Способ сравнительной оценки надежности партий полупроводниковых изделий



Способ сравнительной оценки надежности партий полупроводниковых изделий

 


Владельцы патента RU 2511617:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" (RU)

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий ППИ (транзисторов, интегральных схем (ИС) и т.д.) и может быть использовано для сравнительной оценки надежности партий ППИ как в процессе производства, так и при входном контроле на предприятии-изготовителе радиоэлектронной аппаратуры. Сущность изобретения заключается в том, что на произвольных одинаковых выборках из партий полупроводниковых изделий (не менее 25 штук от каждой партии) проводят измерение электрического информативного параметра до и после воздействия пятью импульсами ЭСР обеих полярностей, потенциалом, допустимым по техническим условиям, затем для последнего измерения вычисляют коэффициент конструктивно-технологического запаса для верхней и нижней норм параметра, далее находят среднее значение изменения величины информативного параметра. По значениям коэффициентов запаса и средних значений величин изменения информативного параметра оценивают сравнительную надежность двух партий. Технический результат: повышение функциональных возможностей способа.

 

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий ППИ (транзисторов, интегральных схем (ИС) и т.д.) и может быть использовано для сравнительной оценки надежности партий ППИ как в процессе производства, так и при входном контроле на предприятии-изготовителе радиоэлектронной аппаратуры.

Известен способ сравнительной оценки надежности партий ИС [1], в соответствии с которым на произвольных выборках интегральных схем из партий проводят измерение значений динамических параметров до и после воздействия различными по полярности напряжениям пяти электростатических разрядов, предельно допустимом по техническим условиям, и температурного отжига при допустимой максимальной температуре кристалла, а электростатические разряды подают на каждую из пар выводов интегральной схемы: вход - общая точка, выход - общая точка, питание - общая точка, вход - выход, количество циклов воздействия электростатических разрядов и температурного отжига составляет не менее трех, по количеству отказавших интегральных схем делают вывод о сравнительной надежности партий интегральных схем.

Недостаток данного способа - испытание является слишком трудоемким. Изобретение направлено на устранение недостатка и повышение функциональных возможностей способа.

Предложенный способ сравнительной оценки надежности партий ППИ по надежности основывается на измерении электрического информативного параметра X до и после воздействия пятью импульсами ЭСР обеих полярностей потенциалом, допустимым по техническим условиям, на выводы ИС в последовательности, оговариваемой в технических условиях на изделие, и сравнении двух величин: коэффициентов конструктивно-технологического запаса КВ для верхнего или КН для нижнего значения нормы информативного параметра и среднего значения изменения величины информативного параметра АХ после воздействия ЭСР.

Способ осуществляется следующим образом: от каждой партии ПЛИ (количество партий не ограничено) методом случайной выборки отбирают одинаковое количество изделий (не менее 25 от каждой партии) и измеряют значении информативного параметра. Затем проводят испытание изделий на чувствительность к ЭСР путем воздействия пятью ЭСР обеих полярностей напряжением, предельно допустимым по техническим условиям, на различные пары выводов. Для транзисторов это выводы: эмиттер-база; коллектор-база. Подача разрядов на выводы ИС осуществляется в последовательности, приведенной в таблице 1 [2].

Таблица 1
№ воздействия Наименование выводов ИС
цифровых аналоговых
1 Вход - общая точка Вход - общая точка
2 Выход - общая точка Вход - выход
3 Вход - выход Выход - общая точка
4 Питание - общая точка Питание - общая точка

У каждого изделия вновь измеряют значение информативного параметра в нормальных условиях (при давлении 760 мм рт.ст. и температуре 15-30°C), затем для последнего измерения (т.е. для значений параметра после воздействия ЭСР) вычисляют коэффициент конструктивно-технологического запаса по формуле для верхнего значения нормы параметра, или по формуле для нижнего значения нормы параметра, где ХВ, ТУ - верхнее значение нормы, оговоренное в технических условиях, ХН, ТУ - нижнее значение нормы, оговоренное в технических условиях, ХВ - верхнее значение параметра, определенное экспериментально, ХН - нижнее значение параметра, определенное экспериментально, Х ¯ - среднее значение параметра в выборке [3], и значение изменения информативного параметра для каждого изделия в выборке по формуле ΔXi=|XiiЭСР|, где Хi - значение величины информативного параметра до воздействия ЭСР, ХiЭСР - значение величины информативного параметра после воздействия пятью импульсами ЭСР различной полярности, далее находят среднее значение изменения величины информативного параметра АХ для выборки. По значениям коэффициентов запаса и средних значений величин изменения информативного параметра оценивают сравнительную надежность двух партий.

