестве (ТЧЭ) применяется полупроводник типа аморфного кремния, то ПЭЭ изготавливают обычно нанесением пленки металла, которая имеет небольшой коэффициент поглощения: обычно всего несколько процентов. Иногда ограничиваются тем, что роль ПЭЭ выполняет мембрана, изготовленная из окиси кремния и нитрида кремния. Чтобы получить низкую теплопроводность между болометром и его окружением, болометр помещается на длинных шинках с небольшой площадью поперечного сечения, состоящих из материалов с низкой теплопроводностью, как правило, покрытых тонким слоем металла, который обеспечивает электрический контакт между болометром и электронной схемой считывания сигнала. Тепловая проводимость между чувствительным элементом (ЧЭ) болометра и его контактной областью может быть на уровне 3,5 10-8 Вт/K.

Фактор заполнения пикселя определяет долю занимаемой болометрами площади пикселя, которая используется для поглощения падающего инфракрасного излучения. Остальные области пикселей занимают контактные области болометра, интервалы между болометрами, и соседними мембранами болометров, и переходными окнами, которые соединяют болометр и пластину с интегральной схемой считывания. Обычные одноуровневые инфракрасные матричные болометры, как правило, имеют коэффициент заполнения от 60% до 70%.

Аналоги предлагаемого изобретения описаны в литературе, см., например, патент РФ на изобретение №2356017 от 20.05.2009; патент РФ на изобретение №2383875 от 15.03.2006; Филачев A.M., Андрюшин С.Я. Состояние разработок микроболометрических матриц в Государственном научном центре «НПО Орион». Прикладная физика, №5, 2000, с.5-17.

В предшествующем уровне техники описан ряд различных вариантов компоновки разнообразных составляющих элементов детекторов с целью максимизации полезной площади болометра, которые значительно усложняют конструкцию болометров. Максимизация достигается за счет более рационального использования площади проводящих шинок, соединяющих болометр со схемой считывания. Однако это не приводит к увеличению основного параметра - удельной обнаружительной способности D*, потому что авторы не учитывают влияния на характеристики детектора избыточного шума, связанного, в частности, с эффектами истечения заряда с межкристаллитных острий в поликристаллических пленках.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

В заявленном ИК-приемнике (болометре) предлагается упростить его конструкцию, заменив три элемента: термочувствительный элемент (ТЧЭ), поглотитель электромагнитной энергии (ПЭЭ) и контакты на мембране, одним элементом, выполненным на мембране, который выполнен в виде покрытия из тонкопленочного монокристального материала Bi1-xSbx (0<x<12), максимально покрывающего поверхность мембраны. Этот элемент включает полоску шириной а и длиной b, отделенную узким зазором шириной l от остальной части покрытия, кроме концов полоски ширины а, соединенных с остальной частью покрытия, которая разделена зазором m на две части, каждая из которых соединена со своей токопроводящей шинкой, а обе эти части электрически соединены указанной полоской.

Поглощение энергии излучения происходит на всей площади элемента, максимально покрывающего поверхность мембраны, причем тонкопленочный монокристальный материал Bi1-xSbx (0<х<12) выполняет как функции поглотителя ИК-излучения, так и термочувствительного элемента (ТЧЭ), при этом величина шума за счет применения в качестве ТЧЭ монокристальных пленок, в которых отсутствуют межострийные шумы, характерные для поликристаллических материалов, снижена до предельного уровня шумов Найквиста-Джонсона.

Зазор, отделяющий полоску от остальной части элемента, не влияет существенно на величину средней температуры мембраны в силу малости зазора. В самом деле, постоянная времени выхода температуры (τ) на стационарное состояние при воздействии прямоугольным импульсом излучения составляет:

τ=S/χ1,

где S - площадь мембраны, χ1 - температуропроводность среды, непосредственно контактирующей с мембраной (в данном случае воздух).

С другой стороны, оценка характерного времени (t) «выравнивания» температур указанной полоски остальной части элемента и мембраны дает:

t=l22,

где l - ширина зазора, χ2 - температуропроводность материала мембраны.

Когда выполняется соотношение: τ>t, т.е.

S/χ1>l22,

можно считать, что средние температуры полоски и мембраны одинаковы.

