Устройство измерения заданного расстояния между объектами

Изобретение относится к области вооружений, в частности к неконтактным взрывателям реактивных боеприпасов. Устройство содержит два и более приемоизлучающих канала, размещенные вокруг продольной оси устройства, каждый из которых содержит электронный блок, импульсный источник оптического излучения и фотоприемник, соединенные с электронным блоком. Источник оптического излучения и фотоприемник, образующие приемоизлучающий канал, расположены преимущественно вплотную друг к другу. Оптические оси импульсного источника оптического излучения и фотоприемника расположены параллельно и направлены под углом < 90° к продольной оси, совпадающей с вектором скорости движения объекта, на котором установлено устройство. Необходимое количество излучателей определено из соотношения: n ≥ 2π/(α+b/R), где: n - количество излучателей; α - угол расхождения пучка излучения; b - минимальный габаритный размер встречного объекта; R - заданное измеряемое расстояние между объектами. Технический результат - повышение точности определения момента достижения заданного расстояния между объектами при их сближении, повышение помехозащищенности, уменьшение габаритно-весовых характеристик и энергопотребления. 1 ил.

 

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях реактивных боеприпасов для определения оптимального момента подрыва боеприпаса.

Известно бортовое устройство с лазерным блоком для обнаружения целей (патент США №5138947, МПК: F42С 13/02, опубл. 18.08.1992), состоящее из источника оптического излучения, коллимирующей линзы, двух зеркал и фотоприемника. Зеркала установлены на подвижную панель, которая фиксируется в двух положениях. Одно из зеркал плоское и выполнено в форме уголкового отражателя. Второе зеркало выполнено фокусирующим. В первом положении панели оба зеркала находятся внутри корпуса устройства и лазерное излучение не выходит наружу. Во втором положении панели излучение источника, установленного в фокальной плоскости коллимирующей линзы, отражается от первого зеркала и выводится наружу в направлении "вперед и вбок," относительно направления движения боеприпаса. Оптическое излучение от поверхности цели отражается вторым зеркалом на фотоприемник, установленный в фокусе этого зеркала. Фотоприемник преобразует оптический сигнал в электрический и производит его дальнейшую обработку.

Недостатком данного устройства является низкая вероятность обнаружения малогабаритных целей и, следовательно, низкая надежность срабатывания по целям такого типа, а также недостаточная защищенность от оптических помех. К недостаткам следует отнести и невысокую точность установки заданной дальности срабатывания, поскольку пересечение осей диаграммы направленности источника оптического излучения и диаграммы чувствительности фотоприемника на определенном расстоянии от боеприпаса обеспечивается только технологически, и значительное ухудшение аэродинамических параметров боеприпаса при включении данного устройства, и, в результате, невозможность его использования при высоких скоростях движения боеприпаса.

Известен оптический блок (патент РФ №2151372, МПК: F42С 13/02, опубл. 27.03.2005), состоящий из источника оптического излучения, установленного в фокальной плоскости коллимирующей линзы, системы светоделения, установленной между коллимирующей линзой и защитным стеклом, фокусирующей линзы, фотоприемниками и светофильтра, установленного между фокусирующей линзой и фотоприемниками.

Указанный блок работает следующим образом.

Оптическое излучение источника, сколлимированное линзой, делится системой светоделения на два одинаковых пучка и через защитное стекло выводится наружу боеприпаса. При наличии цели на дистанции срабатывания датчика, излучение отражается от ее поверхности и через фокусирующую линзу и светофильтр попадает на фотоприемник, который преобразует оптический сигнал в электрический и производит его дальнейшую обработку. Формируемые два пучка оптического излучения зондируют каждый свой сектор пространства вокруг боеприпаса, а фокусирующая линза и фотоприемники формируют две приемные диаграммы чувствительности оптического блока.

Недостатками указанного блока является значительные габаритные размеры из-за необходимости обеспечения базы, расстояния между приемником и излучателем. Уменьшение базы снижает точность определения дистанции. Система светоделения указанного блока требует юстировки, технологического процесса: установки пересечения оси диаграммы направленности зондирующих пучков источника и оси соответствующих диаграмм чувствительности фотоприемников на требуемом расстоянии от боеприпаса, в результате чего оптический блок обнаруживает только те цели, которые находятся на заданном расстоянии от боеприпаса, что снижает его универсальность.

Известен оптический дистанционный взрыватель (патент ФРГ PS №2949521, МПК: F42С 13/02, опубл. 21.10.82), состоящий из источника оптического излучения, работающего в пульсирующем режиме, коллимирующей и фокусирующей линз и фотоприемника.