Способ был опробован на выборках из двух партий цифровых интегральных схем типа 134ЛБ1. От каждой партии было отобрано методом случайной выборки по 25 схем и измерены значения выходного напряжения низкого уровня UOL каждой ИС. После воздействия пятью ЭСР обеих полярностей, величиной 200 В, допустимой техническими условиями, на каждую пару выводов, оговоренных в таблице 1, было вновь измерено значение выходного напряжения низкого уровня UOL каждой ИС. Измеренные значения UOL, а также значения изменения величины после ЭСР ΔUOL представлены в таблице 2.

Таблица 2
Партия 1 Партия 2 Партия 1 Партия 2
№ ИС UOL, В UOL, В
Начало измерений После ЭСР Начало измерений После ЭСР ΔUOL, В ΔUOL, В
1 2 3 4 5 6 7
1 0,19 0,18 0,14 0,11 0,01 0,03
2 0,13 0,12 0,12 0,13 0,01 0,01
3 0,17 0,17 0,12 0,14 0 0,02
4 0,16 0,16 0,15 0,12 0 0,03
5 0,17 0,16 0,16 0,14 0,01 0,02
6 0,16 0,16 0,15 0,14 0 0,01
7 0,18 0,17 0,15 0,14 0,01 0,01
8 0,19 0,18 0,15 0,21 0,01 0,06
9 0,18 0,16 0,17 0,16 0,02 0,01
10 0,14 0,13 0,22 0,16 0,01 0,06
11 0,15 0,11 0,15 0,16 0,04 0,01
12 0,18 0,17 0,17 0,14 0,01 0,03
13 0,19 0,18 0,19 0,20 0,01 0,01
14 0,17 0,16 0,21 0,18 0,01 0,03
15 0,17 0,17 0,19 0,17 0 0,02
16 0,15 0,14 0,18 0,15 0,01 0,03
17 0,14 0,14 0,13 0,12 0 0,01
18 0,14 0,13 0,15 0,14 0,01 0,01
19 0,16 0,15 0,23 0,14 0,01 0,09
20 0,17 0,15 0,16 0,21 0,02 0,05
21 0,18 0,17 0,16 0,15 0,01 0,01
22 0,14 0,14 0,16 0,14 0 0,02
23 0,18 0,18 0,15 0,13 0 0,02
24 0,18 0,16 0,14 0,14 0,02 0
25 0,17 0,16 0,19 0,17 0,01 0,02
U O L ¯ 0,166 0,158 0,164 0,152 0,0096 0,0248

Из таблицы 2 выбраны наибольшие значения UOL для каждой выборки и посчитаны средние значения этого параметра. Значение параметра, указанное в технических условиях, одинаково для обеих выборок и равно UOLTУ≤0,3 В. Далее были посчитаны коэффициенты запаса для верхней нормы используемого параметра после воздействия ЭСР и средние значения изменения параметра UOL для каждой выборки. Коэффициенты запаса и средние значения изменения величины UOL равны КВ1ЭСР=4,58 и ΔUOL1=0,0096 для первой выборки и КВ2ЭСР=1,25 и ΔUOL2=0,0248 для второй выборки. Из полученного результата можно сделать вывод, что первая партия более надежна, чем вторая, так как коэффициент запаса после воздействия ЭСР для выборки из первой партии больше, чем для выборки из второй партии, а среднее значение изменения величины информативного параметра для выборки из первой партии меньше, чем для выборки из второй партии.

Источники информации

1. Патент РФ №2386975 G01R 31/26, опубл. 20.04.2010.

2. Горлов М.И., Ануфриев А.В., Воронцов И.В. Воздействие электростатических зарядов на изделия полупроводниковой электроники и радиоэлектронной аппаратуры // Воронеж: Воронежский государственный университет. 1987. - 160 с.

