Материал катода на основе нанокристаллического цементита, способ его изготовления, катод для электролитического получения водорода из водных щелочных и кислотных растворов и способ его изготовления



Материал катода на основе нанокристаллического цементита, способ его изготовления, катод для электролитического получения водорода из водных щелочных и кислотных растворов и способ его изготовления
Материал катода на основе нанокристаллического цементита, способ его изготовления, катод для электролитического получения водорода из водных щелочных и кислотных растворов и способ его изготовления
Материал катода на основе нанокристаллического цементита, способ его изготовления, катод для электролитического получения водорода из водных щелочных и кислотных растворов и способ его изготовления
Материал катода на основе нанокристаллического цементита, способ его изготовления, катод для электролитического получения водорода из водных щелочных и кислотных растворов и способ его изготовления
Материал катода на основе нанокристаллического цементита, способ его изготовления, катод для электролитического получения водорода из водных щелочных и кислотных растворов и способ его изготовления
C25B1/00 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2511546:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Удмуртский государственный университет" (ФГБОУ ВПО "УдГУ") (RU)
Федеральное государственное бюджетное учреждение науки Физико-технический институт Уральского Отделения РАН (RU)

Группа изобретений относится к изготовлению электродов для электролитического получения водорода из водных щелочных и кислотных растворов. Способ получения нанокристаллического композиционного материала катода включает проведение механоактивации смеси порошков железа и графита в атомном отношении 75:25 в среде аргона в течение 15÷20 ч с получением порошковой смеси из наноразмерных зерен цементита Fe3C и α-Fe при их соотношении в мас.%: (90÷95):(10÷5). Способ изготовления катода включает предварительную выдержку упомянутого нанокристаллического композиционного материала в вакууме 5÷10 Па в течение 1÷2 ч при температуре 450÷550°С, после чего проводят его магнитно-импульсное прессование при амплитуде 1÷2 ГПа и длительности импульсов давления 300÷400 мкс. Обеспечивается изготовление катода с пониженным перенапряжением реакции электрохимического выделения водорода. 4 н. и 1 з.п. ф-лы, 1 пр., 5 ил.

 

Изобретение относится к способам приготовления нанокристаллического композиционного материала и способам изготовления катода для электролитического получения водорода из водных щелочных и кислотных растворов.

В промышленных электролизерах для электролитического получения водорода из водных щелочных и кислотных растворов используют в качестве материала для катодов железо и/или никель. Известно использование железоникелевых сплавов разного состава. Однако данные металлические электроды обладают высоким перенапряжением реакции выделения водорода. Данные по активности железа, никеля и их сплавов в качестве катодных материалов обобщены в литературе [1]. В случае платиновых металлов перенапряжение низкое, но эти металлы не используются, поскольку являются дорогими и имеют склонность к отравлению каталитическими ядами [1].

В качестве альтернативы металлическим материалам катодов были исследованы карбиды ряда металлов. Одним из наиболее перспективных оказался карбид вольфрама, в частности, в виде спеченных композитов. Однако дефицитность данного материала и вольфрама [2] не позволили использовать карбид вольфрама в качестве материала катода.

Известен способ электролитического получения водорода из растворов электролитов с использованием растворимых анодов по патенту RU №2089670 [3]. Электролиз ведут постоянным током с использованием в качестве растворимых анодов магния или его сплавов. Недостатком данного способа является использование дорогих и дефицитных анодов из магния или его сплавов, а также потери части электроэнергии, связанные с преобразованием переменного тока в постоянный.

Известен способ изготовления наноструктурированного катодного материала на основе никеля для электрохимического водного выделения по полезной модели UA 65397 [4], который включает размещение на горизонтальной поверхности никеля с одной стороны наноструктурированных элементов в виде конусов. На вершины конусов дозированно осаждают платину с насеченного K2[PtC16]. Подают импульсами постоянное напряжение. Недостатком данного способа является необходимость использования дорогостоящей платины.