Фотоприемник установлен таким образом, что ось диаграммы направленности источника оптического излучения пересекает ось диаграммы чувствительности фотоприемника на определенном расстоянии от боеприпаса, в результате чего дистанционный взрыватель срабатывает только при наличии цели на заданном расстоянии. Излучение от источника проходит через коллимирующую линзу, отражается от поверхности цели и, если она находится на заданном расстоянии от боеприпаса, через фокусирующую линзу попадает на фотоприемник, который преобразует оптический сигнал в электрический и производит его дальнейшую обработку.

Недостатком этого устройства являются низкая вероятность обнаружения малогабаритных целей и, в результате, низкая надежность срабатывания по целям такого типа, а также невысокая точность установки заданной дальности срабатывания, поскольку пересечение осей диаграммы направленности источника оптического излучения и диаграммы чувствительности фотоприемника на определенном расстоянии от боеприпаса обеспечивается только технологически. Кроме этого данное устройство имеет недостаточную защищенность от оптических помех.

Задачей изобретения является создание компактного, надежного и универсального устройства, обеспечивающего с требуемой точностью измерение заданного расстояния между объектами, имеющего высокую степень защищенности от оптических помех.

Решение указанной задачи достигается тем, что предложенное устройство измерения заданного расстояния между объектами, согласно изобретению, содержит два и более приемоизлучающих канала, каждый из которых содержит электронный блок, импульсный источник оптического излучения и фотоприемник, соединенные с электронным блоком, при этом оптические оси импульсного источника оптического излучения и фотоприемника, образующих приемоизлучающий канал, направлены под углом ≤90° к продольной оси устройства, совпадающей с вектором скорости движения объекта, и расположены со смешением друг относительно друга, преимущественно параллельно или практически параллельно, причем расстояние между оптическими осями излучателя и фотоприемника выбрано из условия l≥(du+dn)/2, где du и dn - наибольшие диаметры излучателя и фотоприемника соответственно, при этом приемоизлучающие каналы размещены вокруг продольной оси устройства, причем угол в радиальном направлении между осями излучателей смежных приемоизлучающих каналов выбран таким образом, что световые пучки излучателей не пересекаются между собой, при этом расстояние между лучами от соседних излучающих каналов на заданном расстоянии между объектами равно/примерно равно характерному размеру встречного объекта минимальной величины.

В варианте исполнения необходимое количество излучателей в устройстве измерения заданного расстояния между объектами определено из соотношения: n≥2π/(α+b/R), где: n - количество излучателей, α - угол расхождения пучка излучения, b - характерный размер встречного объекта минимальной величины, R - заданное расстояние между объектами.

Техническим результатом, достигаемым заявляемым изобретением, является создание устройства, обеспечивающего определение с высокой точностью момента достижения заданного расстояния между объектами при их сближении, имеющего повышенную помехозащищенность, уменьшенные габаритно-весовые характеристики и энергопотребление.

Технический результат достигается тем, что в устройстве измерения заданного расстояния между объектами, включающем электронный блок, источник оптического излучения и фотоприемник, в качестве источника оптического излучения применен импульсный лазерный диод, а в электронном блоке для обработки отраженного сигнала применен алгоритм, реализующий время-импульсный метод измерения расстояния. Излученные световые импульсы отражаются от поверхности встречного объекта и регистрируются фотоприемником с последующим анализом электронным блоком. Регистрацию отраженного сигнала осуществляют через временной интервал, определяющий заданное расстояние между объектами: с момента излучения светового импульса до открытия временного окна, продолжительностью которого задают погрешность определения расстояния.

Заявляемое устройство не требует настройки в процессе производства, позволяет устанавливать величину измеряемого расстояния между объектами непосредственно перед использованием устройства.

Изменение дистанции обнаружения цели осуществляется изменением установок в электронном блоке, что делает предлагаемое устройство более универсальным по сравнению с прототипом.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 представлено схематическое изображение поперечного сечения устройства измерения заданного расстояния между объектами.

Устройство измерения заданного расстояния между объектами включает как минимум два приемоизлучающих канала, состоящих из источника оптического излучения 1 и фотоприемника 2, соединенных с электронным блоком 3, установленных в корпусе устройства 4.

Устройство измерения заданного расстояния между объектами работает следующим образом.