3. Горлов М.И., Ануфриев Л.И. Обеспечение и повышение надежности полупроводниковых изделий в процессе серийного производства // Мн.: Бестпринт, 2003. - 202 с.

Способ сравнительной оценки надежности партий полупроводниковых изделий, в соответствии с которым на произвольных одинаковых выборках (не менее 25 изделий) из партий проводят измерение электрического информативного параметра до и после воздействия пятью импульсами электростатического разряда обеих полярностей, отличающийся тем, что после воздействия электростатического разряда вычисляют коэффициент конструктивно-технологического запаса для верхней или нижней норм параметра и среднее значение изменения информативного параметра, по значениям коэффициента конструктивно-технологического запаса и среднего значения изменения параметра делают вывод о сравнительной надежности партий полупроводниковых изделий.



 

Похожие патенты:

Изобретение относится к измерительной технике на СВЧ. Устройство для измерения полного сопротивления и шумовых параметров двухполюсника на СВЧ, содержащее измеритель частотных характеристик и интегральную схему в составе центральной линии передачи, отрезка линии передачи, соединенного с центральной линией передачи, электрических ключей - полупроводниковых приборов, управляемых постоянными напряжениями, измеритель частотных характеристик соединен с одним концом центральной линии передачи, другой ее конец - с измеряемым двухполюсником.

Изобретение относится к технике измерения теплофизических параметров полупроводниковых диодов. Способ измерения теплового импеданса полупроводниковых диодов, заключающийся в том, что через полупроводниковый диод пропускают последовательность импульсов греющего тока, период следования которых постоянный, в паузах между ними измеряют температурочувствительный параметр - прямое падение напряжения на полупроводниковом диоде при малом измерительном токе - и определяют изменение температуры р-n-перехода.

Изобретение относится к микроэлектронике, а именно к обеспечению качества и надежности полупроводниковых изделий (ПЛИ), в частности транзисторов, и может быть использовано как на этапе производства, так и на этапе применения.

Изобретение относится к измерительной технике, в частности к способам тестирования параметров планарных полупроводниковых светодиодных гетероструктур (ППСГ) на основе GaN.

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с перестраиваемыми параметрами, вход которой соединен с генератором шума посредством центрального проводника в виде отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума.

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с элементами с перестраиваемыми параметрами, вход которой соединен с генератором шума отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума.

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности интегральных схем (ИС), и может быть использовано для сравнительной оценки надежности партий ИС как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности транзисторов, и может быть использовано для разделения транзисторов по надежности в процессе производства, а также на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий (ПИИ), и может быть использовано для сравнительной оценки надежности партий НИИ как на этапе производства, так и на входном контроле на предприятиях - изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности полупроводниковых изделий (ППИ) (транзисторов и интегральных схем), и может быть использовано для обеспечения повышенной надежности партий изделий как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности полупроводниковых изделий (ППИ) (транзисторов и интегральных схем), и может быть использовано для обеспечения повышенной надежности партий изделий как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры. Сущность изобретения заключается в том, что проводят измерения информативного электрического параметра или параметров при нормальной температуре, после 100 ч электротермотренировки в режиме проведения испытаний на безотказность по техническим условиям, после проведения воздействия электростатическим разрядом допустимым напряжением, указанным в технических условиях, по пяти разрядам в обоих направлениях и затем проведение температурного отжига при максимально допустимой температуре по ТУ в течение 2-4 ч. По результатам испытаний и измерений определяют для каждого изделия коэффициент К, по которому определяется изделие пониженной надежности. Технический результат: повышение достоверности и расширение функциональных возможностей способа отбраковки полупроводниковых изделий пониженного уровня надежности качества из партии изделий повышенной надежности.

Способ разделения полупроводниковых изделий по надежности заключается в том, что на партии полупроводниковых изделий измеряют интенсивность шума на двух частотах 200 Гц и 1000 Гц. Вычисляют показатель формы спектра шума γ по формуле: , где и - квадрат эффективного значения шума соответственно на частотах f1 и f2, проводят воздействие рентгеновским облучением дозой, допустимой по техническим условиям, вновь измеряют интенсивность шума и вычисляют показатель формы спектра γ2. По величине коэффициента M, равного M=γ2/γ1, партию изделий разделяют на надежные и потенциально ненадежные изделия. Технический результат - повышение достоверности способа. 1 табл.