Была поставлена задача подбора недорогого материала, обладающего пониженным перенапряжением реакции электрохимического выделения водорода, и приготовления на его основе нанокристаллического композиционного материала катода для электролитического получения водорода из водных щелочных и кислотных растворов. Данный материал был получен в результате лабораторных исследований с использованием дешевых исходных компонентов (железа и графита), которые были подвергнуты механохимической обработке для получения метастабильной карбидной фазы (цементита) Fe3C. Известно, что механохимический синтез является традиционным методом получения метастабильных фаз и нанокристаллических композиционных материалов [5].

Кроме того, известно, что получить индивидуальную фазу цементита путем высокотемпературного сплавления железа с углеродом невозможно. Известен метод изготовления электродов из белого чугуна путем обогащения его поверхности цементитом [6]. Сложность получения такого материала не позволяет использовать его в качестве катодного материала.

Поставленная задача решалась тем, что проводят механоактивацию смеси порошков железа и графита в атомном отношении 75:25 в среде аргона в течение 15÷20 ч с получением порошка из наноразмерных зерен цементита и α-Fe при их соотношении (90÷95):(10÷5) мас.% в шаровой планетарной мельнице [7].

Далее материал для изготовления катода предварительно выдерживают в вакууме (остаточное давление 5-10 Па) в течение 1÷2 ч при температуре не более 450÷550°C, а затем ведут его магнитно-импульсное прессование при амплитуде 1÷2 ГПа и длительности импульсов давления 300÷400 мкс [8].

Полученный нанокристаллический композиционный материал сохраняет наноразмерность объемных элементов и обладает электрокаталитической активностью, что дает возможность изготовить из него катод для электролитического получения водорода из водных щелочных и кислотных растворов при перенапряжении электрохимической водородной реакции, например, всего 200 мВ. При этом скорость выделения водорода находится на том же уровне, что и при электролизе кислых сред с помощью платинового катода.

Пример конкретного осуществления предлагаемого изобретения. Механоактивацию проводили в шаровой планетарной мельнице “Fritsch P-7” с ускорением 25 g. В мельницу загружали 10 г смеси порошков железа и графита в атомном соотношении 75:25. Время синтеза составляло 16 ч. Сосуды мельницы (объем 45 см3) и размольные шары диаметром 10 мм (20 шт.) были изготовлены из стали ШХ15 (1% C и 1,5% Cr), отличающейся высокой твердостью, чтобы свести к минимуму загрязнения порошков посторонними примесями. Полученную порошковую смесь цементита Fe3C и α-Fe, находящихся в нанокристаллическом состоянии, подвергали магнитно-импульсному прессованию, которое позволило получить объемный материал катода с сохранением нанокристаллического состояния [5]. Прессование проводили в вакууме (остаточное давление 5-10 Па) при температуре 500°C, амплитуда импульса ~1.5 ГПа и длительность импульса 300 мкс. Предварительно осуществляли дегазацию порошковой смеси в вакууме в течение 1 ч при температуре 500°C.

Полученный в результате магнитно-импульсного прессования композит имел форму диска с диаметром 15 мм и толщиной от 1 до 2 мм. Рентгеновская дифрактометрия показала наличие в нем нанокристаллической структуры со средним размером зерна 40 нм (фиг.1) и содержанием не более 5 мас.% железа.

Поляризационные измерения были выполнены в потенциодинамическом режиме на потенциостате IPC-Pro в стандартной электрохимиической ячейке ЯСЭ-2 при комнатной температуре в условиях естественной аэрации. Для сравнения использовали хлорид-серебряный электрод. Измерения проводили для следующих электродов: из заявляемого материала и платины. Измеренные потенциалы приводились относительно стандартного водородного электрода, токи пересчитывались на видимую площадь поверхности образцов. Подготовка поверхности образцов перед электрохимическими исследованиями заключалась в зачистке их поверхности на шлифовальной бумаге и дополнительной шлифовке поверхности порошком Al2O3, смоченным дистиллированной водой. Рабочий Pt-электрод не зачищали, а для удаления примесей его выдерживали в кипящей смеси концентрированной серной кислоты и перекиси водорода (1:1).