При выполнении условий: R/2Z<1, где R - удельное поверхностное сопротивление пленки, Z=120π Ом - импеданс свободного пространства, и величине зазора между мембраной и подложкой, равного λ/4, коэффициент поглощения ИК-приемника может составить величину 70%-80% в широком диапазоне длин волн Δλ.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖА

Изобретение поясняется чертежом, на котором представлен схематичный план вида ИК-приемника (болометра) в аксонометрической проекции: к подложке 1 (обычно кремний) прикреплена диэлектрическая мембрана 2, на которую нанесено покрытие 3 из тонкопленочного монокристального материала Bi1-xSbx (0<х<12), мембрана 2 крепится к подложке шинками 4, на которой расположены токопроводящие шинки 5, соединяющие ИК-приемник с контактами 6, необходимыми для подключения болометра в измерительную схему, в покрытии 3 выполнена полоска 7, которая отделена зазорами шириной l от остальной части покрытия, кроме концов полоски шириной а, соединенных с остальной частью покрытия, разделенного щелью 8 на две части, каждая из которых соединена со своей токопроводящей шинкой, а обе эти части электрически соединены указанной полоской 7, которая является термочувствительным элементом, а 3 является основным поглотителем электромагнитной энергии и одновременно выполняет роль контактов к полоске 7.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Для практического осуществления предложенного изобретения болометрический детектор был изготовлен на пластине из кремния, на который было нанесено четырехслойное тонкопленочное покрытие, имеющее такой же коэффициент линейного расширения, как и у кремния (SiO2+Si3N4+SiO2+Si3N4), под которым была вытравлена полость глубиной 2,5 мкм (основная поверочная длина волны λ=10 мкм) и площадью 70×70 мкм2. Таким образом с помощью фотолитографии была изготовлена теплоизолированная от подложки из кремния мембрана 2, на которую наносили покрытие 3 из тонкопленочного монокристального материала Bi1-xSbx, где x=8%. Этот материал относится к классу полуметаллов с концентрацией свободных электронов 10-5 на атом. Температурный коэффициент сопротивления ТЧЭ равен 0,7%/K, а монокристальное исполнение пленок обеспечивает предельно низкий уровень шумов U ш 2 ~ 4 k T R 0 Δ f , где k = постоянная Больцмана, R0 - полное сопротивление ТЧЭ. В покрытии была выполнена полоска 7 шириной 0,1 мкм. Полоска имеет следующие геометрические параметры: длина 50 мкм, толщина пленки ~80 нм, полная приемная площадь ~60×60 мкм2. R0~130 кОм. Измерения уровня шума и вольт/ваттной чувствительности проводилось при напряжении смещения U на ТЧЭ~11 В. Не обнаружено зависимости напряжения шумов Uш от величины приложенного напряжения смещения, и в полосе 1 Гц Uш оказалось равным 47 нВ.

Устройство работает следующим образом. При воздействии на болометрический приемник импульсом прямоугольной формы электромагнитной волны происходит интенсивное поглощение энергии всем покрытием, что приводит к нагреву полоски 7 и остальной части покрытия и изменению его эффективного сопротивления на величину ΔR=R0αΔT, где ΔT - изменение температуры, а α - эффективный температурный коэффициент сопротивления.

Измерения вольт/ваттной чувствительности W проводились с использованием излучающего черного тела при температуре 500 K, светофильтра из InSb и механического модулятора. Получены оценочные значения W~4500 В/Вт и D*~2,6*109 Вт-1 смГц, τ~10-2 с.

Наноструктурный ИК-приемник (болометр) с большой поверхностью поглощения, состоящий из диэлектрической мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к твердой подложке с помощью токопроводящих шинок, отличающийся тем, что с целью упрощения конструкции и, в итоге, повышения удельной обнаружительной способности D* (ТЧЭ) и (ПЭЭ) объединены в одном элементе, который выполнен в виде покрытия из тонкопленочного монокристального материала Bi1-xSbx (0<x<12), максимально покрывающего поверхность мембраны, включающем полоску шириной a и длиной b, причем указанная полоска отделена зазорами шириной l от остальной части покрытия, кроме концов полоски шириной а, соединенных с остальной частью покрытия, разделенного щелью m на две части, каждая из которых соединена со своей токопроводящей шинкой, а обе эти части электрически соединены указанной полоской, причем физические и геометрические параметры болометра удовлетворяют экспериментально полученным соотношениям: R/2Z<1, где R - удельное поверхностное сопротивление пленки, Z=120π Ом - импеданс свободного пространства, S/χ1>l22, где χ1 - температуропроводность среды, непосредственно контактирующей с мембраной (в данном случае воздух), χ2 - температуропроводность материала мембраны.