Изобретение относится к измерению тепловых параметров компонентов силовой электроники. Сущность: прибор нагревают путем пропускания через него тока произвольной формы в открытом состоянии. В процессе нагрева в моменты времени прерывают протекание греющего тока и, пропуская через прибор измерительный ток, измеряют и запоминают значения термочувствительного параметра и температуры корпуса. Периодически измеряют и запоминают значения греющего тока и вызываемого им падения напряжения на приборе. Вычисляют среднюю мощность, выделяемую прибором в интервале времени. С момента времени до момента времени сравнивают вычисленную среднюю мощность потерь на n-м интервале измерения с предварительно установленной максимально допустимой для прибора рассеиваемой мощностью. Когда значение меньше, равно или больше PMAX, соответственно, увеличивают, оставляют неизменным или уменьшают среднее значение греющего тока. По достижении температурой корпуса прибора заданного максимума в момент полностью прерывают протекание греющего тока. Через прибор пропускают измерительный ток и измеряют и запоминают значение термочувствительного параметра. В режиме естественного охлаждения по достижении термодинамического равновесия в момент времени измеряют и запоминают значения термочувствительного параметра и температуры корпуса прибора. Рассчитывают тепловое и переходное тепловое сопротивления переход-корпус. Технический результат: повышение точности, снижение временных затрат. 1 ил.

Изобретение относится к измерительной технике. Сущность: способ измерения шума узлов фотоприемного устройства (ФПУ) включает измерение напряжения шума U ш1 с выключенным напряжением питания ФПУ, измерение напряжения шума U ш2 с включенным напряжением питания ФПУ и заданным временем накопления ФПУ, расчет напряжения шума ФПУ U ш по формуле: U ш = U ш 2 2 − U ш 1 2 . Дополнительно измеряют напряжение шума Uш3 с включенным напряжением питания и нулевым временем накопления ФПУ и рассчитывают уровень шума матрицы фоточувствительных элементов (МФЧЭ) U шМФЧЭ и большой интегральной схемы (БИС) U шБИС по формулам: U ш   М Ф Ч Э = U ш 2 2 − U ш 3 2 , U ш   Б И С = U ш 3 2 − U ш 1 2 . Технический результат - раздельное измерение шума МФЧЭ и БИС. 3 ил., 1 табл.

Изобретение относится к контролю качества и надежности интегральных схем (ИС), как логических, так и аналоговых, и может быть использовано как в процессе производства, так и при входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры. Сущность: на представительной выборке ИС проводят измерения электрического информативного параметра при трех напряжениях питания: критическом, номинальном и максимально допустимом по ТУ. Находят коэффициент, характеризующий надежность ИС: , где A U м а к с , A U н о м , A U К Н П - значения электрических информативных параметров соответственно при допустимом, номинальном и критическом напряжениях питания. Технический результат: расширение функциональных возможностей. 1 табл.

Изобретение относится к электротехнике, а именно к способам обеспечения качества и надежности интегральных схем (ИС) как логических, так и аналоговых. Сущность изобретения заключается в том, что на представительной выборке проводят измерение критического напряжения питания (КНП) до и после электротермотренировки (ЭТТ) продолжительностью до 100 ч и после термического отжига продолжительностью 4-10 ч при температуре, максимально допустимой для данного типа ИС, затем находят коэффициент М и по его значению разделяют ИС по надежности. M = Е К Р Э Т Т − Е К Р Н А Ч Е К Р Э Т Т − Е К Р о т ж , где Е К Р Н А Ч ,   Е К Р Э Т Т ,     Е К Р о т ж - значения КНП до ЭТТ, после ЭТТ и после отжига соответственно. Предложенный способ позволяет снизить риск повреждения испытуемых схем при воздействии на них внешних испытательных факторов.