Модельными электролитами служили кислые и щелочные сульфатные растворы: C ( S O 4 2 ) = 0.5 M с pH=0.4 и 1.9; C ( S O 4 2 ) = 1,0 M с pH=12.3. В кислых средах поляризацию проводили от стационарного потенциала в катодную сторону; в щелочных средах для удаления поверхностных оксидов - после предварительной выдержки образцов при -1200 мВ в анодную сторону. Скорость изменения потенциала составляла 0.5 мВ/с. При исследовании склонности электродов к отравлению образцы выдерживали 15 мин в насыщенном растворе сероводорода, тщательно промывали водой, затем проводили поляризацию. Для определения выхода по току реакции выделения водорода (РВВ) объем выделившегося газа измеряли с использованием бюретки по объему вытесненной жидкости.

Электрохимическая активность заявленного материала катода измерялась с помощью поляризационных кривых в кислых и щелочных сульфатных растворах. На фиг.2, 3 представлены кривые катодной поляризации ряда материалов - заявленного материала катода, материала катода из железа и гладкой платины в кислых (фиг.2) и щелочных сульфатных (фиг.3) электролитах. В кислых средах при перенапряжении водородной реакции |η|=300 мВ скорость выделения водорода на катоде из заявляемого материала на 3 порядка выше, чем на железе. В щелочных средах скорость выделения водорода на катоде из заявляемого материала в 3 раза выше скорости выделения водорода на электроде из железа. В кислых электролитах в широком диапазоне катодных потенциалов (при перенапряжении реакции выделения водорода |η|>200 мВ) скорости выделения водорода на катоде из заявляемого материала и гладкой платине практически совпадают.

Отдельными экспериментами показано, что катодное выделение водорода в кислом сульфатном растворе (pH=0.45) при потенциале 800 мВ идет с выходом по току, близким к 100% (фиг.4), и разрушения катода из заявляемого материала не происходит. Заявляемый материал катода значительно более активен в кислых средах, чем в щелочных средах.

Одновременно он более коррозионно стоек в кислых средах по сравнению с железом, что делает возможным его использование для электролиза кислых сред.

Дополнительными экспериментами показано, что предлагаемый катод не проявляет склонности к отравлению серосодержащими соединениями по сравнению с катодом из платины (фиг.5).

Таким образом, использование признаков заявляемого изобретения дало возможность приготовить недорогой нанокристаллический композиционный материал катода для электролитического получения водорода из водных щелочных и кислотных растворов, обладающий пониженным перенапряжением реакции электрохимического выделения водорода.

Источники информации, принятые во внимание

1. Якименко Л.М. Электрохимическое процессы в химической промышленности: Производство водорода, кислорода, хлора и щелочей. М.: Химия, 1981. 52-60 с. (прототип).

2. Цирлина Г.А., Петрий О.А. // В сб. Итоги науки и техники. Серия Электрохимия. М.: ВИНИТИ, 1987. Т.24. С.154.

3. Патент RU №2089670. Алиев З.М., Гусейнов М.А. Способ получения водорода. C25B 1/02, 1/12. - 3 с.

4. Патент на полезную модель UA №65397. Шевченко А.П., Аксиментьева Е.И., Лут Е.А., Белый А.В. Способ изготовления наноструктурированного катодного материала на основе никеля для электрохимического водного выделения. C25B 1/02, 12.12.2011. - 6 с.

5. Suryanarayana С. Mechanical alloying and milling // Proc. Mater. Sci. - 2001. - V.46. - №1-2. Р.1-184.

6. Коростылева Т.К., Подобаев Н.И., Девяткина Т.С. и др. // Защита металлов. 1982. Т.18. №4. С.551.

7. Елсуков Е.П., Дорофеев Г.А., Фомин В.М., Коныгин Г.Н., Загайнов А.В., Маратканова А.Н. Механически сплавленные порошки Fe(100-x)C(x); x=5-25 ат.%. I. Структура, фазовый состав и температурная стабильность // ФММ. - 2002. - Т.94. - №4. - С.43-54.

8. Иванов В.В., Паранин А.С., Вихрев А.Н. // Патент России №2083328, МПК B22F 3/087, приоритет от 25.10.94. Бюл. №25. 1996. С.4.

1. Способ получения нанокристаллического композиционного материала катода для электролитического получения водорода из водных щелочных и кислотных растворов, отличающийся тем, что проводят механоактивацию смеси порошков железа и графита в атомном отношении 75:25 в среде аргона в течение 15÷20 ч с получением порошковой смеси из наноразмерных зерен цементита Fe3C и α-Fe при их соотношении в мас.%: (90÷95):(10÷5).

