Устройство доплеровского измерителя скорости на основе интерферометра фабри-перо с волоконным вводом излучения

Изобретение относится к измерителям скорости интерферометрическим методом по доплеровскому смещению длины волны света, отраженного от исследуемого объекта, с использованием интерферометра Фабри-Перо и может быть использовано для увеличения яркости интерференционной картины на щелевой диафрагме на выходе оптической системы в 2-10 раз при малом увеличении габаритов. Техническим результатом, обеспечиваемым заявляемым изобретением, является уменьшение габаритов оптической системы, возможность использовать передачу света по оптическому волокну и увеличение освещенности щелевой диафрагмы регистратора. Технический результат достигается тем, что устройство доплеровского измерителя скорости на основе интерферометра Фабри-Перо с волоконным вводом излучения, содержащее последовательно расположенные на одной оптической оси цилиндрическую линзу с положительным фокусным расстоянием, интерферометр Фабри-Перо, длиннофокусную строящую линзу в фокальной плоскости которой находятся щелевая диафрагма и детектор, содержит последовательно расположенные на одной оптической оси перед цилиндрической линзой с положительным фокусным расстоянием коллимирующую линзу и две цилиндрических линзы с отрицательным фокусным расстоянием. 4 ил.

 

Изобретение относится к измерителям скорости движения поверхности в газодинамических экспериментах интерферометрическим методом по доплеровскому смещению длины волны света, отраженного от исследуемого объекта, с использованием интерферометра Фабри-Перо и может быть использовано для увеличения яркости интерференционной картины на щелевой диафрагме на выходе оптической системы в 2-10 раз при малом увеличении габаритов.

Увеличение яркости интерференционной картины на щелевой диафрагме основано на изменении формы сечения круглого входного пучка света на эллиптическую, за счет чего происходит увеличение освещенности щелевой диафрагмы и попадание большего количества света на регистрирующие приборы, расположенные за диафрагмой. Изменение формы пучка света производится с сохранением формы интерферометрической картины, а значит не влияет на точность измерений. Сжатие круглого пучка света в эллиптический производится добавлением в оптическую схему измерителя скорости системы цилиндрических линз, уменьшающих по одной из осей расходимость луча света. При уменьшении расходимости луча, строящая изображение интерферометрических колец, линза сжимает пучок света по оси цилиндрических линз в пятно меньшего размера.

Известен способ увеличения освещенности выходной щелевой диафрагмы, используемый в системе измерения доплеровского смещения длины волны «Handbook for the Manybeam Velocimeter, Ted Strand, B-Division, LLNL, February 6, 2002», где в минимальную схему измерителя скорости с интерферометром Фабри-Перо, содержащую: коллимирующую линзу, интерферометр, строящую линзу (создает в фокусе изображение интерферометрических колец) и щелевую диафрагму, добавлена цилиндрическая линза. Данная цилиндрическая линза размывает круглое пятно света по одной из осей, создавая вертикальную полосу с шириной, равной исходному пятну. Для получения узких световых полос на входе использовались оптические волокна малого диаметра (до 200 мкм).

Недостатками этого устройства являются неравномерность яркости конечного пятна света, необходимость использования оптических волокон малого диаметра и увеличение габаритов оптической системы.

Наиболее близким техническим решением к предлагаемому (прототип) является устройство спектрометра Фабри-Перо для определения пространственно различимых спектральных компонентов протяженного источника («Патент США №5801831, МПК G01B 9/02, 1998 г.»), содержащее фокусирующую (строящую) линзу, детектор, эталон Фабри-Перо, щелевую диафрагму и две цилиндрических линзы с положительным фокусным расстоянием. В прототипе исследуемый свет, поступающий в оптическую систему по воздуху, сжимают по одной из осей телескопической системой из цилиндрических линз, увеличивая его расходимость, что в фокусе строящей линзы дает растяжение пятна света в плоскости цилиндрических линз.

Недостатками этого прототипа являются большие габариты телескопической системы из цилиндрических линз (оптическая система), невозможность использования оптического волокна для передачи света и большие размеры выходного пятна света, и, как следствие, малая освещенность детектора.