Объекту, с установленным на нем устройством измерения заданного расстояния между объектами, придают поступательное движение. Световые импульсы от источника излучения 1 выводят наружу корпуса устройства 4 в сторону возможного появления встречного объекта. При наличии встречного объекта излучение отражается от его поверхности и регистрируется фотоприемником 2. Далее электронный блок 3 анализирует принятый сигнал на соответствие величины t - временного интервала, отсчитываемого с момента излучения импульса до момента регистрации сигнала, заданной временной установке Т. Величина временной установки Т вводится перед использованием устройства в электронный блок 3 и равна времени прохождения светового импульса дистанции, величина которой равна удвоенному заданному расстоянию между объектами, т.е. Т=2R/c, где с - скорость света, R - заданное расстояние между объектами.

При выполнении условия t=Т с заданной точностью, электронный блок определяет принятый сигнал как «рабочий» и выдает сигнал соответствия достигнутой дистанции между объектами заданному расстоянию.

Необходимое количество зондирующих оптических пучков в устройстве измерения заданного расстояния между объектами определяется характерным размером предполагаемых встречных объектов и величиной задаваемого расстояния из соотношения: n≥2π/(α+b/R), где: n - количество излучателей, α - угол расхождения светового пучка, b - характерный размер встречного объекта минимальной величины, R - заданное расстояние между объектами.

Использование предложенного технического решения позволит уменьшить габаритные размеры устройства измерения заданного расстояния между объектами, увеличить количество зондирующих оптических пучков в устройстве, и, следовательно, повысить надежность измерения заданного расстояния между объектами при увеличении задаваемого расстояния. Устройство измерения заданного расстояния между объектами с реализованным предложенным техническим решением не требует настройки в процессе производства, что позволяет упростить его конструкцию и снизить стоимость изготовления.

Устройство измерения заданного расстояния между объектами, характеризующееся тем, что оно содержит два и более приемоизлучающих канала, размещенные вокруг продольной оси устройства, каждый из которых содержит электронный блок, импульсный источник оптического излучения и фотоприемник, соединенные с электронным блоком, причем источник оптического излучения и фотоприемник, образующие приемоизлучающий канал, расположены преимущественно вплотную друг к другу, при этом оптические оси импульсного источника оптического излучения и фотоприемника расположены параллельно и направлены под углом < 90° к продольной оси, совпадающей с вектором скорости движения объекта, на котором установлено устройство, при этом необходимое количество излучателей определено из соотношения
n ≥ 2π/(α+b/R),
где
n - количество излучателей;
α - угол расхождения пучка излучения;
b - минимальный габаритный размер встречного объекта;
R - заданное измеряемое расстояние между объектами.



 

Похожие патенты:

Изобретение относится к области экологии, рыбного хозяйства и может быть использовано для оценки функционирования биотических сообществ водных экосистем с целью сбора сведений о численности, биомассе и пространственном распределении ключевых видов гидробионтов.

Изобретение относится к лазерным локационным системам (ЛЛС), используемым, в частности, в процессе стыковки космических аппаратов (КА). Способ включает сканирование пространства путем разворота активного КА с жестко установленной на нем ЛЛС по каналу тангажа или курса до обнаружения пассивного КА.

Изобретение относится к области лазерной техники и используется для формирования информационного поля лазерных систем телеориентации и навигации, оптической связи и может быть использовано при управлении, посадке и стыковке летательных аппаратов, проводке судов через узости или своды мостов, дистанционном управлении робототехническими устройствами в опасных для человека зонах и т.п.

Изобретение относится к области космической техники, а именно к области лазерных локационных систем (ЛЛС), используемых для обеспечения сближения космических аппаратов (КА).

Изобретение относится к оптико-электронной технике и может быть использовано в летательных аппаратах, предназначенных для съемки земной поверхности с целью картографирования.

Изобретение относится к системам с использованием отражения электромагнитных волн, иных чем радиоволны, например оптического излучения, а именно к системам лазерных локаторов для предотвращения столкновений и наездов автомобилей и других транспортных средств.

Изобретение относится к лазерной дальнометрии и может быть использовано для измерения расстояний до различных объектов на транспорте, в строительстве, машиностроении и других областях.

Изобретение относится к лазерной технике и может быть использовано для защиты подводных объектов от активных лазерных систем поиска. .