2. Способ по п.1, отличающийся тем, что механоактивацию смеси порошков железа и графита проводят в шаровой планетарной мельнице.

3. Нанокристаллический композиционный материал катода для электролитического получения водорода из водных щелочных и кислотных растворов, характеризующийся тем, что он получен способом по любому из пп.1, 2.

4. Способ изготовления катода для электролитического получения водорода из водных щелочных и кислотных растворов, характеризующийся тем, что нанокристаллический композиционный материал по п.3 предварительно выдерживают в вакууме 5÷10 Па в течение 1÷2 ч при температуре 450÷550°С и затем проводят его магнитно-импульсное прессование при амплитуде 1÷2 ГПа и длительности импульсов давления 300÷400 мкс.

5. Катод для электролитического получения водорода из водных щелочных и кислотных растворов, характеризующийся тем, что он изготовлен способом по п.4.



 

Похожие патенты:
Изобретение относится к электролитическим способам получения чистого гексаборида диспрозия. В качестве источника диспрозия используют безводный трихлорид диспрозия, источника бора - фторборат калия, фонового электролита - эквимольную смесь хлоридов калия и натрия.

Изобретение относится к способу производства хлора, гидроксида щелочного металла и водорода и устройству с компьютерным управлением для осуществления заявленного способа, при этом способ включает следующие стадии: (а) приготовление рассола путем растворения источника хлорида щелочного металла в воде; (b) удаление из рассола, полученного на стадии (а), щелочного осадка в присутствии пероксида водорода или в присутствии, самое большее, 5 мг/л активного хлора посредством фильтра из активированного угля и получение готового рассола; (с) обработка, по меньшей мере, части готового рассола, полученного на стадии (b), на стадии ионообмена; (d) обработка, по меньшей мере, части рассола, полученного на стадии (с), на стадии электролиза; (е) выделение, по меньшей мере, части хлора, гидроксида щелочного металла, водорода и рассола, полученных на стадии (d); (f) обработка, по меньшей мере, части рассола, полученного на стадии (е), на стадии обесхлоривания, осуществляемой в присутствии пероксида водорода; и (g) рециркулирование, по меньшей мере, части обесхлоренного рассола, полученного на стадии (f), на стадию (а).

Настоящее изобретение относится к системе и способу производства химической потенциальной энергии и может быть использовано в производстве эффективного топлива, которое можно было бы использовать в чистых энергетических процессах, при которых не образуются и не выделяются парниковые газы и другие загрязнители окружающей среды.

Изобретение относится к области химии. Согласно первому варианту для получения водорода железные стержни изолируют от стенок реактора 1 и подают на них высоковольтный потенциал от трансформатора Тесла 14.

Изобретение относится к технологическому оборудованию, предназначенному для использования в производстве озонаторных установок. Электрод озонаторной установки представляет собой полую цельнопаяную конструкцию, состоящую из двух одинаковых мембран с диэлектрическим барьером на внешней поверхности; внешнего и внутреннего проставочных колец, определяющих высоту электрода; теплообменной насадки, размещенной в полости электрода для повышения эффективности охлаждения его рабочих поверхностей при синтезе озона; штуцеров для подвода и отвода теплоносителя, диаметрально расположенных на внешнем кольце.

Изобретение относится к технологическим процессам обработки металлов, а более конкретно к устройствам для выполнения газопламенных работ типа пайки, сварки, резки металлов c использованием электрохимических способов получения гремучего газа для выполнения этих работ.

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и кислорода с установленными на них датчиками давления водорода и кислорода, электрически связанных с блоком управления, клапанов выдачи водорода и кислорода из установки, расположенных на линиях водорода и кислорода, каждый ресивер снабжен линией заправки воды, линией слива воды и датчиком количества воды, при этом на линиях заправки и слива воды установлены клапаны, а датчики количества воды и клапаны на линиях слива воды электрически связаны с блоком управления.