Техническим результатом, обеспечиваемым заявляемым изобретением, является уменьшение габаритов оптической системы, возможность использовать передачу света по оптическому волокну и увеличение освещенности щелевой диафрагмы регистратора.

Технический результат достигается тем, что устройство доплеровского измерителя скорости на основе интерферометра Фабри-Перо с волоконным вводом излучения, содержащее последовательно расположенные на одной оптической оси цилиндрическую линзу с положительным фокусным расстоянием, интерферометр Фабри-Перо, длиннофокусную строящую линзу в фокальной плоскости которой находятся щелевая диафрагма и детектор, содержит последовательно расположенные на одной оптической оси перед цилиндрической линзой с положительным фокусным расстоянием коллимирующую линзу и две цилиндрических линзы с отрицательным фокусным расстоянием.

Свет вводится в оптическую систему по волокну большого диаметра (до 800 мкм), а затем после коллимирующей линзы пучок света растягивают по одной из осей компактной системой отрицательных и положительной цилиндрических линз, уменьшая его расходимость, что дает в фокусе строящей линзы эллиптическое пятно света, и большую освещенность отверстия щелевой диафрагмы.

Для того чтобы сконцентрировать луч в малое пятно, необходимо получить луч света с малой угловой расходимостью, т.е. предварительно этот луч с помощью оптики увеличить в диаметре. Это является одним из следствий теоремы Лиувилля. Таким образом, уменьшение расходимости дает сжатие пятна света по одной из осей относительно круглого пятна, которое получается при извлечении системы цилиндрических линз. Отрицательные цилиндрические линзы являются аналогом линзы Барлоу. Количество отрицательных линз зависит от диаметра пучка света и от требуемой формы конечного пучка. Чем более узкий должен быть на выходе системы эллипс света, тем более короткофокусной должна быть отрицательная цилиндрическая линза. Но при малых фокусах линза имеет малые радиусы кривизны, а следовательно, имеет ограничения на апертуру. Поэтому для широких пучков света или для большего сжатия одну короткофокусную линзу можно заменить системой из нескольких линз с большим фокусным расстоянием. Система из отрицательных и положительной линз компактней, чем традиционная телескопическая система, так как фокус длиннофокусной линзы телескопа расположен не между линзами, а перед ними. Разница в габаритах больше фокусного расстояния первой линзы. Возможна установка вместо коллимирующей линзы сразу за волокном двух взаимно перпендикулярных цилиндрических линз разного фокуса, обеспечивающих нужную форму пятна света. Но наличие коллимирующей линзы обеспечивает в фокусе строящей линзы до установки цилиндрических линз засветку интерференционной картины круглым пятном света. Широкое пятно света при начальной юстировке оптической системы значительно облегчает наведение на нужные участки интерференционной картины. После фокусировки устанавливаются цилиндрические линзы, создающие на выходе эллипс нужной толщины. Наличие коллимирующей линзы фактически увеличивает габариты системы только на расстояние от нее до первой цилиндрической линзы.

Передача света от исследуемого объекта по волокну позволяет располагать измеритель скорости на больших расстояниях от места проведения эксперимента, а возможность использования оптического волокна большого диаметра в несколько раз увеличивает количество собранного отраженного от исследуемого объекта света. Размер выходного пятна света в направлении, перпендикулярном плоскости цилиндрических линз, равен отношению фокусов коллимирующей и строящей линзы, умноженному на диаметр входного оптического волокна. Размер пятна света подбирается в зависимости от конечного регистратора.

Единственным ограничением на толщину конечного пятна света, настраиваемую цилиндрическими линзами, является величина эффективной области интерферометра Фабри-Перо, так как, уменьшая расходимость света, приходится увеличивать диаметр пучка.