Изобретение относится к области акустики и может быть использовано для ориентации на местности. Устройство акустического представления пространственной информации содержит генератор сигналов, усилитель тракта излучения и передатчик, правый и левый ультразвуковые преобразователи, первый и второй аналого-цифровые преобразователи, первый и второй блоки памяти, первый и второй цифроаналоговые преобразователи, первый и второй усилители, правый и левый головные телефоны. Также устройство содержит генератор синхронизирующих импульсов, первый и второй делители частоты и блок задержки, первый и второй коммутаторы, счетчик, первый и второй наборы масштабно-временных фильтров, а также первый и второй сумматоры. Причем выходы первого и второго блоков памяти подключены соответственно к информационным входам первого и второго наборов масштабно-временных фильтров, а выходы первого и второго сумматоров соединены с первыми входами соответственно первого и второго ЦАП. В устройство введены последовательно соединенные блок анализа слухового анализатора пользователя (БАСАП), третий блок памяти и мультиплексор, выходы которого подключены к управляющим входам первого и второго наборов масштабно-временных фильтров, второй выход БАСАП соединен со вторым входом мультиплексора, а вход БАСАП подключен к выходу генератора синхронизирующих импульсов. Технический результат - улучшение распознавания объектов. 5 ил.

Изобретение относится к технике экологического контроля, в частности, к автоматизированным средствам измерения показателей качества водных объектов, преимущественно подверженных риску нефтегенных загрязнений, и может использоваться в составе систем экологического мониторинга природных сред. Техническим результатом изобретения является обеспечение автоматизированного получения и обработки широкого набора данных о параметрах поверхностных вод с последующим прогнозом изменения их состояния, с высокой надежностью распознавание и идентификация различных загрязнений, оповещение персонала контролируемых водных объектов о превышении допустимых уровней загрязнений и выдача информации, необходимой для принятия эффективных управленческих решений, направленных на минимизацию экологических рисков. Указанный результат достигается тем, что погружной комплекс мониторинга водных объектов содержит находящийся в погружном, в частности в подледном положении, измерительный буй с набором контактирующих с водой датчиков, измеряющих физико-химические и гидрологические параметры воды, размещенные внутри герметичного буя компактный флуоресцентный лидар, программируемый контроллер с системами сбора, предварительной обработки и передачи данных, генерируемых контактирующими с водой датчиками и лидаром, на удаленные интерфейсы информационной системы, при этом буй имеет прозрачное для зондирующего и обратного излучения оптическое окно, снабженное чистящей щеткой и экраном, сводящим к минимуму внешнюю засветку. 13 з.п. ф-лы, 2 ил.

Изобретение относится к автоматизированным системам обнаружения и мониторинга нефтегенных загрязнений морского нефтегазового промысла. Система включает в себя сеть флуоресцентных лидаров, установленных на нефтегазодобывающей платформе, танкерах, осуществляющих транспортировку нефти, и судах, обслуживающих промысел; сеть установленных на удалении от нефтегазодобывающей платформы автоматических плавучих комплексов мониторинга (КМ), каждый из которых содержит контактирующие с водой датчики регистрации нефтегенных углеводородов, физико-химических и гидрологических параметров воды, и находящийся в погружном, в частности, в подледном положении герметичный буй, в котором размещены программируемый контроллер с системами сбора, предварительной обработки и передачи данных, генерируемых датчиками КМ; а также единую автоматизированную информационную систему (ИС) с функциями сбора, обработки и хранения данных, генерируемых лидарами и плавучими КМ. В предпочтительных вариантах КМ включает в себя флуоресцентный лидар, размещенный в погружном буе, имеющем в верхней части окно, прозрачное для зондирующего и обратного излучения. Техническим результатом изобретения является создание надежной системы раннего обнаружения и мониторинга аварийного разлива нефти на объектах морского нефтегазового промысла, в том числе, в сложных условиях Арктики. 21 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной лазерной техники. Способ электронного сканирования пространства для получения трехмерной модели портрета сцены заключается в проецировании структурированной лазерной подсветки, формируемой с помощью нескольких лазерных генераторов линий, расположенных под фиксированными углами относительно друг друга, регистрации ее с помощью матричного фоторегистрирующего устройства, последовательно снимающего кадры с подсветкой и без подсветки для последующего дифференцирования фона, передаче изображения линий подсветки на вычислительное устройство и определении вычислительным устройством объемного изображения сцены триангуляционным методом. При этом сканирование осуществляется последовательным поочередным включением одной или нескольких линий структурированной лазерной подсветки. 2 ил.

Изобретение относится к приборостроению и предназначено для формирования лазерного растра систем управления, лазерных прицелов и может быть использовано при управлении, посадке и стыковке летательных аппаратов, проводке судов по сложным фарватерам, обнаружении оптикоэлектронных приборов по «блику», дистанционном управлении робототехническими устройствами. Способ формирования лазерного растра основан на последовательной дифракции лазерного пучка на двух последовательно установленных и развернутых на 90 градусов по отношению друг к другу акустооптических дефлекторах, на входы управления которых поданы высокочастотные сигналы управления f1(t) и f2(t), законы изменения которых задают в виде линейного изменения частот управления, а число N строк или (и) столбцов выбирают как целочисленное значение из условия N=k·Tс/τ, где k=1,0-2,5, Tс - время формирования строки, τ - постоянная времени дефлектора, вычисляемая из соотношения τ=d0/ν, d0 - световая апертура дефлекторов, ν - скорость акустических волн. Технический результат заключается в повышении равномерности интенсивности лазерного растра, повышении информативности лазерной системы и обеспечении возможности поворота лазерного растра относительно его центра. 6 ил.