Изобретение относится к технологии электрохимических производств, в частности к конструкции электролизеров для получения водорода и озон-кислородной смеси, и может найти применение для нужд энергетики (охлаждение водородных генераторов на ТЭЦ, ГРЭС и АЭС), электроники (очистка поверхности полупроводниковых пластин).
Изобретение относится к медицине, а именно к эндокринологии и физиотерапии, и может быть использовано для лечения абдоминального ожирения. Для этого осуществляют криомассаж проблемных зон криопакетом объемом 300-500 мл при температуре -21--23°C со стабильной вибрацией по 5-10 с двукратно по 3-5 минут с паузой между циклами 1-2 минуты.

Изобретение относится к способу увеличения производительности разложения воды. Способ включает разложение воды под действием резонансного электромагнитного поля и характеризуется тем, что разложение воды происходит под действием двух резонансных контуров, в которых вектора напряженностей электрического поля первого контура и напряженности магнитного поля второго контура также как вектор напряженности электрического поля второго контура и вектор напряженности магнитного поля первого контура действуют на воду одновременно.

Изобретение относится к нефтехимической промышленности и плазмохимии и может быть использовано для плазменной обработки и утилизации отходов нефтепереработки. Жидкое углеводородное сырьёе 5 разлагают электрическим разрядом в разрядном устройстве, расположенном в вакуумной камере 6.

Изобретение относится к порошковой металлургии, в частности к получению наночастиц металлов. Предварительно подготовленную суспензию зародышевых наночастиц металла вводят в ростовую среду, содержащую водный раствор соединения металла концентрацией 10-5-10-3 М, восстанавливающий агент концентрацией 10-5-10-2 М, стабилизирующий агент концентрацией 10-3-1,0 М и термочувствительный агент концентрацией 0,1-10 мас.
Изобретение относится к электронному графеновому устройству. Гибкое и поддающееся растяжению, пропускающее свет электронное устройство содержит первый графеновый электрод, второй графеновый электрод, графеновый полупроводник и управляющий графеновый электрод, расположенный между первым и вторым графеновыми электродами и находящийся в контакте с графеновым полупроводником.

Тестовая структура состоит из основания, содержащего приповерхностный слой. Приповерхностный слой имеет рельефную ячеистую структуру с плотной упаковкой.

Изобретение относится к средствам для определения подлинности ценных бумаг и иной защищенной полиграфической продукции в различных спектральных диапазонах видимого, инфракрасного и ультрафиолетового света, отраженного, косо падающего и проходящего.

Изобретение относится к электрохимии наноуглеродных кластеров, в частности к получению в электрохимическом процессе фуллереновой пленки, осажденной на токопроводящих материалах (металлах, графите).

Изобретение относится к области фотолитографии, а именно к способу изготовления резистивных масок для нанолитографии. Способ включает восстановление серебра с образованием наночастиц серебра и последующую стимуляцию процесса термической полимеризации капролактама на поверхности полученных наночастиц с помощью лазерного возбуждения в них плазмонных колебаний.

Изобретение относится к области нанесения антифрикционных покрытий преимущественно на боковую поверхность рельсов железнодорожных путей и может быть также использовано в узлах трения различных машин.
Изобретение относится к нанотехнологии и может быть использовано для создания фотонных кристаллов, оптических фильтров, высокочувствительных сенсоров и микролазеров.
Изобретение может быть использовано в производстве плотной износостойкой керамики, твердых электролитов. Способ получения нанопорошка сложного оксида циркония, иттрия и титана включает приготовление исходного раствора солей нитратов, введение в него органической кислоты и титансодержащего соединения и последующую термообработку.

Изобретение относится к нанотехнологии и предназначено для использования при создании современных тонкопленочных полупроводниковых приборов и структур наноэлектроники. В способе получения слоя фторографена от объемного графита отделяют слой требуемой толщины и размещают его на подложке. Затем проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм. При этом используют подложку кремния. На ее рабочей поверхности предварительно может быть выращен слой окиси кремния. Фторирование проводят в водном растворе плавиковой кислоты с содержанием 3÷7% HF длительностью обработки до 30 минут, но не менее tcr, при котором меняется проводимость фторируемых слоев. Кроме того, при фторировании используют температуры до 60°C. В результате достигается повышение качества слоев фторографена, снижение дефектности, уменьшение длительности процесса, повышение экологичности. 5 з.п. ф-лы, 2 ил.
Наверх