На фиг.1 приведены две проекции блок-схемы одного из возможных вариантов оптической системы компактного измерителя скорости, в верхней части изображен вид сверху, а в нижней - вид сбоку, где: 1 - выход волоконно-оптического кабеля; 2 - коллимирующая линза; 3, 4 - цилиндрические линзы с отрицательным фокусным расстоянием; 5 - цилиндрическая линза с положительным фокусным расстоянием; 6 - интерферометр Фабри-Перо; 7 - длиннофокусная линза, строящая изображение интерференционных колец; 8 - щелевая диафрагма; 9 - регистратор положения интерференционных максимумов;

На фиг.2 показано выходное изображение оптической системы компактного измерителя скорости в фокусе строящей линзы без цилиндрических линз и интерферометра, на фиг.3 показано выходное изображение оптической системы компактного измерителя скорости в фокусе строящей линзы без цилиндрических линз (схематично показана щелевая диафрагма регистратора), на фиг.4 показано выходное изображение оптической системы измерителя скорости на основе интерферометра Фабри-Перо с расстоянием между зеркалами 100 мм, коллимирующей линзой с фокусным расстоянием 100 мм, строящей линзой с фокусным расстоянием 1000 мм и цилиндрическими линзами с фокусными расстояниями минус 200, минус 150, 300 мм и диаметром оптического волокна 300 мкм. Все изображения получены моделированием в программе ZEMAX.

Устройство содержит последовательно расположенные вдоль одной оптической оси волоконный кабель 1, коллимирующую линзу 2, две цилиндрические линзы с отрицательным фокусным расстоянием 3 и 4, цилиндрическую линзу с положительным фокусным расстоянием 5, интерферометр Фабри-Перо 6, строящую линзу 7, щелевую диафрагму 8 и регистратор 9.

Устройство работает следующим образом: коллимирующая линза 2 преобразует расходящийся пучок света, идущий из волоконно-оптического кабеля 1, в параллельный. Цилиндрическая линза с отрицательным малым фокусом 3 преобразует параллельный пучок света в расходящийся по одной оси. Вторая цилиндрическая линза с отрицательным малым фокусом 4 увеличивает расходимость пучка света. Цилиндрическая линза с положительным фокусом 5 преобразует расходящийся пучок света снова в коллинеарный, но эллиптической формы, увеличенный по одной оси. На интерферометре Фабри-Перо 6 свет многократно отражается от его зеркал, создавая угловое распределение, определяемое интерференцией. Длиннофокусная линза 7 фокусирует параллельный пучок, создавая в фокальной плоскости изображение концентрических интерференционных колец, частично освещенных эллиптическим пятном света (Фиг.4). Щелевая диафрагма 8 вырезает из освещенной области кольцевой интерферометрической картины вертикальную систему точек. Вследствие эллиптической формы освещенной области интерферометрической картины в щелевую диафрагму попадает большая часть падающего на диафрагму света. Регистратор 9 используется в качестве детектора, фиксирующего вертикальное положение световых точек, для сравнения с положением точек при измененной длине волны, когда диаметры интерференционных колец изменятся.

Устройство доплеровского измерителя скорости на основе интерферометра Фабри-Перо с волоконным вводом излучения, содержащее последовательно расположенные на одной оптической оси цилиндрическую линзу с положительным фокусным расстоянием, интерферометр Фабри-Перо, длиннофокусную строящую линзу, в фокальной плоскости которой находятся щелевая диафрагма и детектор, отличающееся тем, что содержит последовательно расположенные на одной оптической оси перед цилиндрической линзой с положительным фокусным расстоянием коллимирующую линзу и две цилиндрических линзы с отрицательным фокусным расстоянием.



 

Похожие патенты:

Изобретение относится к оптике, в частности к методам определения скорости быстродвижущихся в пространстве тел. .

Изобретение относится к области измерительной техники, в частности к оптическим измерителям скорости, например, автомобиля, на котором закреплен измеритель, относительно дороги.

Изобретение относится к приборам для определения аэродинамических характеристик перемещающихся тел путем непосредственного измерения скорости этих тел в двух точках.

Изобретение относится к области измерительной техники и приборостроения и может найти применение в метрологии, в измерительных системах и системах управления различными объектами.

Изобретение относится к метрологии, в частности к устройствам для воспроизведения угловой скорости (мерам угловой скорости). .

Изобретение относится к области радиотехники и касается акустооптического интерферометра. Акустооптический интерферометр состоит из антенной решетки, источника когерентного излучения, коллиматора, акустооптического модулятора с четырьмя пьезопреобразователями, фурье-линзы, матричного фотоприемника и цифрового процессора.