Настоящее изобретение относится к области оптической связи. Согласно способу используют лазерный луч, который состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции. Импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения. Из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения. Последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения за счет чирпирования частоты спектра лазерного излучения. Для передачи информации формируют двоичный код. Технический результат - увеличение дальности оптической связи за счет лучшего прохождения сигналов через ослабляющие участки трассы. 4 ил.

Система предназначена для измерения и контроля геометрических параметров железобетонных шпал, влияющих на прочность и надежность работы рельсового пути. На каркасе установлена линейная направляющая, с перемещаемой кареткой. На каретке закреплены лазерные профилометры с возможностью их перемещения для смены позиции конвейером. В качестве лазерных профилометров используют закрепленные на кронштейне лазерные сканеры с одним лазерным излучателем и двумя приемниками отраженного сигнала, которые установлены в лазерных сканерах. Приемники считывают отраженный сигнал одновременно одного и того же поперечного сечения железобетонной шпалы. На каретке закреплены как минимум два лазерных сканера для одновременного измерения двух и более железобетонных шпал. Достигается упрощение системы и процесса измерения и повышение производительности и эффективности работы системы за счет обеспечения возможности измерения параметров двух и более шпал одновременно. 2 ил.

Изобретение относится к области океанологических измерений и преимущественно может быть использовано для контроля состояния поверхности океана. Технический результат - повышение точности определения асимметрии распределения возвышений морской поверхности. Сущность: формируют короткие радиоимпульсы постоянной длительности, зондируют ими морскую поверхность в надир и регистрируют отражённые радиоимпульсы. По изменениям угла наклона на разных участках переднего фронта отраженного радиоимпульса определяют асимметрию усеченного, распределения возвышений морской поверхности. При этом дополнительно осуществляют прямые волнографические измерения возвышений морской поверхности и по данным этих измерений строят зависимость асимметрии распределения возвышений морской поверхности, полученной при волнографиче-ских измерениях, от асимметрии указаного усеченного распределения. Полученную зависимость учитывают при расчете асимметрии полного распределения возвышений морской поверхности. 1 н. п. ф-лы, 1 ил.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля состояния поверхности океана. Технический результат - повышение точности определения характеристик морской поверхности за счет разделения воздействия на отражённый от морской поверхности радиосигнал двух факторов, доминантных ветровых волн и мелкомасштабной ряби. Сущность: формируют короткие радиоимпульсы постоянной длительности и вертикально зондируют ими морскую поверхность, регистрируют отражённые радиоимпульсы и по их форме определяют характеристики морской поверхности, при этом дополнительно формируют более длинные радиоимпульсы и вертикально зондируют ими морскую поверхность, причем длительность дополнительно сформированных радиоимпульсов обеспечивает одновременное отражение от всей площади морской поверхности, освещаемой в пределах диаграммы направленности антенны, определяют амплитуду отраженных импульсов большей длительности, по ней определяют скорость ветра, и определяют характеристики морской поверхности с учетом скорости ветра. 1 ил.
Изобретения относятся к системам для активной защиты Земли и могут быть использованы при реализации комплексов для борьбы с летающими объектами естественного и искусственного происхождения, приближающимися к Земле. Технический результат - расширение функциональных возможностей. Указанная цель достигается за счет определения направления на астероид радиолокатором с четырьмя установленными на Земле антеннами (ППА) и содержащим: десять генераторов сигналов (Г), по двенадцать смесителей (СМ) и фильтров (Ф), по четыре усилителя мощности (УМ) и частотомера (Ч), пять ЦАП и цифровую карту околоземного пространства, содержащую N схем сравнений, каждая из которых содержит четыре цифровых компаратора, элемент И и светодиод. При этом определяют направление на астероид, облучая его четырьмя ППА, установленными на окружности, на равном удалении по окружности друг от друга, с базовыми L расстояниями между диаметрально противоположными ППА1 и ППА2, а также ППА3 и ППА4, которые излучают четыре непрерывных сигнала с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигналы) с близкими частотами. 3 н. и 2 з.п. ф-лы.
Наверх