Изобретение относится к технике измерения предельных параметров мощных биполярных транзисторов и может использоваться на входном и выходном контроле их качества. Способ основан на использовании известного эффекта резкого изменения крутизны зависимости напряжения на эмиттерном переходе при постоянном эмиттерном токе от коллекторного напряжения UЭБ(UK). Контролируемый транзистор включается по схеме с общей базой, задается постоянный эмиттерный ток, на коллектор контролируемого транзистора подается сумма линейно нарастающего напряжения, не превышающего предельно допустимого значения для данного типа транзисторов при заданном токе, и низкочастотного синусоидального напряжения с малой амплитудой, измеряют амплитуду U ˜ Э Б ( U К 0 ) , U ˜ Э Б ( U К 1 ) , U ˜ Э Б ( U К 2 ) переменной составляющей напряжения на эмиттере контролируемого транзистора при трех значениях напряжения UK0, UКЛ1, UК2 на коллекторе контролируемого транзистора соответственно и искомое напряжение локализации вычисляют по формуле U К Л = U К 2 − m U К 1 1 − m ,   где , , . При этом для измерения крутизны зависимости UЭБ(UK) используется малый переменный сигнал, позволяющий повысить точность измерения крутизны указанной зависимости. Технический результат заключается в исключении опасных запредельных воздействий на контролируемый прибор и определении напряжения локализации тока мощных ВЧ и СВЧ биполярных транзисторов без введения контролируемого транзистора в режим «горячего пятна». 3 ил.

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий ППИ (транзисторов и интегральных схем), и может быть использовано для сравнительной оценки надежности партий ППИ как на этапе производства, так и на входном контроле на предприятии - изготовителе радиоаппаратуры. Способ заключается в том, что на произвольных одинаковых выборках из партий производят измерение квадрата напряжения шума U ш 2 ¯ на частоте до 200 Гц до и после воздействия не менее чем пятью импульсами электростатического разряда обеих полярностей потенциалом, предельно допустимым по техническим условиям. Измерения проводят по выводам «эмиттер - база» транзисторов и «вход - общая точка» интегральных схем. Затем вычисляют значение коэффициента K = U ш э с р 2 ¯ / U ш н 2 ¯ , где U ш н 2 ¯ и U ¯ ш э с р 2 - значения квадрата напряжения шума до и после воздействия ЭСР, и по средним значениям коэффициента K для выборки сравнивают партии изделий. Технический результат заключается в расширении функциональных возможностей.

Изобретение относится к полупроводниковой электронике, а именно к методам измерения эксплуатационных параметров полупроводниковых источников света, и может быть использовано в их производстве, как для отбраковки потенциально ненадежных источников света, так и для контроля соблюдения режимов выполнения сборочных операций. Для обеспечения конкурентоспособности с люминесцентными источниками света полупроводниковые источники света должны иметь высокую долговечность, не менее 100000 часов. Это достигается за счет совершенствования конструкции и обеспечения оптимального теплового режима кристалла и люминофорного покрытия. Поэтому важной становится задача определения не только средней температуры кристалла, но и неравномерности распределения температуры в конструкции. Для этой цели предлагается способ бесконтактного определения неравномерности температурного поля в полупроводниковых источниках света, заключающийся в измерении температуры в контролируемых точках конструкции источника, причем функции датчиков температуры выполняют сами элементы конструкции источника: p-n-переход кристалла и люминофорное покрытие, а в качестве термочувствительного параметра используюется ширина спектра излучения на уровне 0,5 от их максимального значения. 1 табл., 1 ил.
Изобретение относится к полупроводниковой технике, а именно к способам отбраковки мощных светодиодов на основе InGaN/GaN, излучающих в видимом диапазоне длин волн. Способ отбраковки мощных светодиодов на основе InGaN/GaN включает проведение измерений при комнатной температуре в любой последовательности падений напряжения в прямом и обратном направлениях и плотностей тока на светодиодах, отбраковку по определенным критериям, последующее проведение старения светодиодов при определенных условиях, повторное проведение упомянутых измерений при первоначальных условиях, кроме одного, с окончательной отбраковкой ненадежных светодиодов. Изобретение обеспечивает повышение точности отбраковки и расширение области применения светодиодов за счет обеспечения отбраковки ненадежных светодиодов со сроком службы меньше 50000 часов любых производителей без долговременных испытаний.
Наверх