Изобретение относится к формированию изображения с использованием оптической когерентной томографии в Фурье-области. Устройство содержит первый переключающий блок 17, осуществляющий переключение между первым состоянием, в котором обратный луч 12 объединяется с опорным лучом (состояние, в котором обратный луч 12 проводится к объединяющему блоку 22), и вторым состоянием, отличающимся от первого состояния (состоянием, в котором путь луча для обратного луча 12 блокируется или изменяется).

Изображающий микроэллипсометр состоит из источника когерентного освещения 1, пространственного фильтра 2, управляемой полуволновой пластинки 3, коллиматора 4, неполяризующего светоделителя 5, по крайней мере, одной ловушки-поглотителя 6, микрообъектива 7 с фронтальной линзой 8, расположенного под микрообъективом предметного столика 9 с размещенным на нем объектом 10, интерференционного блока 11 формирования изображения.

Способ реализуют посредством двухлучевого интерферометра с оптической системой для формирования опорного и объектного пучков, системой зеркал, установленных вдоль опорной и объектной ветвей, рабочей зоной, проекционным объективом и узлом регистрации голограммы.

Изобретение может быть использовано при измерении малых разностей хода (менее 0,1λ длины волны) слабых оптических неоднородностей в прозрачных средах, например, при обтекании тел в потоках малой плотности, распыливании топлива из форсунок в разреженное пространство, изучении процессов смешения, воспламенения и горения топлив, обнаружении диффузных пограничных слоев.

Изобретение может быть использовано для регистрации спектров источников излучения, в том числе для регистрации малых атмосферных примесей с подвижных носителей. Фурье-спектрометр построен на основе двухлучевого интерферометра с поперечным сдвигом интерферирующих лучей и содержит расположенные по ходу луча входную апертуру, входной объектив, двухлучевой интерферометр с поперечным сдвигом интерферирующих лучей, Фурье-объектив и многоэлементное матричное фотоприемное устройство.

Изобретение относится к оптико-электронному приборостроению и может быть использовано в конструкциях волоконно-оптических преобразователей физических величин, предусматривающих интерференционную регистрацию измеряемого сигнала.

Изобретение относится к устройству для ориентации объектов в пространстве на основе измерения анизотропии пространства скоростей электромагнитного излучения в движущейся среде.

Изобретение может быть использовано для получения изображения микрорельефа объекта, имеющего большую площадь поверхности. Устройство включает платформу, на которой расположен объект и которая способна перемещаться на двух основных и одной дополнительной аэростатических опорах вдоль первой горизонтальной оси, и портал, на котором установлен фазовый микроскоп и который способен перемещаться на двух основных и одной дополнительной аэростатических опорах вдоль второй горизонтальной оси, перпендикулярной первой горизонтальной оси.

Изобретение относится к оптике, к оптическим устройствам, основанным на использовании явлений полного внутреннего отражения и интерференции световых потоков, в том числе, устройствам оптических фильтров, применяемых в научных исследованиях и технике для спектрального анализа и монохроматизации света.

Устройство содержит закрепленное на основании (1) устройство (2) для регулировки и фиксации его положения относительно поверхности (12) объекта (13), соединенный с ним цилиндрический корпус (4), во внутренней полости (5) которого установлены источник (6) когерентного оптического излучения и фокусирующая излучение (31) на поверхность (12) объекта (13) оптическая система (8) с устройствами для регулировки и фиксации их положения (7) и (9), опорную балку (14), выполненную составной из однотипных цилиндрических элементов (28), светонепроницаемый защитный корпус (19) с окном (20), установленный с возможностью перемещения вдоль опорной балки (14), во внутренней полости (21) которого установлены светоделитель (22) и отражатель (23), жестко скрепленные между собой, и экран с устройствами для регулировки и фиксации их положения (24) и (26). На концах цилиндрического корпуса (4) и опорной балки (14), обращенных к поверхности (12) объекта (13), установлен поворотный шарнир (10), а между ними установлено устройство для регулировки и фиксации положения (30) опорной балки (14) относительно цилиндрического корпуса (4). Технический результат - снижение трудоемкости подготовки к проведению измерений и повышение точности результатов измерений. 1 ил.
Наверх