 

Похожие патенты:

Изобретение относится к оптоэлектронной технике, точнее к компактным фотоприемникам излучения в инфракрасном (ИК) диапазоне длин волн, применяемым в различных областях науки и техники, в промышленности, а именно в спектроскопии, в медицине, оптических системах связи и передачи информации, в оптических сверхскоростных вычислительных и коммутационных системах.

Изобретение относится к полупроводниковым приборам, чувствительным к излучению, и может быть использовано для разработки фотоприемников, в частности, предназначенных для регистрации инфракрасного излучения.

Изобретение относится к приемникам оптического излучения, а именно для применения в оптоэлектронных и робототехнических устройствах для регистрации параметров оптического излучения.

Изобретение относится к микроэлектронной измерительной технике и может быть использовано в конструкции и технологии производства полупроводниковых датчиков ультрафиолетового излучения (УФИ).

Изобретение относится к приемникам оптического излучения для применения в оптоэлектронных и робототехнических устройствах, служащим для регистрации параметров оптического излучения.

Изобретение относится к полупроводниковой технике и может использоваться для создания полупроводниковых фотоприемников, в частности фоторезисторов для регистрации и измерения светового излучения.

Изобретение относится к полупроводниковым приборам, предназначенным для измерения электромагнитных излучений, работающих в диапазоне длин волн от ультрафиолетового до гамма-излучений.

Изобретение относится к микроэлектронике. .

Изобретение относится к микроэлектронике и может быть использовано в технологии конструирования полупроводниковых датчиков ультрафиолетового излучения (УФИ). .

Изобретение относится к устройству отображения, оснащенному оптическим датчиком в области пикселей. Техническим результатом является повышение чувствительности и высокое отношение сигнал/шум в светочувствительном датчике.

Изобретение относится к устройствам формирования изображения. Твердотельное устройство формирования изображений включает в себя подложку, область датчика изображения и схему обработки сигналов, которые электрически соединены друг с другом, область с низкой теплопроводностью, расположенную между областью датчика изображения и схемой обработки сигналов, и сквозное отверстие, сформированное в подложке, при этом область с низкой теплопроводностью находится в сквозном отверстии и имеет более низкую теплопроводность, чем у подложки.

Изобретение относится к устройству отображения, снабженному оптическим датчиком в пиксельной области. Техническим результатом является повышение точности при захвате изображений посредством улучшения линейности характеристик чувствительности фотодиода.

Изобретение относится к устройствам захвата изображения. Твердотельное устройство захвата изображения включает в себя множество пикселей, причем каждый из множества пикселей содержит участок фотоэлектрического преобразования, сконфигурированный для генерации зарядов в соответствии с падающим светом, участок удержания заряда, сконфигурированный так, чтобы включать в себя первую полупроводниковую область первого типа проводимости, и участок передачи, сконфигурированный так, чтобы включать в себя электрод передающего затвора, который управляет потенциалом между участком удержания заряда и узлом считывания.

Изобретения могут быть использованы в устройствах для формирования изображения, определения координат исследуемых объектов, оптической пеленгации, автоматического управления, контроля и измерения параметров излучения, экологического мониторинга, медицинской диагностики и неразрушающего контроля.

Изобретение относится к твердотельному устройству захвата изображения. В твердотельном устройстве захвата изображения участок фотоэлектрического преобразования, участок удержания зарядов, участок переноса и узел считывания формируются в кармане p-типа.

Изобретение относится к датчикам электромагнитного излучения и, в частности, к массивам твердотельных датчиков изображения, имеющим световые рецепторы с размерами меньше дифракционного предела, и к цветовым фильтрам, с которыми они используются.

Изобретение относится к твердотельному датчику изображения, способу его изготовления и аппарату для съемки. Твердотельный датчик изображения включает в себя первую полупроводниковую область первого типа проводимости, вторую полупроводниковую область второго типа проводимости, расположенную в контакте с нижней поверхностью первой полупроводниковой области и функционирующую в качестве области накопления зарядов, третью полупроводниковую область, включающую в себя боковые поверхности, окруженные второй полупроводниковой областью, четвертую полупроводниковую область второго типа проводимости, расположенную на удалении от второй полупроводниковой области, и затвор переноса, который образует канал для переноса зарядов, накапливаемых во второй полупроводниковой области, в четвертую полупроводниковую область.

Изобретение может найти применение для регистрации излучений в ядерной физике, в физике высоких энергий, а также при создании цифровых рентгеновских аппаратов, преимущественно маммографов.

Устройство считывания с временной задержкой и накоплением сигналов с многоэлементных фотоприемников инфракрасного излучения относится к области интегральной микроэлектроники и предназначено для систем обработки оптической информации.
Наверх